Modification of Barley Plant Productivity Through Regulation of Cytokinin Content by Reverse-Genetics Approaches

. 2018 ; 9 () : 1676. [epub] 20181127

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30542354

Barley is one of the most important cereals, which is used for breweries, animal and human feeds. Genetic manipulation of plant hormone cytokinins may influence several physiological processes, besides others stress tolerance, root formation and crop yield. In planta, endogenous cytokinin status is finely regulated by the enzyme cytokinin dehydrogenase (EC 1.5.99.12; CKX), that irreversible degrades the side chain of adenine-derived isoprenoid cytokinins. Increasing grain yield by mean of manipulation of endogenous cytokinin content was assayed by the silencing of the HvCKX1 gene. Moreover, to elucidate the putative role of HvCKX1 gene on grain production, knocked-out Hvckx1 mutant plants were generated using the RNA-guided Cas9 system. Homozygote transgenic plants with silenced HvCKX1 gene and azygous knock-out Hvckx1 mutants have been selected and analyzed. Both reduced expression of HvCKX1 gene and CKX activity were measured in different stages of barley grain development. Phenotyping of the transgenic lines revealed reduced root growth, however, plants produced more tillers and grains than azygous wild-type controls and the total yield was increased up to 15 per cent. Although plant productivity was increased, total grain biomass was decreased to 80% of WT grains. RNA-seq analysis of knock-down transgenic lines revealed that several important macronutrient transporters were downregulated in the stage of massive starch accumulation. It suggests that local accumulation of cytokinins negatively affected nutrients flow resulting in reduced grain biomass. Obtained results confirmed the key role of HvCKX1 for regulation of cytokinin content in barley.

Erratum v

PubMed

Zobrazit více v PubMed

Anderson P. M., Oelke E. A., Simmons S. R. (1995). Growth and Development Guide for Spring Barley. St. Paul, MN: University of Minnesota Extension Service.

Ashikari M., Sakakibara H., Lin S., Yamamoto T., Takashi T., Nishimura A., et al. (2005). Plant science: cytokinin oxidase regulates rice grain production. Science 309 741–745. 10.1126/science.1113373 PubMed DOI

Bartrina I., Otto E., Strnad M., Werner T., Schmülling T. (2011). Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23 69–80. 10.1105/tpc.110.079079 PubMed DOI PMC

Bielach A., Hrtyan M., Tognetti V. B. (2017). Plants under stress: involvement of auxin and cytokinin. Int. J. Mol. Sci. 18:E1427. 10.3390/ijms18071427 PubMed DOI PMC

Bieleski R. L. (1964). The problem of halting enzyme action when extracting plant tissues. Anal. Biochem. 9 431–442. 10.1016/0003-2697(64)90204-0 PubMed DOI

Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 248–254. 10.1016/0003-2697(76)90527-3 PubMed DOI

Brenner W. G., Romanov G. A., Köllmer I., Bürkle L., Schmülling T. (2005). Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J. 44 314–333. 10.1111/j.1365-313X.2005.02530.x PubMed DOI

Budhagatapalli N., Schedel S., Gurushidze M., Pencs S., Hiekel S., Rutten T., et al. (2016). A simple test for the cleavage activity of customized endonucleases in plants. Plant Methods 12:18. 10.1186/s13007-016-0118-6 PubMed DOI PMC

Bürkle L., Cedzich A., Döpke C., Stransky H., Okumoto S., Gillissen B., et al. (2003). Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant J. 34 13–26. 10.1046/j.1365-313X.2003.01700.x PubMed DOI

Cedzich A., Stransky H., Schulz B., Frommer W. B. (2008). Characterization of cytokinin and adenine transport in Arabidopsis cell cultures. Plant Physiol. 148 1857–1867. 10.1104/pp.108.128454 PubMed DOI PMC

