Sucrose interferes with endogenous cytokinin homeostasis and expression of organogenesis-related genes during de novo shoot organogenesis in kohlrabi

. 2021 Mar 22 ; 11 (1) : 6494. [epub] 20210322

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33753792
Odkazy

PubMed 33753792
PubMed Central PMC7985405
DOI 10.1038/s41598-021-85932-w
PII: 10.1038/s41598-021-85932-w
Knihovny.cz E-zdroje

Cross-talk between phytohormones and sugars is intensely involved in plant metabolism, growth and regeneration. We documented alterations in cytokinin (CK) homeostasis in four developmental stages during de novo shoot organogenesis (DNSO) of kohlrabi (Brassica oleracea var. gongylodes cv. Vienna Purple) seedlings induced by exogenous CKs, trans-zeatin (transZ) and thidiazuron (TDZ), added together with elevated sucrose concentration (6% and 9%). Significant impact of CK and sucrose treatment and their interaction was recorded in all investigated stages, including plantlet development before calli formation (T1 and T2), calli formation (T3) and shoot regeneration (T4). Results showed remarkable increase in total CK levels for transZ treatment, particularly with 9% sucrose. This trend was observed for all physiological and structural groups of CKs. Application of TDZ contributed to little or no increase in CK levels regardless of sucrose concentration. Analysis of expression profiles of organogenesis-related genes involved in auxin transport, CK response, shoot apical meristem formation and cell division revealed that higher sugar concentration significantly downregulated the analysed genes, particularly in T3. This continued on TDZ, but transZ induced an opposite effect with 9% sucrose in T4, increasing gene activity. Our results demonstrated that phytohormone metabolism might be triggered by sucrose signalling in kohlrabi DNSO.

Zobrazit více v PubMed

Mazid M, Khan TA, Mohammad F. Cytokinins, a classical multifaceted hormone in plant system. J. Stress Physiol. Biochem. 2011;7:347–368.

Wang G, Zhang G, Wu M. CLE peptide signaling and crosstalk with phytohormones and environmental stimuli. Front. Plant Sci. 2016;6:1211. PubMed PMC

Kieber, J.J. & Schaller, G.E. Cytokinin signaling in plant development. Development145, dev 9344 (2018). PubMed

Klemš et al. Changes in cytokinin levels and metabolism in tobacco (Nicotiana tabacum L.) explants during in vitro shoot organogenesis induced by trans-zeatin and dihydrozeatin. Plant Growth Regul. 65, 427–437 (2011).

Kamínek M, Motyka V, Vaňková R. Regulation of cytokinin content in plant cells. Physiol. Plant. 1997;101:689–700. doi: 10.1111/j.1399-3054.1997.tb01053.x. DOI

Ćosić T, et al. In vitro shoot organogenesis and comparative analysis of endogenous phytohormones in kohlrabi (Brassica oleracea var. gongylodes): effects of genotype, explant type and applied cytokinins. Plant Cell Tiss. Organ Cult. 2015;121:741–760. doi: 10.1007/s11240-015-0742-2. DOI

Jones B, et al. Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell. 2010;22:2956–2969. doi: 10.1105/tpc.110.074856. PubMed DOI PMC

Cheng ZJ, et al. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiol. 2013;161:240–251. doi: 10.1104/pp.112.203166. PubMed DOI PMC

Motte H, Vereecke D, Geelen D, Werbrouck S. The molecular path to in vitro shoot regeneration. Biotechnol. Adv. 2014;32:107–121. doi: 10.1016/j.biotechadv.2013.12.002. PubMed DOI

Lee DJ, et al. Genome–wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) overexpression in cytokinin response. Mol. Genet. Genomics. 2007;277:115–137. doi: 10.1007/s00438-006-0177-x. PubMed DOI

Rashotte AM, Carson SDB, To JPC, Kieber JJ. Expression profiling of cytokinin action in Arabidopsis. Plant Physiol. 2003;132:1998–2011. doi: 10.1104/pp.103.021436. PubMed DOI PMC

Ćosić, et al. Expression profiles of organogenesis-related genes over the time course of one-step de novo shoot organogenesis from intact seedlings of kohlrabi. J. Plant Physiol. 2019;232:257–269. doi: 10.1016/j.jplph.2018.11.004. PubMed DOI

