Modification of Barley Plant Productivity Through Regulation of Cytokinin Content by Reverse-Genetics Approaches
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30542354
PubMed Central
PMC6277847
DOI
10.3389/fpls.2018.01676
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR-Cas9, barley, cytokinin, silencing, yield,
- Publikační typ
- časopisecké články MeSH
Barley is one of the most important cereals, which is used for breweries, animal and human feeds. Genetic manipulation of plant hormone cytokinins may influence several physiological processes, besides others stress tolerance, root formation and crop yield. In planta, endogenous cytokinin status is finely regulated by the enzyme cytokinin dehydrogenase (EC 1.5.99.12; CKX), that irreversible degrades the side chain of adenine-derived isoprenoid cytokinins. Increasing grain yield by mean of manipulation of endogenous cytokinin content was assayed by the silencing of the HvCKX1 gene. Moreover, to elucidate the putative role of HvCKX1 gene on grain production, knocked-out Hvckx1 mutant plants were generated using the RNA-guided Cas9 system. Homozygote transgenic plants with silenced HvCKX1 gene and azygous knock-out Hvckx1 mutants have been selected and analyzed. Both reduced expression of HvCKX1 gene and CKX activity were measured in different stages of barley grain development. Phenotyping of the transgenic lines revealed reduced root growth, however, plants produced more tillers and grains than azygous wild-type controls and the total yield was increased up to 15 per cent. Although plant productivity was increased, total grain biomass was decreased to 80% of WT grains. RNA-seq analysis of knock-down transgenic lines revealed that several important macronutrient transporters were downregulated in the stage of massive starch accumulation. It suggests that local accumulation of cytokinins negatively affected nutrients flow resulting in reduced grain biomass. Obtained results confirmed the key role of HvCKX1 for regulation of cytokinin content in barley.
Zobrazit více v PubMed
Anderson P. M., Oelke E. A., Simmons S. R. (1995). Growth and Development Guide for Spring Barley. St. Paul, MN: University of Minnesota Extension Service.
Ashikari M., Sakakibara H., Lin S., Yamamoto T., Takashi T., Nishimura A., et al. (2005). Plant science: cytokinin oxidase regulates rice grain production. Science 309 741–745. 10.1126/science.1113373 PubMed DOI
Bartrina I., Otto E., Strnad M., Werner T., Schmülling T. (2011). Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23 69–80. 10.1105/tpc.110.079079 PubMed DOI PMC
Bielach A., Hrtyan M., Tognetti V. B. (2017). Plants under stress: involvement of auxin and cytokinin. Int. J. Mol. Sci. 18:E1427. 10.3390/ijms18071427 PubMed DOI PMC
Bieleski R. L. (1964). The problem of halting enzyme action when extracting plant tissues. Anal. Biochem. 9 431–442. 10.1016/0003-2697(64)90204-0 PubMed DOI
Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 248–254. 10.1016/0003-2697(76)90527-3 PubMed DOI
Brenner W. G., Romanov G. A., Köllmer I., Bürkle L., Schmülling T. (2005). Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J. 44 314–333. 10.1111/j.1365-313X.2005.02530.x PubMed DOI
Budhagatapalli N., Schedel S., Gurushidze M., Pencs S., Hiekel S., Rutten T., et al. (2016). A simple test for the cleavage activity of customized endonucleases in plants. Plant Methods 12:18. 10.1186/s13007-016-0118-6 PubMed DOI PMC
Bürkle L., Cedzich A., Döpke C., Stransky H., Okumoto S., Gillissen B., et al. (2003). Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant J. 34 13–26. 10.1046/j.1365-313X.2003.01700.x PubMed DOI
Cedzich A., Stransky H., Schulz B., Frommer W. B. (2008). Characterization of cytokinin and adenine transport in Arabidopsis cell cultures. Plant Physiol. 148 1857–1867. 10.1104/pp.108.128454 PubMed DOI PMC
