Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Timing-dependent effects of salicylic acid treatment on phytohormonal changes, ROS regulation, and antioxidant defense in salinized barley (Hordeum vulgare L.)

H. Torun, O. Novák, J. Mikulík, A. Pěnčík, M. Strnad, FA. Ayaz,

. 2020 ; 10 (1) : 13886. [pub] 20200817

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20027935

Cross-talk between exogenous salicylic acid (SA) and endogenous phytohormone pathways affects the antioxidant defense system and its response to salt stress. The study presented here investigated the effects of SA treatment before and during salt stress on the levels of endogenous plant growth regulators in three barley cultivars with different salinity tolerances: Hordeum vulgare L. cvs. Akhisar (sensitive), Erginel (moderate), and Kalaycı (tolerant). The cultivars' relative leaf water contents, growth parameters, proline contents, chlorophyll a/b ratios, and lipid peroxidation levels were measured, along with the activities of enzymes involved in detoxifying reactive oxygen species (ROS) including superoxide-dismutase, peroxidase, catalase, ascorbate-peroxidase, and glutathione-reductase. In addition, levels of several endogenous phytohormones (indole-3-acetic-acid, cytokinins, abscisic acid, jasmonic acid, and ethylene) were measured. Barley is known to be more salt tolerant than related plant species. Accordingly, none of the studied cultivars exhibited changes in membrane lipid peroxidation under salt stress. However, they responded differently to salt-stress with respect to their accumulation of phytohormones and antioxidant enzyme activity. The strongest and weakest increases in ABA and proline accumulation were observed in Kalaycı and Akhisar, respectively, suggesting that salt-stress was more effectively managed in Kalaycı. The effects of exogenous SA treatment depended on both the timing of the treatment and the cultivar to which it was applied. In general, however, where SA helped mitigate salt stress, it appeared to do so by increasing ROS scavenging capacity and antioxidant enzyme activity. SA treatment also induced changes in phytohormone levels, presumably as a consequence of SA-phytohormone salt-stress cross-talk.

000      
00000naa a2200000 a 4500
001      
bmc20027935
003      
CZ-PrNML
005      
20210114152635.0
007      
ta
008      
210105s2020 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-020-70807-3 $2 doi
035    __
$a (PubMed)32807910
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Torun, Hülya $u Faculty of Agriculture and Natural Science, Düzce University, Düzce, Turkey. hulyatorun@duzce.edu.tr. Faculty of Science, Karadeniz Technical University, Trabzon, Turkey. hulyatorun@duzce.edu.tr.
245    10
$a Timing-dependent effects of salicylic acid treatment on phytohormonal changes, ROS regulation, and antioxidant defense in salinized barley (Hordeum vulgare L.) / $c H. Torun, O. Novák, J. Mikulík, A. Pěnčík, M. Strnad, FA. Ayaz,
520    9_
$a Cross-talk between exogenous salicylic acid (SA) and endogenous phytohormone pathways affects the antioxidant defense system and its response to salt stress. The study presented here investigated the effects of SA treatment before and during salt stress on the levels of endogenous plant growth regulators in three barley cultivars with different salinity tolerances: Hordeum vulgare L. cvs. Akhisar (sensitive), Erginel (moderate), and Kalaycı (tolerant). The cultivars' relative leaf water contents, growth parameters, proline contents, chlorophyll a/b ratios, and lipid peroxidation levels were measured, along with the activities of enzymes involved in detoxifying reactive oxygen species (ROS) including superoxide-dismutase, peroxidase, catalase, ascorbate-peroxidase, and glutathione-reductase. In addition, levels of several endogenous phytohormones (indole-3-acetic-acid, cytokinins, abscisic acid, jasmonic acid, and ethylene) were measured. Barley is known to be more salt tolerant than related plant species. Accordingly, none of the studied cultivars exhibited changes in membrane lipid peroxidation under salt stress. However, they responded differently to salt-stress with respect to their accumulation of phytohormones and antioxidant enzyme activity. The strongest and weakest increases in ABA and proline accumulation were observed in Kalaycı and Akhisar, respectively, suggesting that salt-stress was more effectively managed in Kalaycı. The effects of exogenous SA treatment depended on both the timing of the treatment and the cultivar to which it was applied. In general, however, where SA helped mitigate salt stress, it appeared to do so by increasing ROS scavenging capacity and antioxidant enzyme activity. SA treatment also induced changes in phytohormone levels, presumably as a consequence of SA-phytohormone salt-stress cross-talk.
650    _2
$a antioxidancia $x metabolismus $7 D000975
650    _2
$a biomasa $7 D018533
650    _2
$a chlorofyl $x metabolismus $7 D002734
650    _2
$a chlorofyl a $x metabolismus $7 D000077194
650    _2
$a ječmen (rod) $x účinky léků $x růst a vývoj $x fyziologie $7 D001467
650    _2
$a regulátory růstu rostlin $x farmakologie $7 D010937
650    _2
$a listy rostlin $x účinky léků $x fyziologie $7 D018515
650    _2
$a výhonky rostlin $x účinky léků $x růst a vývoj $7 D018520
650    _2
$a prolin $x metabolismus $7 D011392
650    _2
$a reaktivní formy kyslíku $x metabolismus $7 D017382
650    _2
$a kyselina salicylová $x farmakologie $7 D020156
650    _2
$a solný stres $x účinky léků $7 D000077323
650    _2
$a látky reagující s kyselinou thiobarbiturovou $x metabolismus $7 D017392
650    _2
$a časové faktory $7 D013997
650    _2
$a voda $7 D014867
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Novák, Ondřej $u Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic.
700    1_
$a Mikulík, Jaromír $u Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic.
700    1_
$a Pěnčík, Aleš $u Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic.
700    1_
$a Strnad, Miroslav $u Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic.
700    1_
$a Ayaz, Faik Ahmet $u Faculty of Science, Karadeniz Technical University, Trabzon, Turkey.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 10, č. 1 (2020), s. 13886
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32807910 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114152633 $b ABA008
999    __
$a ok $b bmc $g 1608270 $s 1119115
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 10 $c 1 $d 13886 $e 20200817 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...