Comprehensive Phytohormone Profiling of Kohlrabi during In Vitro Growth and Regeneration: The Interplay with Cytokinin and Sucrose

. 2022 Oct 12 ; 12 (10) : . [epub] 20221012

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36295020

Grantová podpora
451-03-68/2022-14/200007 Ministry of Education, Science and Technological Development of the Republic of Serbia
19-12262S Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000738 Ministry of Education, Youth, and Sports of the Czech Republic from the European Regional Development Fund, Project "Center for Experimental Plant Biology"

The establishment of an efficient protocol for in vitro growth and regeneration of kohlrabi (Brassica oleracea var. gongylodes) allowed us to closely examine the phytohormone profiles of kohlrabi seedlings at four growth stages (T1-T4), additionally including the effects of cytokinins (CKs)-trans-zeatin (transZ) and thidiazuron (TDZ)-and high sucrose concentrations (6% and 9%). Resulting phytohormone profiles showed complex time-course patterns. At the T2 stage of control kohlrabi plantlets (with two emerged true leaves), levels of endogenous CK free bases and gibberellin GA20 increased, while increases in jasmonic acid (JA), JA-isoleucine (JA-Ile), indole-3-acetic acid (IAA) and indole-3-acetamide (IAM) peaked later, at T3. At the same time, the content of most of the analyzed IAA metabolites decreased. Supplementing growth media with CK induced de novo formation of shoots, while both CK and sucrose treatments caused important changes in most of the phytohormone groups at each developmental stage, compared to control. Principal component analysis (PCA) showed that sucrose treatment, especially at 9%, had a stronger effect on the content of endogenous hormones than CK treatments. Correlation analysis showed that the dynamic balance between the levels of certain bioactive phytohormone forms and some of their metabolites could be lost or reversed at particular growth stages and under certain CK or sucrose treatments, with correlation values changing between strongly positive and strongly negative. Our results indicate that the kohlrabi phytohormonome is a highly dynamic system that changes greatly along the developmental time scale and also during de novo shoot formation, depending on exogenous factors such as the presence of growth regulators and different sucrose concentrations in the growth media, and that it interacts intensively with these factors to facilitate certain responses.

Zobrazit více v PubMed

Santner A., Calderon-Villalobos L.I., Estelle M. Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 2009;5:301–307. doi: 10.1038/nchembio.165. PubMed DOI

Suza W.P., Staswick P.E. The role of JAR1 in Jasmonoyl-l-isoleucine production during Arabidopsis wound response. Planta. 2008;227:1221–1232. doi: 10.1007/s00425-008-0694-4. PubMed DOI

Bajguz A., Piotrowska A. Conjugates of auxin and cytokinin. Phytochemistry. 2009;70:957–969. doi: 10.1016/j.phytochem.2009.05.006. PubMed DOI

Xu Z.Y., Lee K.H., Dong T., Jeong J.C., Jin J.B., Kanno Y., Kim D.H., Kim S.Y., Seo M., Bressan R.A., et al. A vacuolar beta-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. Plant Cell. 2012;24:2184–2199. doi: 10.1105/tpc.112.095935. PubMed DOI PMC

Gray W.M. Hormonal regulation of plant growth and development. PLoS Biol. 2004;2:E311. doi: 10.1371/journal.pbio.0020311. PubMed DOI PMC

Santner A., Estelle M. Recent advances and emerging trends in plant hormone signalling. Nature. 2009;459:1071–1078. doi: 10.1038/nature08122. PubMed DOI

Smith S., Li C., Li J. Hormone function in plants. In: Li J., Li C., Smith S.M., editors. Hormone Metabolism and Signaling in Plants. Elsevier Ltd.; Academic Press; Cambridge, MA, USA: 2017. pp. 1–38.

Davies P.J., editor. Plant Hormones. Springer International Publishing; Dordrecht, The Netherlands: 2010. The plant hormones: Their nature, occurrence, and functions; pp. 1–15.

Wani S.H., Kumar V., Shriram V., Sah S.K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016;4:162–176. doi: 10.1016/j.cj.2016.01.010. DOI

Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa R., Jürgens G. Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature. 2003;426:147–153. doi: 10.1038/nature02085. PubMed DOI

Zažímalová E., Murphy A.S., Yang H., Hoyerová K., Hošek P. Auxin transporters—Why so many? Cold Spring Harb. Perspect. Biol. 2010;2:a001552. doi: 10.1101/cshperspect.a001552. PubMed DOI PMC

Jiang Z., Li J., Qu L.-J. Auxins. In: Li J., Li C., Smith S.M., editors. Hormone Metabolism and Signaling in Plants. Elsevier Ltd.; Academic Press; Cambridge, MA, USA: 2017. pp. 39–76.

Schmülling T. New insights into the functions of cytokinins in plant development. J. Plant Growth Regul. 2002;21:40–49. PubMed

Naseem M., Kaltdorf M., Dandekar T. The nexus between growth and defence signalling: Auxin and cytokinin modulate plant immune response pathways. J. Exp. Bot. 2015;66:4885–4896. doi: 10.1093/jxb/erv297. PubMed DOI

Skoog F., Miller C.O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 1957;11:118–130. PubMed

Hedden P., Kamiya Y. Gibberellin biosynthesis: Enzymes, genes and their regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997;48:431–460. doi: 10.1146/annurev.arplant.48.1.431. PubMed DOI

Hedden P., Sponsel V. A century of gibberellin research. J. Plant Growth Regul. 2015;34:740–760. doi: 10.1007/s00344-015-9546-1. PubMed DOI PMC

Hauvermale A.L., Ariizumi T., Steber C.M. Gibberellin signaling: A theme and variations on DELLA repression. Plant Physiol. 2012;160:83–92. PubMed PMC

Yang D.L., Yao J., Mei C.S., Tong X.-H., Zeng L.-J., Li Q., Xiao L.-T., Sun T.-P., Li J., Deng X.-W., et al. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl. Acad. Sci. USA. 2012;109:E1192–E1200. doi: 10.1073/pnas.1201616109. PubMed DOI PMC

Vera-Sirera F., Gomez M.D., Perez-Amador M.A. DELLA proteins, a group of GRAS transcription regulators that mediate gibberellin signaling. In: Gonzalez D.H., editor. Plant Transcription Factors: Evolutionary, Structural and Functional Aspects. Elsevier Ltd.; Academic Press; Cambridge, MA, USA: 2016. pp. 313–328.

Ma Y., Cao J., He J., Chen Q., Li X., Yang Y. Molecular mechanism for the regulation of ABA homeostasis during plant development and stress responses. Int. J. Mol. Sci. 2018;19:3643. doi: 10.3390/ijms19113643. PubMed DOI PMC

Thaler J.S., Humphrey P.T., Whiteman N.K. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 2012;17:260–270. doi: 10.1016/j.tplants.2012.02.010. PubMed DOI

Wasternack C., Strnad M. Jasmonate signaling in plant stress responses and development-active and inactive compounds. New Biotechnol. 2016;33:604–613. doi: 10.1016/j.nbt.2015.11.001. PubMed DOI

Vlot A.C., Dempsey D.A., Klessig D.F. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 2009;47:177–206. doi: 10.1146/annurev.phyto.050908.135202. PubMed DOI

Wasternack C. How jasmonates earned their laurels: Past and present. J. Plant Growth Regul. 2015;34:761–794. doi: 10.1007/s00344-015-9526-5. DOI

Dubois M., Van den Broeck L., Inzé D. The pivotal role of ethylene in plant growth. Trends Plant Sci. 2018;23:311–323. doi: 10.1016/j.tplants.2018.01.003. PubMed DOI PMC

Polko J.K., Kieber J.J. 1-aminocyclopropane 1-carboxylic acid and its emerging role as an ethylene-independent growth regulator. Front. Plant Sci. 2019;10:1602. doi: 10.3389/fpls.2019.01602. PubMed DOI PMC

Sheen J. Master regulators in plant glucose signaling networks. J. Plant Biol. 2014;57:67–79. doi: 10.1007/s12374-014-0902-7. PubMed DOI PMC

Kushwah S., Laxmi A. The interaction between glucose and cytokinin signaling in controlling Arabidopsis thaliana seedling root growth and development. Plant Signal. Behav. 2017;12:e1312241. doi: 10.1080/15592324.2017.1312241. PubMed DOI PMC

Sakr S., Wang M., Dédaldéchamp F., Perez-Garcia M.D., Ogé L., Hamama L., Atanassova R. The sugar-signaling hub: Overview of regulators and interaction with the hormonal and metabolic network. Int. J. Mol. Sci. 2018;19:2506. doi: 10.3390/ijms19092506. PubMed DOI PMC

Ljung K., Nemhauser J.L., Perata P. New mechanistic links between sugar and hormone signalling networks. Curr. Opin. Plant Biol. 2015;25:130–137. doi: 10.1016/j.pbi.2015.05.022. PubMed DOI

Gibson S.I. Sugar and phytohormone response pathways: Navigating a signalling network. J. Exp. Bot. 2004;55:253–264. doi: 10.1093/jxb/erh048. PubMed DOI

Gibson S.I. Control of plant development and gene expression by sugar signaling. Curr. Opin. Plant Biol. 2005;8:93–102. doi: 10.1016/j.pbi.2004.11.003. PubMed DOI

Koch K.E. Carbohydrate–modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996;47:509–540. doi: 10.1146/annurev.arplant.47.1.509. PubMed DOI

Ćosić T., Vinterhalter B., Vinterhalter D., Mitić N., Cingel A., Savić J., Bohanec B., Ninković S. In vitro plant regeneration from immature zygotic embryos and repetitive somatic embryogenesis in kohlrabi (Brassica oleracea var. gongylodes) Vitr. Cell. Dev. Biol. Plant. 2013;49:294–303. doi: 10.1007/s11627-013-9517-9. DOI

Ćosić T., Motyka V., Raspor M., Savić J., Cingel A., Vinterhalter B., Vinterhalter D., Trávníčková A., Dobrev P.I., Bohanec B., et al. In vitro shoot organogenesis and comparative analysis of endogenous phytohormones in kohlrabi (Brassica oleracea var. gongylodes): Effects of genotype, explant type and applied cytokinins. Plant Cell Tissue Organ Cult. 2015;121:741–760.

Ćosić T., Raspor M., Savić J., Cingel A., Matekalo D., Zdravković-Korać S., Ninković S. Expression profiles of organogenesis-related genes over the time course of one-step de novo shoot organogenesis from intact seedlings of kohlrabi. J. Plant Physiol. 2019;232:257–269. doi: 10.1016/j.jplph.2018.11.004. PubMed DOI

Ćosić T., Savić J., Raspor M., Cingel A., Ghalawnji N., Vinterhalter B., Ninković S. Effects of different types of sugars and plant growth regulators on kohlrabi seedling growth and development in vitro. Arch. Biol. Sci. 2020;72:349–357. doi: 10.2298/ABS200622029C. DOI

Ćosić T., Motyka V., Savić J., Raspor M., Marković M., Dobrev P.I., Ninković S., Dobrev P.I., Ninković S. Sucrose interferes with endogenous cytokinin homeostasis and expression of organogenesis-related genes during de novo shoot organogenesis in kohlrabi. Sci. Rep. 2021;11:6494. doi: 10.1038/s41598-021-85932-w. PubMed DOI PMC

Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Linsmaier E.M., Skoog F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 1965;18:100–127. doi: 10.1111/j.1399-3054.1965.tb06874.x. DOI

Dobrev P.I., Vankova R. Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Methods Mol. Biol. 2012;913:251–261. PubMed

Djilianov D.L., Dobrev P.I., Moyankova D.P., Vankova R., Georgieva D.T., Gajdošová S., Motyka V. Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species Haberlea rhodopensis. J. Plant Growth Regul. 2013;32:564–574. doi: 10.1007/s00344-013-9323-y. DOI

Lê S., Josse J., Husson F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008;25:1. doi: 10.18637/jss.v025.i01. DOI

Raspor M., Motyka V., Kaleri A.R., Ninković S., Tubić L., Cingel A., Ćosić T. Integrating the roles for cytokinin and auxin in de novo shoot organogenesis: From hormone uptake to signaling outputs. Int. J. Mol. Sci. 2021;22:8554. doi: 10.3390/ijms22168554. PubMed DOI PMC

Scarpella E., Barkoulas M., Tsiantis M. Control of leaf and vein development by auxin. Cold Spring Harb. Perspect. Biol. 2010;2:a001511. doi: 10.1101/cshperspect.a001511. PubMed DOI PMC

Byrne M.E. Making leaves. Curr. Opin. Plant Biol. 2012;15:4–30. PubMed

Woodward A.W., Bartel B. Auxin: Regulation, action, and interaction. Ann. Bot. 2005;95:707–735. doi: 10.1093/aob/mci083. PubMed DOI PMC

Ludwig-Muller J. Auxin conjugates: Their role for plant development and in the evolution of land plants. J. Exp. Bot. 2011;62:1757–1773. doi: 10.1093/jxb/erq412. PubMed DOI

Peer W.A., Cheng Y., Murphy A.S. Evidence of oxidative attenuation of auxin signalling. J. Exp. Bot. 2013;64:2629–2639. doi: 10.1093/jxb/ert152. PubMed DOI

Leclere S., Schmelz E.A., Chourey P.S. Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiol. 2010;153:306–318. doi: 10.1104/pp.110.155226. PubMed DOI PMC

Meitzel T., Radchuk R., McAdam E.L., Thormählen I., Feil R., Munz E., Hilo A., Geigenberger P., Ross J.J., Lunn J.E., et al. Trehalose 6-phosphate promotes seed filling by activating auxin biosynthesis. New Phytol. 2021;229:1553–1565. PubMed

Sairanen I., Novak O., Pencik A., Ikeda Y., Jones B., Sandberg G., Ljung K. Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell. 2012;24:4907–4916. PubMed PMC

McAdam E.L., Meitzel T., Quittenden L.J., Davidson S.E., Dalmais M., Bendahmane A.I., Thompson R., Smith J.J., Nichols D.S., Urquhart S., et al. Evidence that auxin is required for normal seed size and starch synthesis in pea. New Phytol. 2017;216:193–204. doi: 10.1111/nph.14690. PubMed DOI

Pěnčík A., Simonovik B., Petersson S.V., Henyková E., Simon S., Greenham K., Zhang Y., Kowalczyk M., Estelle M., Zažímalová E., et al. Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell. 2013;25:3858–3870. doi: 10.1105/tpc.113.114421. PubMed DOI PMC

Kasahara H. Current aspects of auxin biosynthesis in plants. Biosci. Biotechnol. Biochem. 2015;80:34–42. doi: 10.1080/09168451.2015.1086259. PubMed DOI

Lomin S.N., Krivosheev D.M., Steklov M.Y., Arkhipov D.V., Osolodkin D.I., Schmülling T., Romanov G.A. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J. Exp. Bot. 2015;66:1851–1863. doi: 10.1093/jxb/eru522. PubMed DOI PMC

Trifunović-Momčilov M., Motyka V., Dragićević I.Č., Petrić M., Jevremović S., Malbeck J., Holík J., Dobrev P.I., Subotić A. Endogenous phytohormones in spontaneously regenerated Centaurium erythraea Rafn. plants grown in vitro. J. Plant Growth Regul. 2016;35:543–552. doi: 10.1007/s00344-015-9558-x. DOI

Raspor M., Motyka V., Ninković S., Dobrev P.I., Malbeck J., Ćosić T., Cingel A., Savić J., Tadić V., Dragićević I.Č. Endogenous levels of cytokinins, indole-3-acetic acid and abscisic acid in in vitro grown potato: A contribution to potato hormonomics. Sci. Rep. 2020;10:3437. doi: 10.1038/s41598-020-60412-9. PubMed DOI PMC

Werner T., Motyka V., Strnad M., Schmülling T. Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. USA. 2001;98:10487–10492. doi: 10.1073/pnas.171304098. PubMed DOI PMC

Werner T., Hanus J., Holub J., Schmülling T., Van Onckelen H., Strnad M. New cytokinin metabolites in IPT transgenic Arabidopsis thaliana plants. Physiol. Plant. 2003;118:127–137. doi: 10.1034/j.1399-3054.2003.00094.x. PubMed DOI

Miyawaki K., Tarkowski P., Matsumoto-Kitano M., Kato T., Sato S., Tarkowska D., Tabata S., Sandberg G., Kakimoto T. Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc. Natl. Acad. Sci. USA. 2006;103:16598–16603. doi: 10.1073/pnas.0603522103. PubMed DOI PMC

Shi B., Guo X., Wang Y., Xiong Y., Wang J., Hayashi K., Lei J., Zhang L., Jiao Y. Feedback from lateral organs controls shoot apical meristem growth by modulating auxin transport. Dev. Cell. 2018;44:204–216.e6. doi: 10.1016/j.devcel.2017.12.021. PubMed DOI

Eklöf S., Ȧstot C., Blackwell A., Moritz T., Olsson O., Sandberg G. Auxin-cytokinin interactions in wild-type and transgenic tobacco. Plant Cell Physiol. 1997;38:225–235. doi: 10.1093/oxfordjournals.pcp.a029157. DOI

Nordström A., Tarkowski P., Tarkowska D., Norbaek R., Astot C., Dolezal K., Sandberg G. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin cytokinin-regulated development. Proc. Natl. Acad. Sci. USA. 2004;101:8039–8044. doi: 10.1073/pnas.0402504101. PubMed DOI PMC

Pernisová M., Klíma P., Horák J., Válková M., Malbeck J., Souček P., Reichman P., Hoyerová K., Dubová J., Friml J., et al. Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc. Natl. Acad. Sci. USA. 2009;106:3609–3614. doi: 10.1073/pnas.0811539106. PubMed DOI PMC

Jones B., Gunnerås S.A., Petersson S.V., Tarkowski P., Graham N., May S., Dolezal K., Sandberg G., Ljung K. Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell. 2010;22:2956–2969. doi: 10.1105/tpc.110.074856. PubMed DOI PMC

Liu J., Mehdi S., Topping J., Tarkowski P., Lindsey K. Modelling and experimental analysis of hormonal crosstalk in Arabidopsis. Mol. Syst. Biol. 2010;6:373. doi: 10.1038/msb.2010.26. PubMed DOI PMC

Cheng Z.J., Wang L., Sun W., Zhang Y., Zhou C., Su Y.H., Li W., Sun T.T., Zhao X.Y., Li X.G., et al. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiol. 2013;161:240–251. doi: 10.1104/pp.112.203166. PubMed DOI PMC

Salvi E., Di Mambro R., Pacifici E., Dello Ioio R., Costantino P., Moubayidin L., Sabatini S. SCARECROW and SHORTROOT control the auxin/cytokinin balance necessary for embryonic stem cell niche specification. Plant Signal. Behav. 2018;13:e1507402. PubMed PMC

Ikeuchi M., Ogawa Y., Iwase A., Sugimoto K. Plant regeneration: Cellular origins and molecular mechanisms. Development. 2016;143:1442–1451. doi: 10.1242/dev.134668. PubMed DOI

Ćosić T., Raspor M. The role of auxin and cytokinin signaling components in de novo shoot organogenesis. In: Aftab T., editor. Auxins, Cytokinins and Gibberellins Signaling in Plants. Springer; Cham, Switzerland: 2022. pp. 47–75.

Aremu A.O., Plačková L., Bairu M.W., Novák O., Plíhalová L., Doležal K., Finnie J.F., Van Staden J. How does exogenously applied cytokinin type affect growth and endogenous cytokinins in micropropagated Merwilla plumbea? Plant Cell Tisue. Organ Cult. 2014;118:245–256. doi: 10.1007/s11240-014-0477-5. DOI

Yamaguchi S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 2008;59:225–251. doi: 10.1146/annurev.arplant.59.032607.092804. PubMed DOI

Xu H., Liu Q., Yao T., Fu X. Shedding light on integrative GA signaling. Curr. Opin. Plant Biol. 2014;21:89–95. doi: 10.1016/j.pbi.2014.06.010. PubMed DOI

Claeys H., De Bodt S., Inzé D. Gibberellins and DELLAs: Central nodes in growth regulatory networks. Trends Plant Sci. 2014;19:231–239. doi: 10.1016/j.tplants.2013.10.001. PubMed DOI

Collett C.E., Harberd N.P., Leyser O. Hormonal interactions in the control of Arabidopsis hypocotyl elongation. Plant Physiol. 2000;124:553–562. doi: 10.1104/pp.124.2.553. PubMed DOI PMC

Fu X., Harberd N.P. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature. 2003;421:740–743. doi: 10.1038/nature01387. PubMed DOI

Kinoshita A., Vayssières A., Richter R., Sang Q., Roggen A., van Driel A.D., Smith R.S., Coupland G. Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis. eLife. 2020;9:e60661. doi: 10.7554/eLife.60661. PubMed DOI PMC

Jasinski S., Piazza P., Craft J., Hay A., Woolley L., Rieu I., Phillips A., Hedden P., Tsiantis M. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr. Biol. 2005;15:1560–1565. doi: 10.1016/j.cub.2005.07.023. PubMed DOI

Lombardi-Crestana S., da Silva Azevedo M., Ferreira e Silva G.F., Pino L.E., Appezzato-da-Glória B., Figueira A., Nogueira F.T.S., Peres L.E.P. The tomato (Solanum lycopersicum cv. Micro-Tom) natural genetic variation Rg1 and the DELLA mutant procera control the competence necessary to form adventitious roots and shoots. J. Exp. Bot. 2012;63:5689–5703. doi: 10.1093/jxb/ers221. PubMed DOI PMC

Xu X., Lammeren A., Vameer E., Vreugdennie D. The role of gibberellin, abscisic acid and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol. 1998;117:575–584. doi: 10.1104/pp.117.2.575. PubMed DOI PMC

Daszkowska-Golec A. ABA is important not only under stress-revealed by the discovery of new ABA transporters. Trends Plant Sci. 2022;27:423–425. doi: 10.1016/j.tplants.2022.02.006. PubMed DOI

León P., Sheen J. Sugar and hormone connections. Trends Plant Sci. 2003;8:1360–1385. doi: 10.1016/S1360-1385(03)00011-6. PubMed DOI

Yamaguchi S., Kamiya Y. Gibberellin biosynthesis: Its regulation by endogenous and environmental signals. Plant Cell Physiol. 2000;41:251–257. doi: 10.1093/pcp/41.3.251. PubMed DOI

Cheng W.-H., Endo A., Zhou L., Penney J., Chen H.-C., Arroyo A., Leon P., Nambara E., Asami T., Seo M., et al. A unique short-chain dehydrogenase/reductase in Arabidopsis abscisic acid biosynthesis and glucose signaling. Plant Cell. 2002;14:2723–2743. doi: 10.1105/tpc.006494. PubMed DOI PMC

Seo M., Koshiba T. The complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 2002;7:41–48. doi: 10.1016/S1360-1385(01)02187-2. PubMed DOI

Yan Y., Borrego E., Kolomiets M.V. Jasmonate biosynthesis, perception and function. In: Baez R.V., editor. Plant Development and Stress Responses. IntechOpen; London, UK: 2013. Lipid Metabolism.

Romanov G.A., Lomin S.N., Schmülling T. Cytokinin signaling: From the ER or from the PM? That is the question! New Phytol. 2018;218:41–53. doi: 10.1111/nph.14991. PubMed DOI

Motyka V., Kamínek M. Characterization of cytokinin oxidase from tobacco and poplar callus cultures. In: Kamínek M., Mok D.W.S., Zažímalová E., editors. Physiology and Biochemistry of Cytokinins in Plants. SPB Academic Publishing; The Hague, The Netherlands: 1992. pp. 33–39.

Motyka V., Kamínek M. Cytokinin oxidase from auxin- and cytokinin-dependent callus cultures of tobacco (Nicotiana tabacum L.) J. Plant Growth Regul. 1994;13:1–9. doi: 10.1007/BF00210700. DOI

Nisler J., Kopečný D., Končitíková R., Zatloukal M., Bazgier V., Berka K., Zalabák D., Briozzo P., Strnad M., Spíchal L. Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase. Plant Mol. Biol. 2016;92:235–248. doi: 10.1007/s11103-016-0509-0. PubMed DOI

Guo B., Abbasi B.H., Zeb A., Xu L.L., Wei Y.H. Thidiazuron: A multi-dimensional plant growth regulator. Afr. J. Biotechnol. 2011;10:8984–9000.

Zhang C.G., Li W., Zhao D.L., Dong W., Guo G.O. Endogenous hormonal levels in Scutellaria baicalensis calli induced by thidiazuron. Russ. J. Plant Physiol. 2005;52:345–351. doi: 10.1007/s11183-005-0052-3. DOI

Rognoni S., Teng S., Arru L., Smeekens S.C., Perata P. Sugar effect on early seedling development in Arabidopsis. Plant Growth Regul. 2007;52:217–228. doi: 10.1007/s10725-007-9193-z. DOI

Zhou L., Jang J.C., Jones T.L., Sheen J. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucoseinsensitive mutant. Proc. Natl. Acad. Sci. USA. 1998;95:10294–10299. doi: 10.1073/pnas.95.17.10294. PubMed DOI PMC

Sami F., Yusuf M., Faizan M., Faraz A., Hayat S. Role of sugars under abiotic stress. Plant Physiol. Biochem. 2016;109:54–61. doi: 10.1016/j.plaphy.2016.09.005. PubMed DOI

Wang M., Le Gourrierec J., Jiao F., Demotes-Mainard S., Perez-Garcia M.-D., Ogé L., Hamama L., Crespel L., Bertheloot J., Chen J., et al. Convergence and divergence of sugar and cytokinin signaling in plant development. Int. J. Mol. Sci. 2021;22:1282. doi: 10.3390/ijms22031282. PubMed DOI PMC

Kushwah S., Laxmi A. The interaction between glucose and cytokinin signal transduction pathway in Arabidopsis thaliana. Plant Cell Environ. 2014;37:235–253. doi: 10.1111/pce.12149. PubMed DOI

Wingler A., Henriques R. Sugars and the speed of life—Metabolic signals that determine plant growth, development and death. Physiol. Plant. 2022;174:e13656. doi: 10.1111/ppl.13656. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...