Motivated by the clinical success of gold(I) metallotherapeutic Auranofin in the effective treatment of both inflammatory and cancer diseases, we decided to prepare, characterize, and further study the [Au(kin)(PPh3)] complex (1), where Hkin = kinetin, 6-furfuryladenine, for its in vitro anti-cancer and anti-inflammatory activities. The results revealed that the complex (1) had significant in vitro cytotoxicity against human cancer cell lines (A2780, A2780R, PC-3, 22Rv1, and THP-1), with IC50 ≈ 1-5 μM, which was even significantly better than that for the conventional platinum-based drug Cisplatin while comparable with Auranofin. Although its ability to inhibit transcription factor NF-κB activity did not exceed the comparative drug Auranofin, it has been found that it is able to positively influence peroxisome-proliferator-activated receptor-gamma (PPARγ), and as a consequence of this to have the impact of moderating/reducing inflammation. The cellular effects of the complex (1) in A2780 cancer cells were also investigated by cell cycle analysis, induction of apoptosis, intracellular ROS production, activation of caspases 3/7 and disruption of mitochondrial membrane potential, and shotgun proteomic analysis. Proteomic analysis of R2780 cells treated with complex (1) and starting compounds revealed possible different places of the effect of the studied compounds. Moreover, the time-dependent cellular accumulation of copper was studied by means of the mass spectrometry study with the aim of exploring the possible mechanisms responsible for its biological effects.
- MeSH
- apoptóza MeSH
- auranofin farmakologie MeSH
- kinetin farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory vaječníků * metabolismus MeSH
- PPAR gama MeSH
- proteomika MeSH
- regulátory růstu rostlin farmakologie MeSH
- zlato * farmakologie chemie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Cytokinins are naturally occurring substances that act as plant growth regulators promoting plant growth and development, including shoot initiation and branching, and also affecting apical dominance and leaf senescence. Aromatic cytokinin 6-benzylaminopurine (BAP) has been widely used in micropropagation systems and biotechnology. However, its 9-glucoside (BAP9G) accumulates in explants, causing root inhibition and growth heterogenity. To overcome BAP disadvantages, a series of ring-substituted 2'-deoxy-9-(β)-d-ribofuranosylpurine derivatives was prepared and examined in different classical cytokinin bioassays. Amaranthus, senescence and tobacco callus bioassays were employed to provide details of cytokinin activity of 2'-deoxy-9-(β)-d-ribosides compared to their respective free bases and ribosides. The prepared derivatives were also tested for their recognition by cytokinin receptors of Arabidopsis thaliana AHK3 and CRE1/AHK4. The ability of aromatic N6-substituted adenine-2'-deoxy-9-(β)-d-ribosides to promote plant growth and delay senescence was increased considerably and, in contrast to BAP, no loss of cytokinin activity at higher concentrations was observed. The presence of a 2'-deoxyribosyl moiety at the N9-position led to an increase in cytokinin activities in comparison to the free bases and ribosides. The antioxidant capacity, cytotoxicity and effect on the MHV-68 gammaherpesvirus strain were also examined.
- MeSH
- antioxidancia chemická syntéza chemie farmakologie MeSH
- Arabidopsis účinky léků metabolismus MeSH
- Cercopithecus aethiops MeSH
- molekulární struktura MeSH
- purinové nukleosidy chemická syntéza chemie farmakologie MeSH
- regulátory růstu rostlin chemická syntéza chemie farmakologie MeSH
- Vero buňky MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Leaf senescence, accompanied by chlorophyll breakdown, chloroplast degradation and inhibition of photosynthesis, can be suppressed by an exogenous application of cytokinins. Two aromatic cytokinin arabinosides (6-benzylamino-9-β-d-arabinofuranosylpurines; BAPAs), 3-hydroxy- (3OHBAPA) and 3-methoxy- (3MeOBAPA) derivatives, have recently been found to possess high anti-senescence activity. Interestingly, their effect on the maintenance of chlorophyll content and maximal quantum yield of photosystem II (PSII) in detached dark-adapted leaves differed quantitatively in wheat (Triticum aestivum L. cv. Aranka) and Arabidopsis (Arabidopsisthaliana L. (Col-0)). In this work, we have found that the anti-senescence effects of 3OHBAPA and 3MeOBAPA in wheat and Arabidopsis also differ in other parameters, including the maintenance of carotenoid content and chloroplasts, rate of reduction of primary electron acceptor of PSII (QA) as well as electron transport behind QA, and partitioning of absorbed light energy in light-adapted leaves. In wheat, 3OHBAPA had a higher protective effect than 3MeOBAPA, whereas in Arabidopsis, 3MeOBAPA was the more efficient derivative. We have found that the different anti-senescent activity of 3OHBAPA and 3MeOBAPA was coupled to different ethylene production in the treated leaves: the lower the ethylene production, the higher the anti-senescence activity. 3OHBAPA and 3MeOBAPA also efficiently protected the senescing leaves of wheat and Arabidopsis against oxidative damage induced by both H2O2 and high-light treatment, which could also be connected with the low level of ethylene production.
- MeSH
- Arabidopsis účinky léků růst a vývoj metabolismus MeSH
- cytokininy farmakologie MeSH
- ethyleny metabolismus MeSH
- fotosyntéza MeSH
- listy rostlin účinky léků růst a vývoj metabolismus MeSH
- pšenice účinky léků růst a vývoj metabolismus MeSH
- regulátory růstu rostlin farmakologie MeSH
- stárnutí buněk * MeSH
- Publikační typ
- časopisecké články MeSH
The implementation of agronomic activities, based on the use of biostimulants, is an important element of agroecological practices. Therefore, comprehensive research was carried on the use of biostimulants. A field experiment was performed in 2016-2018 with common bean of Mexican Black cultivar. In particular growing seasons, bean plants were treated with Kelpak SL (seaweed extracts) and Terra Sorb Complex (free amino acids) in the form of single and double spraying with two solutions concentrations. According to the obtained data, application of biostimulants increased the yield of bean. Better results were observed after the use of Kelpak SL. The application of preparations influenced nutritional and nutraceutical quality of bean seeds. Terra Sorb Complex caused the highest increase in proteins level. In the light of achieved data, biostimulants in similar level decreased the starch accumulation. The most promising results, in the context of nutraceutical value of bean, were obtained in the case of increasing level of fiber. A positive impact of biostimulants on the seeds antioxidant potential was noted, expressed by the increased synthesis of phenolics, flavonoid, anthocyanins and antioxidant activities. Results of this study, directly indicate economic benefits from the use of biostimulants, which are extremely important to the farmers.
The plant-specific receptor-like cytoplasmic kinases (RLCKs) form a large, poorly characterized family. Members of the RLCK VI_A class of dicots have a unique characteristic: their activity is regulated by Rho-of-plants (ROP) GTPases. The biological function of one of these kinases was investigated using a T-DNA insertion mutant and RNA interference. Loss of RLCK VI_A2 function resulted in restricted cell expansion and seedling growth. Although these phenotypes could be rescued by exogenous gibberellin, the mutant did not exhibit lower levels of active gibberellins nor decreased gibberellin sensitivity. Transcriptome analysis confirmed that gibberellin is not the direct target of the kinase; its absence rather affected the metabolism and signalling of other hormones such as auxin. It is hypothesized that gibberellins and the RLCK VI_A2 kinase act in parallel to regulate cell expansion and plant growth. Gene expression studies also indicated that the kinase might have an overlapping role with the transcription factor circuit (PIF4-BZR1-ARF6) controlling skotomorphogenesis-related hypocotyl/cotyledon elongation. Furthermore, the transcriptomic changes revealed that the loss of RLCK VI_A2 function alters cellular processes that are associated with cell membranes, take place at the cell periphery or in the apoplast, and are related to cellular transport and/or cell wall reorganisation.
- MeSH
- Arabidopsis účinky léků enzymologie genetika růst a vývoj MeSH
- DNA bakterií genetika metabolismus MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- geneticky modifikované rostliny MeSH
- gibereliny metabolismus farmakologie MeSH
- hypokotyl účinky léků enzymologie genetika růst a vývoj MeSH
- inzerční mutageneze MeSH
- kotyledon účinky léků enzymologie genetika růst a vývoj MeSH
- kyseliny indoloctové metabolismus farmakologie MeSH
- protein-serin-threoninkinasy genetika metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin * MeSH
- regulátory růstu rostlin farmakologie MeSH
- semenáček účinky léků enzymologie genetika růst a vývoj MeSH
- stanovení celkové genové exprese MeSH
- transkripční faktory bHLH genetika metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- transkriptom MeSH
- vývojová regulace genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
Cytokinins (CKs) are a chemically diverse class of plant growth regulators, exhibiting wide-ranging actions on plant growth and development, hence their exploitation in agriculture for crop improvement and management. Their coordinated regulatory effects and cross-talk interactions with other phytohormones and signaling networks are highly sophisticated, eliciting and controlling varied biological processes at the cellular to organismal levels. In this review, we briefly introduce the mode of action and general molecular biological effects of naturally occurring CKs before highlighting the great variability in the response of fruit crops to CK-based innovations. We present a comprehensive compilation of research linked to the application of CKs in non-model crop species in different phases of fruit production and management. By doing so, it is clear that the effects of CKs on fruit set, development, maturation, and ripening are not necessarily generic, even for cultivars within the same species, illustrating the magnitude of yet unknown intricate biochemical and genetic mechanisms regulating these processes in different fruit crops. Current approaches using genomic-to-metabolomic analysis are providing new insights into the in planta mechanisms of CKs, pinpointing the underlying CK-derived actions that may serve as potential targets for improving crop-specific traits and the development of new solutions for the preharvest and postharvest management of fruit crops. Where information is available, CK molecular biology is discussed in the context of its present and future implications in the applications of CKs to fruits of horticultural significance.
- MeSH
- cytokininy chemie metabolismus farmakologie MeSH
- molekulární struktura MeSH
- ovoce účinky léků růst a vývoj metabolismus MeSH
- regulátory růstu rostlin chemie metabolismus farmakologie MeSH
- rostliny účinky léků metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Cross-talk between exogenous salicylic acid (SA) and endogenous phytohormone pathways affects the antioxidant defense system and its response to salt stress. The study presented here investigated the effects of SA treatment before and during salt stress on the levels of endogenous plant growth regulators in three barley cultivars with different salinity tolerances: Hordeum vulgare L. cvs. Akhisar (sensitive), Erginel (moderate), and Kalaycı (tolerant). The cultivars' relative leaf water contents, growth parameters, proline contents, chlorophyll a/b ratios, and lipid peroxidation levels were measured, along with the activities of enzymes involved in detoxifying reactive oxygen species (ROS) including superoxide-dismutase, peroxidase, catalase, ascorbate-peroxidase, and glutathione-reductase. In addition, levels of several endogenous phytohormones (indole-3-acetic-acid, cytokinins, abscisic acid, jasmonic acid, and ethylene) were measured. Barley is known to be more salt tolerant than related plant species. Accordingly, none of the studied cultivars exhibited changes in membrane lipid peroxidation under salt stress. However, they responded differently to salt-stress with respect to their accumulation of phytohormones and antioxidant enzyme activity. The strongest and weakest increases in ABA and proline accumulation were observed in Kalaycı and Akhisar, respectively, suggesting that salt-stress was more effectively managed in Kalaycı. The effects of exogenous SA treatment depended on both the timing of the treatment and the cultivar to which it was applied. In general, however, where SA helped mitigate salt stress, it appeared to do so by increasing ROS scavenging capacity and antioxidant enzyme activity. SA treatment also induced changes in phytohormone levels, presumably as a consequence of SA-phytohormone salt-stress cross-talk.
- MeSH
- antioxidancia metabolismus MeSH
- biomasa MeSH
- časové faktory MeSH
- chlorofyl a metabolismus MeSH
- chlorofyl metabolismus MeSH
- ječmen (rod) účinky léků růst a vývoj fyziologie MeSH
- kyselina salicylová farmakologie MeSH
- látky reagující s kyselinou thiobarbiturovou metabolismus MeSH
- listy rostlin účinky léků fyziologie MeSH
- prolin metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- regulátory růstu rostlin farmakologie MeSH
- solný stres účinky léků MeSH
- voda MeSH
- výhonky rostlin účinky léků růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The benefits of in vitro plant cultivation are mainly due to very high multiplication rate. Cultivation of plant material in vitro can be carried out during the whole year regardless of the time of the year or weather conditions. We create artificial conditions in the lab (heat, light, humidity), and we can regulate these conditions at any time. For the preservation of cultivar identity, we recommend establishing in vitro cultures from shoot tips usually larger than 0.2 mm. In practice, in vitro cultivation of plants uses these growth regulators to achieve organogenesis, for example, root formation, prolonged growth, or multiplication. During each subculture, these cultures are then transferred on a solid agar medium in the form of actively growing multiple shoots with a well-differentiated shoot tip containing meristematic area. Cytokinins are important for cell division and causes branching of plants. Auxins, both endogenous and exogenous, act at as a trigger for the differentiation and formation of root primordia. Morphological characteristics (formation of leaves or callus) and shoot development should be observed during in vitro multiplication and after transfer to ex vitro conditions.