Cermák C., Curtin S. J. (2017). “Design and assembly of CRISPR/Cas9 reagents for gene knockout, targeted insertion, and replacement in wheat,” in Wheat Biotechnology: Methods and Protocols, eds Bhalla P. L., Singh M. B. (Berlin: Springer Science+Business Media LLC; ), 187–212. 10.1007/978-1-4939-7337-8 PubMed DOI
Cubas P., Lauter N., Doebley J., Coen E. (1999). The TCP domain: a motif found in proteins regulating plant growth and development The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 18 215–222. 10.1046/j.1365-313X.1999.00444.x PubMed DOI
Day C. D., Lee E., Kobayashi J., Holappa L. D., Albert H., Ow D. W. (2000). Transgene integration into the same chromosome location can produce alleles that express at a predictable level or alleles that are differentially silenced. Genes Dev. 14 2869–2880. 10.1101/gad.849600 PubMed DOI PMC
Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., et al. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29 15–21. 10.1093/bioinformatics/bts635 PubMed DOI PMC
Dong J., Kim S. T., Lord E. M. (2005). Plantacyanin plays a role in reproduction in Arabidopsis. Plant Physiol. 138 778–789. 10.1104/pp.105.063388 PubMed DOI PMC
Dunwell J. M. (1998). Cupins: a new superfamily of functionally diverse proteins that include germins and plant storage proteins. Biotechnol. Genet. Eng. Rev. 15 1–32. 10.1080/02648725.1998.10647950 PubMed DOI
Edwards K., Johnstone C., Thompson C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19:1349 10.1093/nar/19.6.1349 PubMed DOI PMC
Enz M., Dachler C. H. (1997). Compendium of Growth Stage Identification Keys for Mono- and Dicotyledonous Plants. Extended BBCH Scale. Available at: http://www.gartneriraadgivningen.dk/upl/website/bbch-skala/scaleBBCH.pdf
Frébort I., Šebela M., Galuszka P., Werner T., Schmülling T., Pec P. (2002). Cytokinin oxidase/cytokinin dehydrogenase assay: optimized procedures and applications. Anal. Biochem. 306 1–7. 10.1006/abio.2002.5670 PubMed DOI
Gan S., Amasino R. M. (1995). Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270 1986–1988. PubMed
Ghaffari M. R., Shahinnia F., Usadel B., Junker B., Schreiber F., Sreenivasulu N., et al. (2016). The metabolic signature of biomass formation in barley. Plant Cell Physiol. 57 1943–1960. 10.1093/pcp/pcw117 PubMed DOI
Gillissen B., Burkle L., Andre B., Kuhn C., Rentsch D., Brandl B., et al. (2000). A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell 12 291–300. 10.1105/tpc.12.2.291 PubMed DOI PMC
Gregersen P. L., Culetic A., Boschian L., Krupinska K. (2013). Plant senescence and crop productivity. Plant Mol. Biol. 82 603–622. 10.1007/s11103-013-0013-8 PubMed DOI
Harwood W., Bartlett J. G., Alves S. C., Perry M., Smedley M. A., Leyl L., et al. (2009). “Barley transformation using agrobacterium-mediated techniques,” in Transgenic Wheat, Barley and Oats. Methods in Molecular BiologyTM (Methods and Protocols) Vol. 478 eds Jones H., Shewry P. (New York, NY: Humana Press; ), 10.1007/978-1-59745-379-0_9 PubMed DOI
Helliwell C., Waterhouse P. (2003). Constructs and methods for high-throughput gene silencing in plants. Methods 30 289–295. 10.1016/S1046-2023(03)00036-7 PubMed DOI
Hensel G., Kastner C., Oleszczuk S., Riechen J., Kumlehn J. (2009). Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. Int. J. Plant Genomics 2009:835608. 10.1155/2009/835608 PubMed DOI PMC
Hensel G., Valkov V., Middlefell-Williams J., Kumlehn J. (2008). Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. J. Plant Physiol. 165 71–82. 10.1016/j.jplph.2007.06.015 PubMed DOI
Hoagland D. R., Arnon D. I. (1950). The water-culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ. 347:32.