Tamaki H, et al. Identification of novel meristem factors involved in shoot regeneration through the analysis of temperature-sensitive mutants of Arabidopsis. Plant J. 2009;57:1027–1039. doi: 10.1111/j.1365-313X.2008.03750.x. PubMed DOI

Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JAH. Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science. 1999;283:1541–1544. doi: 10.1126/science.283.5407.1541. PubMed DOI

Rosa YBCJ, Aizza LCB, Armanhi JSL, Dornelas MC. A Passiflora homolog of a D–type cyclin gene is differentially expressed in response to sucrose, auxin, and cytokinin. Plant Cell Tiss. Organ Cult. 2013;115:233–242. doi: 10.1007/s11240-013-0355-6. DOI

Planchais S, et al. Roscovitine, a novel cyclin–dependent kinase inhibitor, characterizes restriction point and G2/M transition in tobacco BY–2 cell suspension. Plant J. 1997;12:191–202. doi: 10.1046/j.1365-313X.1997.12010191.x. PubMed DOI

Laureys F, et al. Zeatin is indispensable for the G2–M transition in tobacco BY–2 cells. FEBS Lett. 1998;426:29–32. doi: 10.1016/S0014-5793(98)00297-X. PubMed DOI

Zhang K, Diederich L, John PCL. The cytokinin requirement for cell division in cultured Nicotiana plumbaginifolia cells can be satisfied by yeast Cdc25 protein tyrosine phosphatase. Implications for mechanisms of cytokinin response and plant development. Plant Physiol. 2005;137:308–316. doi: 10.1104/pp.104.051938. PubMed DOI PMC

León P, Sheen J. Sugar and hormone connections. Trends Plant Sci. 2003;8:1360–1385. doi: 10.1016/S1360-1385(03)00011-6. PubMed DOI

Gibson SI. Sugar and phytohormone response pathways: navigating a signalling network. J. Exp. Bot. 2004;55:253–264. doi: 10.1093/jxb/erh048. PubMed DOI

Skylar A, Sung F, Hong F, Chory J, Wu X. Metabolic sugar signal promotes Arabidopsis meristematic proliferation via G2. Dev. Biol. 2011;351:82–89. doi: 10.1016/j.ydbio.2010.12.019. PubMed DOI PMC

Koch KE. Carbohydrate–modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996;47:509–540. doi: 10.1146/annurev.arplant.47.1.509. PubMed DOI

Kushwah S, Laxmi A. The interaction between glucose and cytokinin signaling in controlling Arabidopsis thaliana seedling root growth and development. Plant Signal. Behav. 2017;12:e1312241. doi: 10.1080/15592324.2017.1312241. PubMed DOI PMC

Sakr S, et al. The sugar-signaling hub: Overview of regulators and interaction with the hormonal and metabolic network. Int. J. Mol. Sci. 2018;19:2506. doi: 10.3390/ijms19092506. PubMed DOI PMC

Smeekens S, Rook F. Sugar sensing and sugar-mediated signal transduction in plants. Plant Physiol. 1997;115:7–13. doi: 10.1104/pp.115.1.7. PubMed DOI PMC

Jefferson R, Goldsbrough A, Bevan M. Transcriptional regulation of a patatin–1 gene in potato. Plant Mol. Biol. 1990;14:995–1006. doi: 10.1007/BF00019396. PubMed DOI

Yokoyama R, et al. The rolC promoter of Agrobacterium rhizogenes Ri plasmid is activated by sucrose in transgenic tobacco plants. Mol. Gen. Genet. 1994;244:15–22. doi: 10.1007/BF00280182. PubMed DOI

Lu C-A, Ho T-D, Ho S-L, Yu S-M. Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of a-amylase gene expression. Plant Cell. 2002;14:1963–1980. doi: 10.1105/tpc.001735. PubMed DOI PMC

Cheng W-H, et al. A unique short-chain dehydrogenase/ reductase in Arabidopsis abscisic acid biosynthesis and glucose signaling. Plant Cell. 2002;14:2723–2743. doi: 10.1105/tpc.006494. PubMed DOI PMC

Riou-Khamlichi C, Menges M, Healy JMS, Murray JAH. Sugar control of the plant cell cycle: Differential regulation of Arabidopsis D–type cyclin gene expression. Mol. Cell. Biol. 2000;20:4513–4521. doi: 10.1128/MCB.20.13.4513-4521.2000. PubMed DOI PMC

