Targeting Cytokinin Homeostasis in Rapid Cycling Brassica rapa with Plant Growth Regulators INCYDE and TD-K

. 2020 Dec 25 ; 10 (1) : . [epub] 20201225

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33375745

Grantová podpora
N/A Foundation for Arable Research, New Zealand
CZ.02.1.01/0.0/0.0/17_048/0007323 European Regional Development Fund

Modifying the cytokinin content in plants is a means of improving plant productivity. Here, we report the development and biological activity of compound TD-K (1-(furan-2-ylmethyl)-3-(1,2,3-thiadiazol-5-yl)urea)which is related to thidiazuron. TD-K-which exhibited extremely high antisenescence activity in the wheat leaf bioassay-and INCYDE (2-chloro-6-(3-methoxyphenyl)aminopurine)-a plant growth regulator reported to inhibit cytokinin oxidase/dehydrogenase (CKX), an enzyme involved in the degradation of the plant hormone cytokinin-were selected for investigation of their effects on the model plant Rapid Cycling Brassica rapa (RCBr). We monitored the expression of BrCKX and isopentenyl transferase (BrIPT), which codes for the key cytokinin biosynthesis enzyme, in developing leaves following INCYDE and TD-K application. Growth room experiments revealed that INCYDE increased RCBr seed yield per plant, but only when applied multiple times and when grown in 5 mM KNO3. Expression in control leaves showed transient, high levels of expression of BrCKX and BrIPT at true leaf appearance. Following INCYDE application, there was a rapid and strong upregulation of BrCKX3, and a transient downregulation of BrIPT1 and BrIPT3. Interestingly, the upregulation of BrCKX3 persisted in a milder form throughout the course of the experiment (16 days). TD-K also upregulated BrCKX3. However, in contrast to INCYDE, this effect disappeared after two days. These results suggest that both compounds (CKX inhibitor and cytokinin TD-K) influenced cytokinin homeostasis in RCBr leaves, but with different mechanisms.

Zobrazit více v PubMed

Agbogidi O.M. Global Climate Change: A Threat to Food Security and Environmental Conservation. Br. J. Environ. Clim. Chang. 2011;1:74–89. doi: 10.9734/BJECC/2011/206. PubMed DOI

Manning D.A. How will minerals feed the world in 2050? Proc. Geol. Assoc. 2015;126:14–17. doi: 10.1016/j.pgeola.2014.12.005. DOI

Jameson P.E., Song J. Cytokinin: A key driver of seed yield. J. Exp. Bot. 2016;67:593–606. doi: 10.1093/jxb/erv461. PubMed DOI

Werner T., Motyka V., Laucou V., Smets R., Van Onckelen H., Schmülling T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell. 2003;15:2532–2550. doi: 10.1105/tpc.014928. PubMed DOI PMC

Barbier F.F., Dun E.A., Kerr S.C., Chabikwa T.G., Beveridge C.A. An update on the signals controlling shoot branching. Trends Plant Sci. 2019;24:220–236. doi: 10.1016/j.tplants.2018.12.001. PubMed DOI

Guo Y., Gan S.S. Translational researches on leaf senescence for enhancing plant productivity and quality. J. Exp. Bot. 2014;65:3901–3913. doi: 10.1093/jxb/eru248. PubMed DOI

Hönig M., Plíhalová L., Husičková A., Nisler J., Doležal K. Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int. J. Mol. Sci. 2018;19:4045. doi: 10.3390/ijms19124045. PubMed DOI PMC

Wybouw B., De Rybel B. Cytokinin—A Developing Story. Trends Plant. Sci. 2019;24:177–185. doi: 10.1016/j.tplants.2018.10.012. PubMed DOI

Cortleven A., Leuendorf J.E., Frank M., Pezzetta D., Bolt S., Schmülling T. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 2019;42:998–1018. doi: 10.1111/pce.13494. PubMed DOI

Gu J., Li Z., Mao Y., Struik P.C., Zhang H., Liu L., Wang Z., Yang J. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci. 2018;274:320–331. doi: 10.1016/j.plantsci.2018.06.010. PubMed DOI

Strnad M. The aromatic cytokinins. Physiol. Plant. 1997;101:674–688. doi: 10.1111/j.1399-3054.1997.tb01052.x. DOI

Mok D.W., Mok D.C. Cytokinin metabolism and action. Annu. Rev. Plant Biol. 2001;52:89–118. doi: 10.1146/annurev.arplant.52.1.89. PubMed DOI

Lomin S.N., Krivosheev D.M., Steklov M.Y., Arkhipov D.V., Osolodkin D.I., Schmülling T., Romanov G.A. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J. Exp. Bot. 2015;66:1851–1863. doi: 10.1093/jxb/eru522. PubMed DOI PMC

Nishii K., Wright F., Chen Y.Y., Möller M. Tangled history of a multigene family: The evolution of ISOPENTENYLTRANSFERASE genes. PLoS ONE. 2018;13:e0201198. doi: 10.1371/journal.pone.0201198. PubMed DOI PMC

Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P.I., Galuszka P., Klíma P., Gaudinová A., Žižková E., et al. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 2011;62:2827–2840. doi: 10.1093/jxb/erq457. PubMed DOI

Schäfer M., Brütting C., Meza-Canales I.D., Großkinsky D.K., Vankova R., Baldwin I.T., Meldau S. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J. Exp. Bot. 2015;66:4873–4884. doi: 10.1093/jxb/erv214. PubMed DOI PMC

Spíchal L. Cytokinins—Recent news and views of evolutionally old molecules. Funct. Plant Biol. 2012;39:267–284. doi: 10.1071/FP11276. PubMed DOI

Spíchal L., Rakova N.Y., Riefler M., Mizuno T., Romanov G.A., Strnad M., Schmülling T. Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol. 2004;45:1299–1305. doi: 10.1093/pcp/pch132. PubMed DOI

Zatloukal M., Gemrotová M., Doležal K., Havlíček L., Spíchal L., Strnad M. Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase. Bioorg. Med. Chem. 2008;16:9268–9275. doi: 10.1016/j.bmc.2008.09.008. PubMed DOI

Kopečný D., Briozzo P., Popelková H., Šebela M., Končitíková R., Spíchal L., Nisler J., Madzak C., Frébort I., Laloue M., et al. Phenyl- and benzylurea cytokinins as competitive inhibitors of cytokinin oxidase/dehydrogenase: A structural study. Biochimie. 2010;92:1052–1062. doi: 10.1016/j.biochi.2010.05.006. PubMed DOI

Miyawaki K., Tarkowski P., Matsumoto-Kitano M., Kato T., Sato S., Tarkowska D., Tabata S., Sandberg G., Kakimoto T. Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc. Natl. Acad. Sci. USA. 2006;103:16598–16603. doi: 10.1073/pnas.0603522103. PubMed DOI PMC

Kakimoto T. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate: ATP/ADP isopentenyltransferases. Plant. Cell Physiol. 2001;42:677–685. doi: 10.1093/pcp/pce112. PubMed DOI

Takei K., Sakakibara H., Tatsuo S. Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J. Biol. Chem. 2001;276:26405–26410. doi: 10.1074/jbc.M102130200. PubMed DOI

Miyawaki K., Matsumoto-Kitano M., Kakimoto T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: Tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. 2004;37:128–138. doi: 10.1046/j.1365-313X.2003.01945.x. PubMed DOI

Kurakawa T., Ueda N., Masahiko M., Kaoru K., Kojima M., Nagato Y., Sakakibara H., Junko K. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature. 2007;445:652–655. doi: 10.1038/nature05504. PubMed DOI

Werner T., Köllmer I., Bartrina I., Holst K., Schmülling T. New insights into the biology of cytokinin degradation. Plant Biol. 2006;8:371–381. doi: 10.1055/s-2006-923928. PubMed DOI

Kieber J.J., Schaller G.E. Cytokinin signaling in plant development. Development. 2018;145 doi: 10.1242/dev.149344. PubMed DOI

Galuszka P., Popelková H., Werner T., Frébortová J., Pospíšilová H., Mik V., Köllmer I., Schmülling T., Frébort I. Biochemical characterization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabacum L. J. Plant Growth Regul. 2007;26:255–267. doi: 10.1007/s00344-007-9008-5. DOI

Zalabák D., Galuszka P., Mrízová K., Podlešáková K., Gu R., Frébortová J. Biochemical characterization of the maize cytokinin dehydrogenase family and cytokinin profiling in developing maize plantlets in relation to the expression of cytokinin dehydrogenase genes. Plant. Physiol. Biochem. 2014;74:283–293. doi: 10.1016/j.plaphy.2013.11.020. PubMed DOI

Schmülling T., Werner T., Riefler M., Krupková E., Manns I.B. Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J. Plant Res. 2003;116:241–252. doi: 10.1007/s10265-003-0096-4. PubMed DOI

Chen L., Zhao J., Song J., Jameson P.E. Cytokinin dehydrogenase: A genetic target for yield improvement in wheat. Plant Biotechnol. J. 2020;18:614–630. doi: 10.1111/pbi.13305. PubMed DOI PMC

Werner T., Nehnevajova E., Köllmer I., Novák O., Strnad M., Krämer U., Schmülling T. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell. 2010;22:3905–3920. doi: 10.1105/tpc.109.072694. PubMed DOI PMC

Riefler M., Novak O., Strnad M., Schmülling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell. 2006;18:40–54. doi: 10.1105/tpc.105.037796. PubMed DOI PMC

Gemrotová M., Kulkarni M.G., Stirk W.A., Strnad M., Van Staden J., Spíchal L. Seedlings of medicinal plants treated with either a cytokinin antagonist (PI-55) or an inhibitor of cytokinin degradation (INCYDE) are protected against the negative effects of cadmium. Plant Growth Regul. 2013;71:137–145. doi: 10.1007/s10725-013-9813-8. DOI

Nisler J., Kopečný D., Pěkná Z., Končitíková R., Koprna R., Murvanidze N., Werbrouck S.P., Havlíček L., De Diego N., Kopečná M., et al. Diphenylurea-derived cytokinin oxidase/dehydrogenase inhibitors for biotechnology and agriculture. J. Exp. Bot. 2020 doi: 10.1093/jxb/eraa437. PubMed DOI

Bartrina I., Otto E., Strnad M., Werner T., Schmülling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell. 2011;23:69–80. doi: 10.1105/tpc.110.079079. PubMed DOI PMC

Schwarz I., Scheirlinck M.T., Otto E., Bartrina I., Schmidt R.C., Schmülling T. Cytokinin regulates the activity of the inflorescence meristem and components of seed yield in oilseed rape. J. Exp. Bot. 2020;71 doi: 10.1093/jxb/eraa419. PubMed DOI

Ashikari M., Sakakibara H., Lin S., Yamamoto T., Takashi T., Nishimura A., Angeles E.R., Qian Q., Kitano H., Matsuoka M. Plant science: Cytokinin oxidase regulates rice grain production. Science. 2005;309:741–745. doi: 10.1126/science.1113373. PubMed DOI

Zalewski W., Gasparis S., Boczkowska M., Rajchel I.K., Kała M., Orczyk W., Nadolska-Orczyk A. Expression patterns of HvCKX genes indicate their role in growth and reproductive development of barley. PLoS ONE. 2014;9:e115729. doi: 10.1371/journal.pone.0115729. PubMed DOI PMC

Holubová K., Hensel G., Vojta P., Tarkowski P., Bergougnoux V., Galuszka P. Modification of barley plant productivity through regulation of cytokinin content by reverse-genetics approaches. Front. Plant Sci. 2018;871:1676. doi: 10.3389/fpls.2018.01676. PubMed DOI PMC

Jabłoński B., Ogonowska H., Szala K., Bajguz A., Orczyk W., Nadolska-Orczyk A. Silencing of TaCKX1 mediates expression of other TaCKX genes to increase yield parameters in wheat. Int. J. Mol. Sci. 2020;21:4809. doi: 10.3390/ijms21134809. PubMed DOI PMC

Gasparis S., Przyborowski M., Kała M., Nadolska-Orczyk A. Knockout of the HvCKX1 or HvCKX3 gene in barley (Hordeum vulgare L.) by RNA-Guided Cas9 Nuclease affects the regulation of cytokinin metabolism and root morphology. Cells. 2019;8:782. doi: 10.3390/cells8080782. PubMed DOI PMC

Fritsche S., Poovaiah C., MacRae E., Thorlby G. A New Zealand perspective on the application and regulation of gene editing. Front. Plant Sci. 2018;9:1323. doi: 10.3389/fpls.2018.01323. PubMed DOI PMC

Suttle J.C. Involvement of ethylene in the action of the cotton defoliant thidiazuron. Plant Physiol. 1985;78:272–276. doi: 10.1104/pp.78.2.272. PubMed DOI PMC

Grossmann K. Induction of leaf abscission in cotton is a common effect of urea- and adenine-type cytokinins. Plant Physiol. 1991;95:234–237. doi: 10.1104/pp.95.1.234. PubMed DOI PMC

Nishijima T., Shima K. Change in flower morphology of Torenia fournieri Lind. induced by forchlorfenuron application. Sci. Hortic. (Amst.) 2006;109:254–261. doi: 10.1016/j.scienta.2006.05.005. DOI

Lewis D.H., Burge G.K., Hopping M.E., Jameson P.E. Cytokinins and fruit development in the kiwifruit (Actinidia deliciosa). II. Effects of reduced pollination and CPPU application. Physiol. Plant. 1996;98:187–195. doi: 10.1111/j.1399-3054.1996.tb00691.x. DOI

Stern R.A., Ben-Arie R., Neria O., Flaishman M. CPPU and BA increase fruit size of ‘Royal Gala’ (Malus domestica) apple in a warm climate. J. Hortic. Sci. Biotechnol. 2003;78:297–302. doi: 10.1080/14620316.2003.11511621. DOI

Ferrara G., Mazzeo A., Netti G., Pacucci C., Matarrese A.M.S., Cafagna I., Mastrorilli P., Vezzoso M., Gallo V. Girdling, gibberellic acid, and forchlorfenuron: Effects on yield, quality, and metabolic profile of table grape cv. Italia. Am. J. Enol. Vitic. 2014;65:381–387. doi: 10.5344/ajev.2014.13139. DOI

Nisler J., Kopečný D., Končitíková R., Zatloukal M., Bazgier V., Berka K., Zalabák D., Briozzo P., Strnad M., Spíchal L. Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase. Plant. Mol. Biol. 2016;92:235–248. doi: 10.1007/s11103-016-0509-0. PubMed DOI

Aremu A.O., Masondo N.A., Sunmonu T.O., Kulkarni M.G., Zatloukal M., Spichal L., Doležal K., Van Staden J. A novel inhibitor of cytokinin degradation (INCYDE) influences the biochemical parameters and photosynthetic apparatus in NaCl-stressed tomato plants. Planta. 2014;240:877–889. doi: 10.1007/s00425-014-2126-y. PubMed DOI

Reusche M., Klásková J., Thole K., Truskina J., Novák O., Janz D., Strnad M., Spíchal L., Lipka V., Teichmann T. Stabilization of cytokinin levels enhances Arabidopsis resistance against Verticillium Longisporum. Mol. Plant Microbe Interact. 2013;26:850–860. doi: 10.1094/MPMI-12-12-0287-R. PubMed DOI

Berková V., Kameniarová M., Ondrisková V., Berka M., Menšíková S., Kopecká R., Luklová M., Novák J., Spíchal L., Rashotte A.M., et al. Arabidopsis response to Inhibitor of Cytokinin Degradation INCYDE: Modulations of cytokinin signaling and plant proteome. Plants. 2020:1563. doi: 10.3390/plants9111563. PubMed DOI PMC

Aremu A.O., Stirk W.A., Masondo N.A., Plačková L., Novák O., Pěnčík A., Zatloukal M., Nisler J., Spíchal L., Doležal K., et al. Dissecting the role of two cytokinin analogues (INCYDE and PI-55) on in vitro organogenesis, phytohormone accumulation, phytochemical content and antioxidant activity. Plant Sci. 2015;238:81–94. doi: 10.1016/j.plantsci.2015.05.018. PubMed DOI

Smýkalová I., Vrbová M., Cvečková M., Plačková L., Žukauskaitė A., Zatloukal M., Hrdlička J., Plíhalová L., Doležal K., Griga M. The effects of novel synthetic cytokinin derivatives and endogenous cytokinins on the in vitro growth responses of hemp (Cannabis sativa L.) explants. Plant Cell Tissue Organ. Cult. 2019;139:381–394. doi: 10.1007/s11240-019-01693-5. DOI

Aremu A.O., Bairu M.W., Novák O., Plačková L., Zatloukal M., Doležal K., Finnie J.F., Strnad M., Van Staden J. Physiological responses and endogenous cytokinin profiles of tissue-cultured “Williams” bananas in relation to roscovitine and an inhibitor of cytokinin oxidase/dehydrogenase (INCYDE) treatments. Planta. 2012;236:1775–1790. doi: 10.1007/s00425-012-1721-z. PubMed DOI

Antoniadi I., Novák O., Gelovád Z., Johnson A., Plíhal O., Vain T., Simerský R., Mik V., Karady M., Pernisová M. Cell-surface receptors enable perception of extracellular cytokinins. Nat. Commun. 2020;11:1–10. doi: 10.1038/s41467-020-17700-9. PubMed DOI PMC

Goh D.M., Cosme M., Kisiala A.B., Mulholland S., Said Z.M.F., Spíchal L., Emery R.J.N., Declerck S., Guinel F.C. A stimulatory role for cytokinin in the arbuscular mycorrhizal symbiosis of pea. Front. Plant Sci. 2019;10:262. doi: 10.3389/fpls.2019.00262. PubMed DOI PMC

Prerostova S., Dobrev P.I., Kramna B., Gaudinova A., Knirsch V., Spíchal L., Zatloukal M., Vankova R. Heat acclimation and inhibition of cytokinin degradation positively affect heat stress tolerance of Arabidopsis. Front. Plant Sci. 2020;11 doi: 10.3389/fpls.2020.00087. PubMed DOI PMC

Nisler J., Zatloukal M., Spíchal L., Koprna R., Doležal K., Strnad M. 1, 2, 3-thiadiazol-5yl-urea Derivatives, Use Thereof for Regulating Plant Senescence and Preparations Containing These Derivatives. 9,993,002. U.S. Patent. 2018 Jun 12;

O’Keefe D., Song J., Jameson P.E. Isopentenyl transferase and cytokinin oxidase/dehydrogenase gene family members are differentially expressed during pod and seed development in rapid-cycling Brassica. J. Plant Growth Regul. 2011;30:92–99. doi: 10.1007/s00344-010-9171-y. DOI

Nisler J., Zatloukal M., Sobotka R., Pilný J., Zdvihalová B., Novák O., Strnad M., Spíchal L. New urea derivatives are effective anti-senescence compounds acting most likely via a cytokinin-independent mechanism. Front. Plant Sci. 2018;9 doi: 10.3389/fpls.2018.01225. PubMed DOI PMC

Mok M.C., Mok D.W.S., Armstrong D.J., Shudo K., Isogai Y., Okamoto T. Cytokinin activity of N-phenyl-N’-1,2,3-thiadiazol-5-ylurea (Thidiazuron) Phytochemistry. 1982;21:1509–1511. doi: 10.1016/S0031-9422(82)85007-3. DOI

Yip W.-K., Yang S.F. Effect of thidiazuron, a cytokinin-active urea derivative, in cytokinin-dependent ethylene production systems. Plant Physiol. 1986;80:515–519. doi: 10.1104/pp.80.2.515. PubMed DOI PMC

Bamberger E., Mayer A.M. Effect of kinetin on formation of red pigment in seedlings of Amaranthus retroflexus. Science. 1960;131:1094–1095. doi: 10.1126/science.131.3407.1094. PubMed DOI

Abad A., Agulló C., Cuñat A.C., Jiménez R., Vilanova C. Preparation and promotion of fruit growth in kiwifruit of fluorinated N-phenyl-N’-1,2,3-thiadiazol-5-yl ureas. J. Agric. Food Chem. 2004;52:4675–4683. doi: 10.1021/jf049921+. PubMed DOI

Boyes D.C., Zayed A.M., Ascenzi R., McCaskill A.J., Hoffman N.E., Davis K.R., Görlach J. Growth stage-based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. Plant Cell. 2001;13:1499–1510. doi: 10.1105/TPC.010011. PubMed DOI PMC

Koprna R., De Diego N., Dundálková L., Spíchal L. Use of cytokinins as agrochemicals. Bioorg. Med. Chem. 2016;24:484–492. doi: 10.1016/j.bmc.2015.12.022. PubMed DOI

Zalewski W., Galuszka P., Gasparis S., Orczyk W., Nadolska-Orczyk A. Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. J. Exp. Bot. 2010;61:1839–1851. doi: 10.1093/jxb/erq052. PubMed DOI

Chatfield J.M., Armstrong D.J. Regulation of cytokinin oxidase activity in callus tissues of Phaseolus vulgaris L. cv Great Northern. Plant Physiol. 1986;80:493–499. doi: 10.1104/pp.80.2.493. PubMed DOI PMC

Kamínek M., Armstrong D.J. Genotypic variation in cytokinin oxidase from Phaseolus callus cultures. Plant Physiol. 1990;93:1530–1538. doi: 10.1104/pp.93.4.1530. PubMed DOI PMC

Motyka V., Vaňková R., Čapková V., Petrášek J., Kamínek M., Schmülling T. Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion. Physiol. Plant. 2003;117:11–21. doi: 10.1034/j.1399-3054.2003.1170102.x. DOI

Blagoeva E., Dobrev P.I., Malbeck J., Motyka V., Gaudinová A., Vaňková R. Effect of exogenous cytokinins, auxins and adenine on cytokinin N-glucosylation and cytokinin oxidase/dehydrogenase activity in de-rooted radish seedlings. Plant Growth Regul. 2004;44:15–23. doi: 10.1007/s10725-004-1934-7. DOI

Liu Z., Lv Y., Zhang M., Liu Y., Kong L., Zou M., Lu G., Cao J., Yu X. Identification, expression, and comparative genomic analysis of the IPT and CKX gene families in Chinese cabbage (Brassica rapa ssp pekinensis) BMC Genom. 2013;14:594. doi: 10.1186/1471-2164-14-594. PubMed DOI PMC

Brugière N., Jiao S., Hantke S., Zinselmeier C., Roessler J.A., Niu X., Jones R.J., Habben J.E. Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress. Am. Soc. Plant Biol. 2003;132:1228–1240. doi: 10.1104/pp.102.017707. PubMed DOI PMC

Song J., Jiang L., Jameson P.E. Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat. BMC Plant Biol. 2012;12:78. doi: 10.1186/1471-2229-12-78. PubMed DOI PMC

Liu P., Zhang C., Ma J.Q., Zhang L.Y., Yang B., Tang X.Y., Huang L., Zhou X.T., Lu K., Li J.N. Genome-wide identification and expression profiling of cytokinin oxidase/dehydrogenase (CKX) genes reveal likely roles in pod development and stress responses in oilseed rape (Brassica napus L.) Genes. 2018;9:168. doi: 10.3390/genes9030168. PubMed DOI PMC

Wang J., Ma X.M., Kojima M., Sakakibara H., Hou B.K. N-glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana. Plant Cell Physiol. 2011;52:2200–2213. doi: 10.1093/pcp/pcr152. PubMed DOI

Goldschmidt H., Bardach B. Zur Kenntniss der Diazoamidokörper. Berichte der Deutschen Chemischen Gesellschaft. 1892;25:1347–1378. doi: 10.1002/cber.189202501204. DOI

Holub J., Hanuš J., Hanke D.E., Strnad M. Biological activity of cytokinins derived from ortho- and meta-hydroxybenzyladenine. Plant Growth Regul. 1998;26:109–115. doi: 10.1023/A:1006192619432. DOI

Song J., Jiang L., Jameson P.E. Expression patterns of Brassica napus genes implicate IPT, CKX, sucrose transporter, cell wall invertase, and amino acid permease gene family members in leaf, flower, silique, and seed development. J. Exp. Bot. 2015;66:5067–5082. doi: 10.1093/jxb/erv133. PubMed DOI PMC

Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29 doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Plant Growth Regulators INCYDE and TD-K Underperform in Cereal Field Trials

. 2021 Oct 27 ; 10 (11) : . [epub] 20211027

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...