Cermák C., Curtin S. J. (2017). “Design and assembly of CRISPR/Cas9 reagents for gene knockout, targeted insertion, and replacement in wheat,” in Wheat Biotechnology: Methods and Protocols, eds Bhalla P. L., Singh M. B. (Berlin: Springer Science+Business Media LLC; ), 187–212. 10.1007/978-1-4939-7337-8 PubMed DOI

Cubas P., Lauter N., Doebley J., Coen E. (1999). The TCP domain: a motif found in proteins regulating plant growth and development The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 18 215–222. 10.1046/j.1365-313X.1999.00444.x PubMed DOI

Day C. D., Lee E., Kobayashi J., Holappa L. D., Albert H., Ow D. W. (2000). Transgene integration into the same chromosome location can produce alleles that express at a predictable level or alleles that are differentially silenced. Genes Dev. 14 2869–2880. 10.1101/gad.849600 PubMed DOI PMC

Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., et al. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29 15–21. 10.1093/bioinformatics/bts635 PubMed DOI PMC

Dong J., Kim S. T., Lord E. M. (2005). Plantacyanin plays a role in reproduction in Arabidopsis. Plant Physiol. 138 778–789. 10.1104/pp.105.063388 PubMed DOI PMC

Dunwell J. M. (1998). Cupins: a new superfamily of functionally diverse proteins that include germins and plant storage proteins. Biotechnol. Genet. Eng. Rev. 15 1–32. 10.1080/02648725.1998.10647950 PubMed DOI

Edwards K., Johnstone C., Thompson C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19:1349 10.1093/nar/19.6.1349 PubMed DOI PMC

Enz M., Dachler C. H. (1997). Compendium of Growth Stage Identification Keys for Mono- and Dicotyledonous Plants. Extended BBCH Scale. Available at: http://www.gartneriraadgivningen.dk/upl/website/bbch-skala/scaleBBCH.pdf

Frébort I., Šebela M., Galuszka P., Werner T., Schmülling T., Pec P. (2002). Cytokinin oxidase/cytokinin dehydrogenase assay: optimized procedures and applications. Anal. Biochem. 306 1–7. 10.1006/abio.2002.5670 PubMed DOI

Gan S., Amasino R. M. (1995). Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270 1986–1988. PubMed

Ghaffari M. R., Shahinnia F., Usadel B., Junker B., Schreiber F., Sreenivasulu N., et al. (2016). The metabolic signature of biomass formation in barley. Plant Cell Physiol. 57 1943–1960. 10.1093/pcp/pcw117 PubMed DOI

Gillissen B., Burkle L., Andre B., Kuhn C., Rentsch D., Brandl B., et al. (2000). A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell 12 291–300. 10.1105/tpc.12.2.291 PubMed DOI PMC

Gregersen P. L., Culetic A., Boschian L., Krupinska K. (2013). Plant senescence and crop productivity. Plant Mol. Biol. 82 603–622. 10.1007/s11103-013-0013-8 PubMed DOI

Harwood W., Bartlett J. G., Alves S. C., Perry M., Smedley M. A., Leyl L., et al. (2009). “Barley transformation using agrobacterium-mediated techniques,” in Transgenic Wheat, Barley and Oats. Methods in Molecular BiologyTM (Methods and Protocols) Vol. 478 eds Jones H., Shewry P. (New York, NY: Humana Press; ), 10.1007/978-1-59745-379-0_9 PubMed DOI

Helliwell C., Waterhouse P. (2003). Constructs and methods for high-throughput gene silencing in plants. Methods 30 289–295. 10.1016/S1046-2023(03)00036-7 PubMed DOI

Hensel G., Kastner C., Oleszczuk S., Riechen J., Kumlehn J. (2009). Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. Int. J. Plant Genomics 2009:835608. 10.1155/2009/835608 PubMed DOI PMC

Hensel G., Valkov V., Middlefell-Williams J., Kumlehn J. (2008). Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. J. Plant Physiol. 165 71–82. 10.1016/j.jplph.2007.06.015 PubMed DOI

Hoagland D. R., Arnon D. I. (1950). The water-culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ. 347:32.