Holme I. B., Wendt T., Gil-Humanes J., Deleuran L. C., Starker C. G., Voytas D. F., et al. (2017). Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Mol. Biol. 95 111–121. 10.1007/s11103-017-0640-6 PubMed DOI
Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., et al. (2008). Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinformatics 2008:420747. 10.1155/2008/420747 PubMed DOI PMC
Jameson P. E., Song J. (2016). Cytokinin: a key driver of seed yield. J. Exp. Bot. 67 593–606. 10.1093/jxb/erv461 PubMed DOI
Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. (2012). A programmable dual-RNA – guided DNA endonuclease in adaptive bacterial immunity. Science 337 816–822. 10.1126/science.1225829 PubMed DOI PMC
Jolie R. P., Duvetter T., Van Loey A. M., Hendrickx M. E. (2010). Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr. Res. 345 2583–2595. 10.1016/j.carres.2010.10.002 PubMed DOI
Jordi W., Schapendonk A., Davelaar E., Stoopen G. M., Pot C. S., De Visser R., et al. (2000). Increased cytokinin levels in transgenic P(SAG12)-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning. Plant Cell Environ. 23 279–289. 10.1046/j.1365-3040.2000.00544.x DOI
Kapusi E., Corcuera-Gómez M., Melnik S., Stoger E. (2017). Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front. Plant Sci. 8:540. 10.3389/fpls.2017.00540 PubMed DOI PMC
Kieber J. J., Schaller G. E. (2018). Cytokinin signaling in plant development. Development 145:dev149344. 10.1242/dev.149344 PubMed DOI
Kooter J. M., Matzke M. A., Meyer P. (1999). Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci. 4 340–347. 10.1016/S1360-1385(99)01467-3 PubMed DOI
Koyama T., Furutani M., Tasaka M., Ohme-Takagi M. (2007). TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 19 473–484. 10.1105/tpc.106.044792 PubMed DOI PMC
Kudo T., Kiba T., Sakakibara H. (2010). Metabolism and long-distance translocation of cytokinins. J. Integr. Plant Biol. 52 53–60. 10.1111/j.1744-7909.2010.00898.x PubMed DOI
Kumar N., Galli M., Ordon J., Stuttmann J., Kogel K.-H., Imani J. (2018). Further analysis of barley MORC1 using a highly efficient RNA-guided Cas9 gene editing system. Plant Biotechnol. J. 16 1892–1903. 10.1111/pbi.12924 PubMed DOI PMC
Lawrenson T., Shorinola O., Stacey N., Li C., Østergaard L., Patron N., et al. (2015). Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol. 16:258. 10.1186/s13059-015-0826-7 PubMed DOI PMC
Lechtenberg B., Schubert D., Forsbach A., Gils M., Schmidt R. (2003). Neither inverted repeat T-DNA configurations nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. Plant J. 34 507–517. 10.1046/j.1365-313X.2003.01746.x PubMed DOI
Liao Y., Smyth G. K., Shi W. (2014). FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30 923–930. 10.1093/bioinformatics/btt656 PubMed DOI
Lin Y. J., Cao M. L., Xu C. G., Chen H., Wei J., Zhang Q. F. (2002). Cultivating rice with delaying led-senescence by P-SAG12-IPT gene transformation. Acta Bot. Sin. 44 1333–1338.
Liu L., Zhou Y., Szczerba M. W., Li X., Lin Y. (2010). Identification and application of a rice senescence-associated promoter. Plant Physiol. 153 1239–1249. 10.1104/pp.110.157123 PubMed DOI PMC
Lohse M., Nagel A., Herter T., May P., Schroda M., Zrenner R., et al. (2014). Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell Environ. 37 1250–1258. 10.1111/pce.12231 PubMed DOI
Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. 10.1186/s13059-014-0550-8 PubMed DOI PMC
Macková H., Hronková M., Dobrá J., Turečková V., Novák O., Lubovská Z., et al. (2013). Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J. Exp. Bot. 64 2805–2815. 10.1093/jxb/ert131 PubMed DOI PMC
Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S. O., Wicker T., et al. (2017). A chromosome conformation capture ordered sequence of the barley genome. Nature 544 427–433. 10.1038/nature22043 PubMed DOI
Matzke A. J. M., Matzke M. A. (1998). Position effects and epigenetic silencing of plant transgenes. Curr. Opin. Plant Biol. 1 142–148. 10.1016/S1369-5266(98)80016-2 PubMed DOI
Moore T. E. (2012). Are Barley Dwarfing Genes Important in Tolerance to Abiotic Stress? Ph.D. Thesis, University of East Anglia, Norwich.
Mrízová K., Jiskrová E., Vyroubalovš Š, Novák O., Ohnoutková L., Pospišilová H.et al. (2013). Overexpression of cytokinin dehydrogenase genes in barley (Hordeum vulgare cv. golden promise) fundamentally affects morphology and fertility. PLoS One 8:e79029. 10.1371/journal.pone.0079029 PubMed DOI PMC
Nam Y. J., Tran L. S. P., Kojima M., Sakakibara H., Nishiyama R., Shin R. (2012). Regulatory roles of cytokinins and cytokinin signaling in response to potassium deficiency in Arabidopsis. PLoS One 7:e47797. 10.1371/journal.pone.0047797 PubMed DOI PMC
Nishiyama R., Watanabe Y., Fujita Y., Le D. T., Kojima M., Werner T., et al. (2011). Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23 2169–2183. 10.1105/tpc.111.087395 PubMed DOI PMC
Novák O., Hauserová E., Amakorová P., Doležal K., Strnad M. (2008). Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69 2214–2224. 10.1016/j.phytochem.2008.04.022 PubMed DOI
Pallotta M. A., Graham R. D., Langridge P., Sparrow D. H. B., Barker S. J. (2000). RFLP mapping of manganese efficiency in barley. Theor. Appl. Genet. 101 1100–1108. 10.1007/s001220051585 DOI
Pospíšilová H., Jiskrová E., Vojta P., Mrízová K., Kokáš F., Čudejková M. M., et al. (2016). Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. N. Biotechnol. 33 692–705. 10.1016/j.nbt.2015.12.005 PubMed DOI
Powell A. F., Paleczny A. R., Olechowski H., Emery R. J. (2013). Changes in cytokinin form and concentration in developing kernels correspond with variation in yield among field-grown barley cultivars. Plant Physiol. Biochem. 64 33–40. 10.1016/j.plaphy.2012.12.010 PubMed DOI
Puchta H., Fauser F. (2014). Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J. 78 727–741. 10.1111/tpj.12338 PubMed DOI
R Development Core Team (2008). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; Available at: http://www.r-project.org
Sabelli P. A., Larkins B. A. (2009). The development of endosperm in grasses. Plant Physiol. 149 14–26. 10.1104/pp.108.129437 PubMed DOI PMC
Sakakibara H. (2006). CYTOKININS: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57 431–449. 10.1146/annurev.arplant.57.032905.105231 PubMed DOI
Sakakibara H., Takei K., Hirose N. (2006). Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci. 11 440–448. 10.1016/j.tplants.2006.07.004 PubMed DOI
Schedel S., Pencs S., Hensel G., Müller A., Rutten T., Kumlehn J. (2017). RNA-guided Cas9-induced mutagenesis in tobacco followed by efficient genetic fixation in doubled haploid plants. Front. Plant Sci. 7:1995. 10.3389/fpls.2016.01995 PubMed DOI PMC
Shapiro H. M. (2003). Practical Flow Cytometry, 4th Edn. Hoboken, NJ: Wiley-liss.
Sreenivasulu N., Schnurbusch T. (2012). A genetic playground for enhancing grain number in cereals. Trends Plant Sci. 17 91–101. 10.1016/j.tplants.2011.11.003 PubMed DOI
Stanley D., Rejzek M., Naested H., Smedley M., Otero S., Fahy B., et al. (2011). The role of -glucosidase in germinating barley grains. Plant Physiol. 155 932–943. 10.1104/pp.110.168328 PubMed DOI PMC
Sýkorová B., Kurešová G., Daskalova S., Trčková M., Hoyerová K., Raimanová I., et al. (2008). Senescence-induced ectopic expression of the A. tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx, and nitrate reductase activity, but does not affect grain yield. J. Exp. Bot. 59 377–387. 10.1093/jxb/erm319 PubMed DOI
Voytas D. F. (2013). Plant genome engineering with sequence-specific nucleases. Annu. Rev. Plant Biol. 64 327–350. 10.1146/annurev-arplant-042811-105552 PubMed DOI
Wakimoto B. T. (1998). Beyond the nucleosome: epigenetic aspects of position-effect variegation in Drosophila. Cell 93 321–324. 10.1016/S0092-8674(00)81159-9 PubMed DOI
Watanabe K., Breier U., Hensel G., Kumlehn J., Schubert I., Reiss B. (2016). Stable gene replacement in barley by targeted double-strand break induction. J. Exp. Bot. 67 1433–1445. 10.1093/jxb/erv537 PubMed DOI PMC
Werner T., Motyka V., Laucou V., Smets R., Van Onckelen H., Schmuelling T. (2003). Cytokinin-deficient transgenic Arabidopsis plants show functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15 2532–2550. PubMed PMC
Wesley S. V., Helliwell C. A., Smith N. A., Wang M. B., Rouse D. T., Liu Q., et al. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27 581–590. 10.1046/j.1365-313X.2001.01105.x PubMed DOI
Zalabák D., Pospíšilová H., Šmehilová M., Mrízová K., Frébort I., Galuszka P. (2013). Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol. Adv. 31 97–117. 10.1016/j.biotechadv.2011.12.003 PubMed DOI
Zalewski W., Galuszka P., Gasparis S., Orczyk W., Nadolska-Orczyk A. (2010). Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. J. Exp. Bot. 61 1839–1851. 10.1093/jxb/erq052 PubMed DOI
Zhang R., Tucker M. R., Burton R. A., Shirley N. J., Little A., Morris J., et al. (2016). The dynamics of transcript abundance during cellularisation of developing barley endosperm. Plant Physiol. 170 1549–1565. 10.1104/pp.15.01690 PubMed DOI PMC
Can plant hormonomics be built on simple analysis? A review
SWEET11b transports both sugar and cytokinin in developing barley grains
Delayed Leaf Senescence by Upregulation of Cytokinin Biosynthesis Specifically in Tomato Roots
Plant Growth Regulators INCYDE and TD-K Underperform in Cereal Field Trials
Barley Root Proteome and Metabolome in Response to Cytokinin and Abiotic Stimuli