Sami F, Yusuf M, Faizan M, Faraz A, Hayat S. Role of sugars under abiotic stress. Plant Physiol. Biochem. 2016;109:54–61. doi: 10.1016/j.plaphy.2016.09.005. PubMed DOI

Moore B, et al. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science. 2003;300:332–336. doi: 10.1126/science.1080585. PubMed DOI

Hartig K, Beck E. Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle. Plant Biol. 2006;8:389–396. doi: 10.1055/s-2006-923797. PubMed DOI

Lee S-T, Huang W-L. Cytokinin, auxin, and abscisic acid affects sucrose metabolism conduce to de novo shoot organogenesis in rice (Oryza sativa L.) callus. Bot. Stu. 2013;54:5. doi: 10.1186/1999-3110-54-5. PubMed DOI PMC

Ikeda Y, Koizumi N, Kusano T, Sano H. Sucrose and cytokinin modulation of WPK4, a gene encoding a SNF1-related protein kinase from wheat. Plant Physiol. 1999;121:813–820. doi: 10.1104/pp.121.3.813. PubMed DOI PMC

Kushwah S, Laxmi A. The interaction between glucose and cytokinin signal transduction pathway in Arabidopsis thaliana. Plant Cell Environ. 2014;37:235–253. doi: 10.1111/pce.12149. PubMed DOI

Barbier F, et al. Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida. J. Exp. Bot. 2015;66:2569–2582. doi: 10.1093/jxb/erv047. PubMed DOI PMC

Ćosić, et al. In vitro plant regeneration from immature zygotic embryos and repetitive somatic embryogenesis in kohlrabi (Brassica oleracea var. gongylodes) Vitro Cell. Dev. Biol. Plant. 2013;49:294–303. doi: 10.1007/s11627-013-9517-9. DOI

Ćosić T, et al. Effects of different types of sugars and plant growth regulators on kohlrabi seedling growth and development in vitro. Arch. Biol. Sci. 2020;72:349–357. doi: 10.2298/ABS200622029C. DOI

Kamínek M, et al. Purine cytokinins: a proposal of abbreviations. Plant Growth Regul. 2000;32:253–256. doi: 10.1023/A:1010743522048. DOI

Aremu AO, et al. How does exogenously applied cytokinin type affect growth and endogenous cytokinins in micropropagated Merwilla plumbea? Plant Cell Tiss. Organ Cult. 2014;118:245–256. doi: 10.1007/s11240-014-0477-5. DOI

Gibson SI. Control of plant development and gene expression by sugar signaling. Curr. Opin. Plant Biol. 2005;8:93–102. doi: 10.1016/j.pbi.2004.11.003. PubMed DOI

Yaseen M, Ahmad T, Sablok G, Standardi A, Hafiz IA. Review: role of carbon sources for in vitro plant growth and development. Mol. Biol. Rep. 2013;40:2837–2849. doi: 10.1007/s11033-012-2299-z. PubMed DOI

Borisjuk L, et al. Energy status and its control on embryogenesis of legumes: ATP distribution within Vicia faba embryos is developmentally regulated and correlated with photosynthetic capacity. Plant J. 2003;36:318–329. doi: 10.1046/j.1365-313X.2003.01879.x. PubMed DOI

Desjardins, Y., Hdider, C. & de Riek, J. Carbon nutrition in vitro - regulation and manipulation of carbon assimilation in micropropagated systems in Automation and Environmental Control in Plant Tissue Culture (eds. Aitken–Christie, J., Kozai, T. & Smith, M.L.) 441– 471 (Springer Nature, Switzerland, 1995).

Gabryszewska E. The effects of glucose and growth regulators on the organogenesis of Paeonia lactiflora Pall. in vitro. J. Fruit Ornam. Plant Res. 2010;18:309–320.

Dekkers, B.J.W. & Smeekens, S. Sugar and abscisic acid regulation of germination and transition to seedling growth in Seed development, dormancy and germination (eds. Bradford, K. & Nonogaki, H.) 305–327 (Blackwell Publishing, Oxford, UK, 2007).