- MeSH
- aklimatizace fyziologie MeSH
- cytokininy farmakologie MeSH
- kultivační média chemie farmakologie MeSH
- kyseliny indoloctové farmakologie MeSH
- meristém účinky léků růst a vývoj MeSH
- proliferace buněk účinky léků fyziologie MeSH
- regulátory růstu rostlin farmakologie MeSH
- Rosaceae účinky léků růst a vývoj MeSH
- techniky in vitro MeSH
- techniky tkáňových kultur metody MeSH
- výhonky rostlin účinky léků růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
We have recently discovered that brassinosteroids (BRs) can inhibit the growth of etiolated pea seedlings dose-dependently in a similar manner to the 'triple response' induced by ethylene. We demonstrate here that the growth inhibition of etiolated pea shoots strongly correlates with increases in ethylene production, which also responds dose-dependently to applied BRs. We assessed the biological activities of two natural BRs on pea seedlings, which are excellent material as they grow rapidly, and respond both linearly and uni-phasically to applied BRs. We then compared the BRs' inhibitory effects on growth, and induction of ethylene and ACC (1-aminocyclopropane-1-carboxylic acid) production, to those of representatives of other phytohormone classes (cytokinins, auxins, and gibberellins). Auxin induced ca. 50-fold weaker responses in etiolated pea seedlings than brassinolide, and the other phytohormones induced much weaker (or opposite) responses. Following the optimization of conditions for determining ethylene production after BR treatment, we found a positive correlation between BR bioactivity and ethylene production. Finally, we optimized conditions for pea growth responses and developed a new, highly sensitive, and convenient bioassay for BR activity.
- MeSH
- aminokyseliny cyklické metabolismus MeSH
- biotest metody MeSH
- brassinosteroidy farmakologie MeSH
- ethyleny metabolismus MeSH
- hrách setý účinky léků růst a vývoj metabolismus MeSH
- inhibitory růstu farmakologie MeSH
- kyseliny indoloctové farmakologie MeSH
- regulátory růstu rostlin farmakokinetika farmakologie MeSH
- semenáček účinky léků růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Arabidopsis PIN2 protein directs transport of the phytohormone auxin from the root tip into the root elongation zone. Variation in hormone transport, which depends on a delicate interplay between PIN2 sorting to and from polar plasma membrane domains, determines root growth. By employing a constitutively degraded version of PIN2, we identify brassinolides as antagonists of PIN2 endocytosis. This response does not require de novo protein synthesis, but involves early events in canonical brassinolide signaling. Brassinolide-controlled adjustments in PIN2 sorting and intracellular distribution governs formation of a lateral PIN2 gradient in gravistimulated roots, coinciding with adjustments in auxin signaling and directional root growth. Strikingly, simulations indicate that PIN2 gradient formation is no prerequisite for root bending but rather dampens asymmetric auxin flow and signaling. Crosstalk between brassinolide signaling and endocytic PIN2 sorting, thus, appears essential for determining the rate of gravity-induced root curvature via attenuation of differential cell elongation.
- MeSH
- Arabidopsis účinky léků metabolismus MeSH
- biologický transport účinky léků MeSH
- brassinosteroidy metabolismus farmakologie MeSH
- endocytóza účinky léků MeSH
- gravitropismus účinky léků fyziologie MeSH
- kořeny rostlin účinky léků metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- meristém účinky léků metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- regulátory růstu rostlin metabolismus farmakologie MeSH
- signální transdukce MeSH
- steroidy heterocyklické metabolismus farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH