Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase

. 2016 Sep ; 92 (1-2) : 235-48. [epub] 20160715

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27422623
Odkazy

PubMed 27422623
DOI 10.1007/s11103-016-0509-0
PII: 10.1007/s11103-016-0509-0
Knihovny.cz E-zdroje

Two new TDZ derivatives (HETDZ and 3FMTDZ) are very potent inhibitors of CKX and are promising candidates for in vivo studies. Cytokinin hormones regulate a wide range of essential processes in plants. Thidiazuron (N-phenyl-N'-1,2,3-thiadiazol-5-yl urea, TDZ), formerly registered as a cotton defoliant, is a well known inhibitor of cytokinin oxidase/dehydrogenase (CKX), an enzyme catalyzing the degradation of cytokinins. TDZ thus increases the lifetime of cytokinins and their effects in plants. We used in silico modeling to design, synthesize and characterize twenty new TDZ derivatives with improved inhibitory properties. Two compounds, namely 1-[1,2,3]thiadiazol-5-yl-3-(3-trifluoromethoxy-phenyl)urea (3FMTDZ) and 1-[2-(2-hydroxyethyl)phenyl]-3-(1,2,3-thiadiazol-5-yl)urea (HETDZ), displayed up to 15-fold lower IC 50 values compared with TDZ for AtCKX2 from Arabidopsis thaliana and ZmCKX1 and ZmCKX4a from Zea mays. Binding modes of 3FMTDZ and HETDZ were analyzed by X-ray crystallography. Crystal structure complexes, solved at 2.0 Å resolution, revealed that HETDZ and 3FMTDZ bound differently in the active site of ZmCKX4a: the thiadiazolyl ring of 3FMTDZ was positioned over the isoalloxazine ring of FAD, whereas that of HETDZ had the opposite orientation, pointing toward the entrance of the active site. The compounds were further tested for cytokinin activity in several cytokinin bioassays. We suggest that the combination of simple synthesis, lowered cytokinin activity, and enhanced inhibitory effects on CKX isoforms, makes 3FMTDZ and HETDZ suitable candidates for in vivo studies.

Zobrazit více v PubMed

Anal Biochem. 2002 Jul 1;306(1):1-7 PubMed

Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:89-118 PubMed

Plant Cell. 2003 Nov;15(11):2532-50 PubMed

FEBS Lett. 2002 Mar 27;515(1-3):39-43 PubMed

Plant J. 2011 Jul;67(1):157-68 PubMed

J Comput Chem. 2009 Dec;30(16):2785-91 PubMed

J Plant Physiol. 2005 Nov;162(11):1189-96 PubMed

J Exp Bot. 2009;60(9):2701-12 PubMed

J Exp Bot. 2006;57(15):4051-8 PubMed

Plant Physiol. 2000 Dec;124(4):1706-17 PubMed

Plant Cell. 2004 Jun;16(6):1365-77 PubMed

Plant Physiol. 1989 Jul;90(3):899-906 PubMed

Anal Biochem. 1985 Oct;150(1):76-85 PubMed

Science. 2012 May 25;336(6084):1030-3 PubMed

Can J Biochem. 1975 Jan;53(1):37-41 PubMed

Plant Physiol Biochem. 2014 Jan;74:283-93 PubMed

Biochimie. 2010 Aug;92(8):1052-62 PubMed

J Comput Chem. 2004 Oct;25(13):1605-12 PubMed

Acta Crystallogr D Biol Crystallogr. 2004 Mar;60(Pt 3):432-8 PubMed

Plant Physiol. 2009 Sep;151(1):433-47 PubMed

Biochimie. 2005 Nov;87(11):1011-22 PubMed

Can J Biochem. 1974 Sep;52(9):789-99 PubMed

Plant Cell Physiol. 2004 Sep;45(9):1299-305 PubMed

J Exp Bot. 2004 Dec;55(408):2549-57 PubMed

Plant Physiol. 2001 Jan;125(1):378-86 PubMed

Curr Protoc Bioinformatics. 2006 Oct;Chapter 5:Unit-5.6 PubMed

Plant Sci. 2015 Sep;238:81-94 PubMed

Bioorg Med Chem. 2008 Oct 15;16(20):9268-75 PubMed

Plant Cell Physiol. 2001 Feb;42(2):107-13 PubMed

J Comput Chem. 2010 Jan 30;31(2):455-61 PubMed

J Exp Bot. 2015 Apr;66(7):1851-63 PubMed

FEBS J. 2016 Jan;283(2):361-77 PubMed

Plant J. 1999 Mar;17(6):615-26 PubMed

Anal Biochem. 2005 Dec 1;347(1):129-34 PubMed

Planta. 2014 Oct;240(4):877-89 PubMed

Plant Cell Physiol. 2001 Sep;42(9):1017-23 PubMed

Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 PubMed

Plant Physiol. 1986 Feb;80(2):493-9 PubMed

J Agric Food Chem. 2004 Jul 28;52(15):4675-83 PubMed

Biochem Biophys Res Commun. 1999 Feb 16;255(2):328-33 PubMed

Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 PubMed

Phytochemistry. 2010 May;71(7):823-30 PubMed

J Mol Biol. 2008 Jul 25;380(5):886-99 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Comprehensive Phytohormone Profiling of Kohlrabi during In Vitro Growth and Regeneration: The Interplay with Cytokinin and Sucrose

. 2022 Oct 12 ; 12 (10) : . [epub] 20221012

Plant Growth Regulators INCYDE and TD-K Underperform in Cereal Field Trials

. 2021 Oct 27 ; 10 (11) : . [epub] 20211027

Sucrose interferes with endogenous cytokinin homeostasis and expression of organogenesis-related genes during de novo shoot organogenesis in kohlrabi

. 2021 Mar 22 ; 11 (1) : 6494. [epub] 20210322

Targeting Cytokinin Homeostasis in Rapid Cycling Brassica rapa with Plant Growth Regulators INCYDE and TD-K

. 2020 Dec 25 ; 10 (1) : . [epub] 20201225

Characterization of five CHASE-containing histidine kinase receptors from Populus × canadensis cv. Robusta sensing isoprenoid and aromatic cytokinins

. 2019 Nov 27 ; 251 (1) : 1. [epub] 20191127

Role of Cytokinins in Senescence, Antioxidant Defence and Photosynthesis

. 2018 Dec 14 ; 19 (12) : . [epub] 20181214

New Urea Derivatives Are Effective Anti-senescence Compounds Acting Most Likely via a Cytokinin-Independent Mechanism

. 2018 ; 9 () : 1225. [epub] 20180911

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...