Zhou L, Jang JC, Jones TL, Sheen J. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. PNAS. 1998;95:10294–10299. doi: 10.1073/pnas.95.17.10294. PubMed DOI PMC

Gibson SI, Laby RJ, Kim D. The sugar-insensitive1 (sis1) mutant of Arabidopsis is allelic to ctr1. Biochem. Biophys. Res. Commun. 2001;280:196–203. doi: 10.1006/bbrc.2000.4062. PubMed DOI

Lu B, et al. Overexpression of melon tonoplast sugar transporter CmTST1 improved root growth under high sugar content. Int. J. Mol. Sci. 2020;21:3524. doi: 10.3390/ijms21103524. PubMed DOI PMC

George EF. Plant propagation by tissue culture in Part 1: the technology, 1–574. Exegetics Ltd.; 1993.

Wang H-L, Lee P-D, Liu L-F, Su J-C. Effect of sorbitol induced osmotic stress on the changes of carbohydrate and free amino acid pools in sweet potato cell suspension cultures. Bot. Bull. Acad. Sinica. 1999;40:219–225.

Biahoua A, Bonneau L. Control of in vitro somatic embryogenesis of the spindle tree (Euonymus europaeus L.) by the sugar type and the osmotic potential of the culture medium. Plant Cell Rep. 1999;19:185–190. doi: 10.1007/s002990050731. PubMed DOI

Lapenã L, Pérez-Bermúdez P, Segura J. Morphogenesis in hypocotyl cultures of Digitalis obscura: influence of carbohydrate levels and sources. Plant Sci. 1988;57:247–252. doi: 10.1016/0168-9452(88)90130-6. DOI

Rognoni S, Teng S, Arru L, Smeekens SC, Perata P. Sugar effect on early seedling development in Arabidopsis. Plant Growth Regul. 2007;52:217–228. doi: 10.1007/s10725-007-9193-z. DOI

Guo B, Abbasi BH, Zeb A, Xu LL, Wei YH. Thidiazuron: a multi-dimensional plant growth regulator. Afr. J. Biotechnol. 2011;10:8984–9000. doi: 10.5897/AJB11.636. DOI

Dewir YH, Nurmansyah NY, Teixeira da Silva JA. Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep. 2018;37:1451–1470. doi: 10.1007/s00299-018-2326-1. PubMed DOI

Zhang CG, Li W, Mao YF, Zhao DL, Dong W, Guo GQ. Endogenous hormonal levels in Scutellaria baicalensis calli induced by thidiazuron. Russ. J. Plant Physiol. 2005;52:345–351. doi: 10.1007/s11183-005-0052-3. DOI

Shirani S, Mahdavi F, Maziah M. Morphological abnormality among regenerated shoots of banana and plantain (Musa spp.) after in vitro multiplication with TDZ and BAP from excised shoot-tips. Afr. J. Biotechnol. 2010;8:5755–5761.

Wang SY, Jiao HJ, Faust M. Changes in metabolic enzyme activities during TDZ-induced bud break of apple. Hort. Sci. 1991;26:171–173.

Cuesta C, et al. Endogenous cytokinin profiles and their relationships to between-family differences during adventitious caulogenesis in Pinus pinea cotyledons. J. Plant Physiol. 2012;169:1830–1837. doi: 10.1016/j.jplph.2012.08.012. PubMed DOI

Montalbán IA, Novák O, Rolčik J, Strnad M, Moncaleán P. Endogenous cytokinin and auxin profiles during in vitro organogenesis from vegetative buds of Pinus radiata adult trees. Physiol. Plant. 2013;148:214–231. doi: 10.1111/j.1399-3054.2012.01709.x. PubMed DOI

Raspor M, et al. Cytokinin profiles of AtCKX2-overexpressing potato plants and the impact of altered cytokinin homeostasis on tuberization in vitro. J. Plant Growth Regul. 2012;31:460–470. doi: 10.1007/s00344-011-9255-3. DOI

Gujjar RS, Supaibulwatana K. The mode of cytokinin functions assisting plant adaptations to osmotic stresses. Plants. 2019;8:542. doi: 10.3390/plants8120542. PubMed DOI PMC

Arrom L, Munné-Bosch S. Hormonal changes during flower development in floral tissues of Lilium. Planta. 2012;236:343–354. doi: 10.1007/s00425-012-1615-0. PubMed DOI

Sairanen I, et al. Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell. 2012;24:4907–4916. doi: 10.1105/tpc.112.104794. PubMed DOI PMC

Gordon SP, et al. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development. 2007;134:3539–3548. doi: 10.1242/dev.010298. PubMed DOI