Holme I. B., Wendt T., Gil-Humanes J., Deleuran L. C., Starker C. G., Voytas D. F., et al. (2017). Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Mol. Biol. 95 111–121. 10.1007/s11103-017-0640-6 PubMed DOI

Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., et al. (2008). Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinformatics 2008:420747. 10.1155/2008/420747 PubMed DOI PMC

Jameson P. E., Song J. (2016). Cytokinin: a key driver of seed yield. J. Exp. Bot. 67 593–606. 10.1093/jxb/erv461 PubMed DOI

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. (2012). A programmable dual-RNA – guided DNA endonuclease in adaptive bacterial immunity. Science 337 816–822. 10.1126/science.1225829 PubMed DOI PMC

Jolie R. P., Duvetter T., Van Loey A. M., Hendrickx M. E. (2010). Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr. Res. 345 2583–2595. 10.1016/j.carres.2010.10.002 PubMed DOI

Jordi W., Schapendonk A., Davelaar E., Stoopen G. M., Pot C. S., De Visser R., et al. (2000). Increased cytokinin levels in transgenic P(SAG12)-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning. Plant Cell Environ. 23 279–289. 10.1046/j.1365-3040.2000.00544.x DOI

Kapusi E., Corcuera-Gómez M., Melnik S., Stoger E. (2017). Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front. Plant Sci. 8:540. 10.3389/fpls.2017.00540 PubMed DOI PMC

Kieber J. J., Schaller G. E. (2018). Cytokinin signaling in plant development. Development 145:dev149344. 10.1242/dev.149344 PubMed DOI

Kooter J. M., Matzke M. A., Meyer P. (1999). Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci. 4 340–347. 10.1016/S1360-1385(99)01467-3 PubMed DOI

Koyama T., Furutani M., Tasaka M., Ohme-Takagi M. (2007). TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 19 473–484. 10.1105/tpc.106.044792 PubMed DOI PMC

Kudo T., Kiba T., Sakakibara H. (2010). Metabolism and long-distance translocation of cytokinins. J. Integr. Plant Biol. 52 53–60. 10.1111/j.1744-7909.2010.00898.x PubMed DOI

Kumar N., Galli M., Ordon J., Stuttmann J., Kogel K.-H., Imani J. (2018). Further analysis of barley MORC1 using a highly efficient RNA-guided Cas9 gene editing system. Plant Biotechnol. J. 16 1892–1903. 10.1111/pbi.12924 PubMed DOI PMC

Lawrenson T., Shorinola O., Stacey N., Li C., Østergaard L., Patron N., et al. (2015). Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol. 16:258. 10.1186/s13059-015-0826-7 PubMed DOI PMC

Lechtenberg B., Schubert D., Forsbach A., Gils M., Schmidt R. (2003). Neither inverted repeat T-DNA configurations nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. Plant J. 34 507–517. 10.1046/j.1365-313X.2003.01746.x PubMed DOI

Liao Y., Smyth G. K., Shi W. (2014). FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30 923–930. 10.1093/bioinformatics/btt656 PubMed DOI

Lin Y. J., Cao M. L., Xu C. G., Chen H., Wei J., Zhang Q. F. (2002). Cultivating rice with delaying led-senescence by P-SAG12-IPT gene transformation. Acta Bot. Sin. 44 1333–1338.

Liu L., Zhou Y., Szczerba M. W., Li X., Lin Y. (2010). Identification and application of a rice senescence-associated promoter. Plant Physiol. 153 1239–1249. 10.1104/pp.110.157123 PubMed DOI PMC

Lohse M., Nagel A., Herter T., May P., Schroda M., Zrenner R., et al. (2014). Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell Environ. 37 1250–1258. 10.1111/pce.12231 PubMed DOI

Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. 10.1186/s13059-014-0550-8 PubMed DOI PMC

Macková H., Hronková M., Dobrá J., Turečková V., Novák O., Lubovská Z., et al. (2013). Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J. Exp. Bot. 64 2805–2815. 10.1093/jxb/ert131 PubMed DOI PMC

Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S. O., Wicker T., et al. (2017). A chromosome conformation capture ordered sequence of the barley genome. Nature 544 427–433. 10.1038/nature22043 PubMed DOI

Matzke A. J. M., Matzke M. A. (1998). Position effects and epigenetic silencing of plant transgenes. Curr. Opin. Plant Biol. 1 142–148. 10.1016/S1369-5266(98)80016-2 PubMed DOI

Moore T. E. (2012). Are Barley Dwarfing Genes Important in Tolerance to Abiotic Stress? Ph.D. Thesis, University of East Anglia, Norwich.

Mrízová K., Jiskrová E., Vyroubalovš Š, Novák O., Ohnoutková L., Pospišilová H.et al. (2013). Overexpression of cytokinin dehydrogenase genes in barley (Hordeum vulgare cv. golden promise) fundamentally affects morphology and fertility. PLoS One 8:e79029. 10.1371/journal.pone.0079029 PubMed DOI PMC

Nam Y. J., Tran L. S. P., Kojima M., Sakakibara H., Nishiyama R., Shin R. (2012). Regulatory roles of cytokinins and cytokinin signaling in response to potassium deficiency in Arabidopsis. PLoS One 7:e47797. 10.1371/journal.pone.0047797 PubMed DOI PMC

Nishiyama R., Watanabe Y., Fujita Y., Le D. T., Kojima M., Werner T., et al. (2011). Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23 2169–2183. 10.1105/tpc.111.087395 PubMed DOI PMC

Novák O., Hauserová E., Amakorová P., Doležal K., Strnad M. (2008). Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69 2214–2224. 10.1016/j.phytochem.2008.04.022 PubMed DOI

Pallotta M. A., Graham R. D., Langridge P., Sparrow D. H. B., Barker S. J. (2000). RFLP mapping of manganese efficiency in barley. Theor. Appl. Genet. 101 1100–1108. 10.1007/s001220051585 DOI

Pospíšilová H., Jiskrová E., Vojta P., Mrízová K., Kokáš F., Čudejková M. M., et al. (2016). Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. N. Biotechnol. 33 692–705. 10.1016/j.nbt.2015.12.005 PubMed DOI

Powell A. F., Paleczny A. R., Olechowski H., Emery R. J. (2013). Changes in cytokinin form and concentration in developing kernels correspond with variation in yield among field-grown barley cultivars. Plant Physiol. Biochem. 64 33–40. 10.1016/j.plaphy.2012.12.010 PubMed DOI

Puchta H., Fauser F. (2014). Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J. 78 727–741. 10.1111/tpj.12338 PubMed DOI

R Development Core Team (2008). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; Available at: http://www.r-project.org

Sabelli P. A., Larkins B. A. (2009). The development of endosperm in grasses. Plant Physiol. 149 14–26. 10.1104/pp.108.129437 PubMed DOI PMC

Sakakibara H. (2006). CYTOKININS: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57 431–449. 10.1146/annurev.arplant.57.032905.105231 PubMed DOI

Sakakibara H., Takei K., Hirose N. (2006). Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci. 11 440–448. 10.1016/j.tplants.2006.07.004 PubMed DOI

Schedel S., Pencs S., Hensel G., Müller A., Rutten T., Kumlehn J. (2017). RNA-guided Cas9-induced mutagenesis in tobacco followed by efficient genetic fixation in doubled haploid plants. Front. Plant Sci. 7:1995. 10.3389/fpls.2016.01995 PubMed DOI PMC

Shapiro H. M. (2003). Practical Flow Cytometry, 4th Edn. Hoboken, NJ: Wiley-liss.

Sreenivasulu N., Schnurbusch T. (2012). A genetic playground for enhancing grain number in cereals. Trends Plant Sci. 17 91–101. 10.1016/j.tplants.2011.11.003 PubMed DOI

Stanley D., Rejzek M., Naested H., Smedley M., Otero S., Fahy B., et al. (2011). The role of -glucosidase in germinating barley grains. Plant Physiol. 155 932–943. 10.1104/pp.110.168328 PubMed DOI PMC

Sýkorová B., Kurešová G., Daskalova S., Trčková M., Hoyerová K., Raimanová I., et al. (2008). Senescence-induced ectopic expression of the A. tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx, and nitrate reductase activity, but does not affect grain yield. J. Exp. Bot. 59 377–387. 10.1093/jxb/erm319 PubMed DOI

Voytas D. F. (2013). Plant genome engineering with sequence-specific nucleases. Annu. Rev. Plant Biol. 64 327–350. 10.1146/annurev-arplant-042811-105552 PubMed DOI

Wakimoto B. T. (1998). Beyond the nucleosome: epigenetic aspects of position-effect variegation in Drosophila. Cell 93 321–324. 10.1016/S0092-8674(00)81159-9 PubMed DOI

Watanabe K., Breier U., Hensel G., Kumlehn J., Schubert I., Reiss B. (2016). Stable gene replacement in barley by targeted double-strand break induction. J. Exp. Bot. 67 1433–1445. 10.1093/jxb/erv537 PubMed DOI PMC

Werner T., Motyka V., Laucou V., Smets R., Van Onckelen H., Schmuelling T. (2003). Cytokinin-deficient transgenic Arabidopsis plants show functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15 2532–2550. PubMed PMC

Wesley S. V., Helliwell C. A., Smith N. A., Wang M. B., Rouse D. T., Liu Q., et al. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27 581–590. 10.1046/j.1365-313X.2001.01105.x PubMed DOI

Zalabák D., Pospíšilová H., Šmehilová M., Mrízová K., Frébort I., Galuszka P. (2013). Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol. Adv. 31 97–117. 10.1016/j.biotechadv.2011.12.003 PubMed DOI

Zalewski W., Galuszka P., Gasparis S., Orczyk W., Nadolska-Orczyk A. (2010). Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. J. Exp. Bot. 61 1839–1851. 10.1093/jxb/erq052 PubMed DOI

Zhang R., Tucker M. R., Burton R. A., Shirley N. J., Little A., Morris J., et al. (2016). The dynamics of transcript abundance during cellularisation of developing barley endosperm. Plant Physiol. 170 1549–1565. 10.1104/pp.15.01690 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Can plant hormonomics be built on simple analysis? A review

. 2023 Oct 13 ; 19 (1) : 107. [epub] 20231013

SWEET11b transports both sugar and cytokinin in developing barley grains

. 2023 May 29 ; 35 (6) : 2186-2207.

Delayed Leaf Senescence by Upregulation of Cytokinin Biosynthesis Specifically in Tomato Roots

. 2022 ; 13 () : 922106. [epub] 20220706

Plant Growth Regulators INCYDE and TD-K Underperform in Cereal Field Trials

. 2021 Oct 27 ; 10 (11) : . [epub] 20211027

Targeting Cytokinin Homeostasis in Rapid Cycling Brassica rapa with Plant Growth Regulators INCYDE and TD-K

. 2020 Dec 25 ; 10 (1) : . [epub] 20201225

Barley Root Proteome and Metabolome in Response to Cytokinin and Abiotic Stimuli

. 2020 ; 11 () : 590337. [epub] 20201028

Allelic Variants of CRISPR/Cas9 Induced Mutation in an Inositol Trisphosphate 5/6 Kinase Gene Manifest Different Phenotypes in Barley

. 2020 Feb 05 ; 9 (2) : . [epub] 20200205

Root-shoot communication in tomato plants: cytokinin as a signal molecule modulating leaf photosynthetic activity

. 2020 Jan 01 ; 71 (1) : 247-257.

A Novel Image-Based Screening Method to Study Water-Deficit Response and Recovery of Barley Populations Using Canopy Dynamics Phenotyping and Simple Metabolite Profiling

. 2019 ; 10 () : 1252. [epub] 20191015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...