Huang WL, Lee CH, Chen YR. Levels of endogenous abscisic acid and indole-3-acetic acid influence shoot organogenesis in callus cultures of rice subjected to osmotic stress. Plant Cell Tiss. Organ Cult. 2012;108:257–263. doi: 10.1007/s11240-011-0038-0. DOI

Takei K, Sakakibara H, Sugiyama T. Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, Arabidopsis thaliana. J. Biol. Chem. 2001;276:26405–26410. doi: 10.1074/jbc.M102130200. PubMed DOI

Vanková R., Gaudinová A., Kamínek, M. & Eder, J. The effect of interaction of synthetic cytokinin and auxin on production of natural cytokinins by immobilized tobacco cells in Physiology and Biochemistry of Cytokinins in Plants (eds. Kamínek, M., Mok, D.W.S. & Zazímalová, E.) 47–51 (SPB Academic Publishing, The Hague, The Netherlands, 1992).

Nisler J, et al. Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase. Plant Mol. Biol. 2016;92:235–248. doi: 10.1007/s11103-016-0509-0. PubMed DOI

Romanov GA, Lomin SN, Schmülling T. Cytokinin signaling: from the ER or from the PM? That is the question! New Phytol. 2018;218:41–53. doi: 10.1111/nph.14991. PubMed DOI

Murch SJ, Victor JMR, Krishnaraj S, Saxena PK. The role of proline in thidiazuron-induced somatic embryogenesis of peanut. Vitro Cell Dev. Biol. 1999;35:102–105. doi: 10.1007/s11627-999-0018-9. DOI

Trewavas, A.J. The importance of individuality in Plant responses to environmental stresses (ed. Lerner, H.R.) 27–43 (Marcel Dekker, New York, 1999).

Kiba T, Takebayashi Y, Kojima M, Hitoshi Sakakibara H. Sugar-induced de novo cytokinin biosynthesis contributes to Arabidopsis growth under elevated CO2. Sci. Rep. 2019;9:7765. doi: 10.1038/s41598-019-44185-4. PubMed DOI PMC

Stokes ME, Chattopadhyay A, Wilkins O, Nambara E, Campbell MM. Interplay between sucrose and folate modulates auxin signaling in Arabidopsis. Plant Physiol. 2013;162:1552–1565. doi: 10.1104/pp.113.215095. PubMed DOI PMC

Takei K, et al. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol. 2004;45:1053–1062. doi: 10.1093/pcp/pch119. PubMed DOI

Ohkama N, et al. Regulation of sulfur–responsive gene expression by exogenously applied cytokinins in Arabidopsis thaliana. Plant Cell Physiol. 2002;43:1493–1501. doi: 10.1093/pcp/pcf183. PubMed DOI

Woo J, et al. The response and recovery of the Arabidopsis thaliana transcriptome to phosphate starvation. BMC Plant Biol. 2012;12:62. doi: 10.1186/1471-2229-12-62. PubMed DOI PMC

Kushwah S, Jones AM, Laxmi A. Cytokinin interplay with ethylene, auxin and glucose signaling controls Arabidopsis seedling root directional growth. Plant Physiol. 2011;156:1851–1866. doi: 10.1104/pp.111.175794. PubMed DOI PMC

Hwang I, Sheen J. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature. 2001;413:383–389. doi: 10.1038/35096500. PubMed DOI

Cary AJ, Che P, Howell SH. Developmental events and shoot apical meristem gene expression patterns during shoot development in Arabidopsis thaliana. Plant J. 2002;32:867–877. doi: 10.1046/j.1365-313X.2002.01479.x. PubMed DOI

Leibfried A, et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature. 2005;438:1172–1175. doi: 10.1038/nature04270. PubMed DOI

Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Linsmaier EM, Skoog F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 1965;18:100–127. doi: 10.1111/j.1399-3054.1965.tb06874.x. DOI

Dobrev PI, Vankova R. Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Methods Mol. Biol. 2012;913:251–261. PubMed

Djilianov DL, et al. Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species Haberlea rhodopensis. J. Plant Growth Regul. 2013;32:564–574. doi: 10.1007/s00344-013-9323-y. DOI

Gasic K, Hernandez A, Korban SS. RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol. Biol. Rep. 2004;22:437a–437g. doi: 10.1007/BF02772687. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace