Accumulation of Toxic Arsenic by Cherry Radish Tuber (Raphanus sativus var. sativus Pers.) and Its Physiological, Metabolic and Anatomical Stress Responses
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000845
Ministry of Education, Youth and Sports from the European Regional Development Fund-Project "Centre for the investigation of synthesis and transformation of nutritional substances in the food chain in interaction with potentially harmful substances of ant
PubMed
36986945
PubMed Central
PMC10051939
DOI
10.3390/plants12061257
PII: plants12061257
Knihovny.cz E-zdroje
- Klíčová slova
- metalloid, methionine, stress metabolism, vegetable, vitamin C,
- Publikační typ
- časopisecké články MeSH
In a pot experiment, cherry radish (Raphanus sativus var. sativus Pers. 'Viola') was cultivated under two levels of As soil contamination-20 and 100 mg/kg. The increasing As content in tubers with increasing soil contamination led to changes in free amino acids (AAs) and phytohormone metabolism and antioxidative metabolites. Changes were mainly observed under conditions of high As contamination (As100). The content of indole-3-acetic acid in tubers varied under different levels of As stress, but As100 contamination led to an increase in its bacterial precursor indole-3-acetamide. A decrease in cis-zeatin-9-riboside-5'-monophosphate content and an increase in jasmonic acid content were found in this treatment. The free AA content in tubers was also reduced. The main free AAs were determined to be transport AAs (glutamate-Glu, aspartate, glutamine-Gln, asparagine) with the main portion being Gln. The Glu/Gln ratio-a significant indicator of primary N assimilation in plants-decreased under the As100 treatment condition. A decrease in antioxidative metabolite content-namely that of ascorbic acid and anthocyanins-was observed in this experiment. A decline in anthocyanin content is related to a decrease in aromatic AA content which is crucial for secondary metabolite production. The changes in tubers caused by As contamination were reflected in anatomical changes in the radish tubers and roots.
Zobrazit více v PubMed
Eisler R. Eisler’s Encyclopedia of Environmentally Hazardous Priority Chemicals. Elsevier; Amsterdam, The Netherlands: 2007.
Paltseva A., Cheng Z., Deeb M., Groffman P.M., Shaw R.K., Maddaloni M. Accumulation of arsenic and lead in garden-grown vegetables: Factors and mitigation strategies. Sci. Total Environ. 2018;640:273–283. doi: 10.1016/j.scitotenv.2018.05.296. PubMed DOI
Abbas G., Murtaza B., Bibi I., Shahid M., Niazi N.K., Khan M.I., Amjad M., Hussain M. Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. Int. J. Environ. Res. Public Health. 2018;15:59. doi: 10.3390/ijerph15010059. PubMed DOI PMC
Warming M., Hansen M.G., Holm P.E., Magid J., Hansen T.H., Trapp S. Does intake of trace elements through urban gardening in Copenhagen pose a risk to human health? Environ. Pollut. 2015;202:17–23. doi: 10.1016/j.envpol.2015.03.011. PubMed DOI
Tremlová J., Sehnal M., Száková J., Goessler W., Steiner O., Najmanová J., Horáková T., Tlustoš P. A profile of arsenic species in different vegetables growing in arsenic-contaminated soils. Arch. Agron. Soil Sci. 2017;63:918–927. doi: 10.1080/03650340.2016.1242721. DOI
Armendariz A.L., Talano M.A., Travaglia C., Reinoso H., Oller A.L.W., Agostini E. Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiol. Biochem. 2016;98:119–127. doi: 10.1016/j.plaphy.2015.11.021. PubMed DOI
Riyazuddin R., Nisha N., Ejaz B., Khan M.I.R., Kumar M., Ramteke P.W., Gupta R. A Comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules. 2022;12:43. doi: 10.3390/biom12010043. PubMed DOI PMC
Zulfiqar F., Ashraf M. Antioxidants as modulators of arsenic-induced oxidative stress tolerance in plants: An overview. J. Hazard. Mater. 2022;427:127891. doi: 10.1016/j.jhazmat.2021.127891. PubMed DOI
Ranjan A., Gautam S., Michael R., Shukla T., Trivedi P.K. Arsenic-induced galactinol synthase1 gene, AtGolS1, provides arsenic stress tolerance in Arabidopsis thaliana. Environ. Exp. Bot. 2023;207:105217. doi: 10.1016/j.envexpbot.2023.105217. DOI
Pickering I.J., Prince R.C., George M.J., Smith R.D., George G.N., Salt D.E. Reduction and coordination of arsenic in Indian mustard. Plant Physiol. 2000;122:1171–1177. doi: 10.1104/pp.122.4.1171. PubMed DOI PMC
Cao X., Ma L.Q. Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environ. Pollut. 2004;132:435–442. doi: 10.1016/j.envpol.2004.05.019. PubMed DOI
Liu W.-J., Wood B.A., Raab A., McGrath S.P., Zhao F.-J., Feldmann J. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. Plant Physiol. 2010;152:2211–2221. doi: 10.1104/pp.109.150862. PubMed DOI PMC
Smith E., Juhasz A.L., Weber J. Arsenic uptake and speciation in vegetables grown under greenhouse conditions. Environ. Geochem. Health. 2009;31:125–132. doi: 10.1007/s10653-008-9242-1. PubMed DOI
Zemanová V., Pavlíková D., Hnilička F., Pavlík M. Arsenic toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. Plants. 2021;10:2009. doi: 10.3390/plants10102009. PubMed DOI PMC
Martínez-Castillo J.I., Saldana-Robles A., Ozuna C. Arsenic stress in plants: A metabolomic perspective. Plant Stress. 2022;3:100055. doi: 10.1016/j.stress.2022.100055. DOI
Farooq M.A., Islam F., Ali B., Najeeb U., Mao B., Gill R.A., Yan G., Siddique K.H.M., Zhou W. Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environ. Exp. Bot. 2016;132:42–52. doi: 10.1016/j.envexpbot.2016.08.004. DOI
Zhang M., Lv D., Ge P., Bian Y., Chen G., Zhu G., Li X., Yan Y. Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.) J. Proteom. 2014;109:290–308. doi: 10.1016/j.jprot.2014.07.010. PubMed DOI
Zemanová V., Pavlík M., Kyjaková P., Pavlíková D. Fatty acid profiles of ecotypes of hyperaccumulator Noccaea caerulescens growing under cadmium stress. J. Plant Physiol. 2015;180:27–34. doi: 10.1016/j.jplph.2015.02.012. PubMed DOI
Pavlíková D., Zemanová V., Pavlík M., Dobrev P.I., Hnilička F., Motyka V. Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress. PLoS ONE. 2020;15:e0233055. doi: 10.1371/journal.pone.0233055. PubMed DOI PMC
Piacentini D., Rovere F.D., Sofo A., Fattorini L., Falasca G., Altamura M.M. Nitric oxide cooperates with auxin to mitigate the alterations in the root system caused by cadmium and arsenic. Front. Plant Sci. 2020;11:1182. doi: 10.3389/fpls.2020.01182. PubMed DOI PMC
Ćosić T., Motyka V., Raspor M., Sajid S., Devrnja N., Dobrev P.I., Ninković S. Comprehensive phytohormone profiling of kohlrabi during in vitro growth and regeneration: The interplay with cytokinin and sucrose. Life. 2022;12:1585. doi: 10.3390/life12101585. PubMed DOI PMC
Islam E., Khan M.T., Irem S. Biochemical mechanisms of signaling: Perspectives in plants under arsenic stress. Ecotox. Environ. Safe. 2015;114:126–133. doi: 10.1016/j.ecoenv.2015.01.017. PubMed DOI
Bano K., Kumar B., Alyemeni M.N., Ahmad P. Protective mechanisms of sulfur against arsenic phytotoxicity in Brassica napus by regulating thiol biosynthesis, sulfur-assimilation, photosynthesis, and antioxidant response. Plant Physiol. Biochem. 2022;188:1–11. doi: 10.1016/j.plaphy.2022.07.026. PubMed DOI
Shi G., Liu H., Zhou D., Zhou H., Fan G., Chen W., Li J., Lou L., Gao Y. Sulfur reduces the root-to-shoot translocation of arsenic and cadmium by regulating their vacuolar sequestration in wheat (Triticum aestivum L.) Front. Plant Sci. 2022;13:1032681. doi: 10.3389/fpls.2022.1032681. PubMed DOI PMC
Pavlík M., Pavlíková D., Staszková L., Neuberg M., Kaliszová R., Száková J., Tlustoš P. The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotoxicol. Environ. Saf. 2010;73:1309–1313. doi: 10.1016/j.ecoenv.2010.07.008. PubMed DOI
Pathare V., Srivastava S., Suprasanna P. Evaluation of effects of arsenic on carbon, nitrogen, and sulfur metabolism in two contrasting varieties of Brassica juncea. Acta Physiol. Plant. 2013;35:3377–3389. doi: 10.1007/s11738-013-1370-2. DOI
Okunev R.V. Free amino acid accumulation in soil and tomato plants (Solanum lycopersicum L.) associated with arsenic stress. Water Air Soil Pollut. 2019;230:253. doi: 10.1007/s11270-019-4309-4. DOI
Kumar N., Gautam A., Dubey A.K., Ranjan R., Pandey A., Kumari B., Singh G., Mandotra S., Chauhan P.S., Srikrishna S., et al. GABA mediated reduction of arsenite toxicity in rice seedling through modulation of fatty acids, stress responsive amino acids and polyamines biosynthesis. Ecotox. Environ. Safe. 2019;173:15–27. doi: 10.1016/j.ecoenv.2019.02.017. PubMed DOI
Praveen A., Pandey A., Gupta M. Protective role of nitric oxide on nitrogen-thiol metabolism and amino acids profiling during arsenic exposure in Oryza sativa L. Ecotoxicology. 2020;29:825–836. doi: 10.1007/s10646-020-02250-z. PubMed DOI
Finnegan P.M., Chen W. Arsenic toxicity: The effects on plant metabolism. Front. Physiol. 2012;3:182. doi: 10.3389/fphys.2012.00182. PubMed DOI PMC
Kruse J., Hansch R., Mendel R.R., Rennenberg H. The role of root nitrate reduction in the systemic control of biomass partitioning between leaves and roots in accordance to the C/N-status of tobacco plants. Plant Soil. 2010;32:387–403. doi: 10.1007/s11104-010-0305-6. DOI
Zemanová V., Pavlík M., Pavlíková D., Tlustoš P. The significance of methionine, histidine and tryptophan in plant responses and adaptation to cadmium stress. Plant Soil Environ. 2014;60:426–432. doi: 10.17221/544/2014-PSE. DOI
Zemanová V., Popov M., Pavlíková D., Kotrba P., Hnilička F., Česká J., Pavlík M. Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator Pteris cretica (L.) var. Albo-lineata. BMC Plant Biol. 2020;20:1–10. doi: 10.1186/s12870-020-2325-6. PubMed DOI PMC
Kofroňová M., Hrdinová A., Mašková P., Soudek P., Tremlová J., Pinkas D., Lipavská H. Strong antioxidant capacity of horseradish hairy root cultures under arsenic stress indicates the possible use of Armoracia rusticana plants for phytoremediation. Ecotox. Environ. Safe. 2019;174:295–304. doi: 10.1016/j.ecoenv.2019.02.028. PubMed DOI
Hu L., Fan H., Wu D., Liao Y., Shen F., Liu W., Huang R., Zhang B., Wang X. Effects of selenium on antioxidant enzyme activity and bioaccessibility of arsenic in arsenic-stressed radish. Ecotox. Environ. Safe. 2020;200:110768. doi: 10.1016/j.ecoenv.2020.110768. PubMed DOI
Smirnoff N. The function and metabolism of ascorbic acid in plants. Ann. Bot. 1996;78:661–669. doi: 10.1006/anbo.1996.0175. DOI
Saleem M.H., Mfarrej M.F.B., Alatawi A., Mumtaz S., Imran M., Ashraf M.A., Rizwan M., Usman K., Ahmad P., Ali S. Silicon enhances morpho-physio-biochemical responses in arsenic stressed spinach (Spinacia oleracea L.) by minimizing its uptake. J. Plant Growth Regul. :1–20. doi: 10.1007/s00344-022-10681-7. DOI
Horbowicz M., Kosson R., Sempruch C., Debski H., Koczkodaj D. Effect of methyl jasmonate vapors on level of anthocyanins, biogenic amines and decarboxylases activity in seedlings of chosen vegetable species. Acta Sci. Pol.-Hortorum. Cult. 2014;13:3–15.
Marconi S., Beni C., Ciampa A., Diana G., Neri U., Aromolo R., Sequi P., Valentini M. Arsenic contamination in radish tuber investigated by means of MRI and ICO OES. J. Food Qual. 2010;33:529–543. doi: 10.1111/j.1745-4557.2010.00329.x. DOI
Nazir A., Rafique F., Ahmed K., Khan S.A., Khan N., Akbar M., Zafar M. Evaluation of heavy metals effects on morpho-anatomical alterations of wheat (Triticum aestivum L.) seedlings. Microsc. Res. Tech. 2021;84:2517–2529. doi: 10.1002/jemt.23801. PubMed DOI
Prerostova S., Dobrev P.I., Knirsch V., Jarosova J., Gaudinova A., Zupkova B., Prášil I.T., Janda T., Brzobohatý B., Skalák J., et al. Light quality and intensity modulate cold acclimation in Arabidopsis. Int. J. Mol. Sci. 2021;22:2736. doi: 10.3390/ijms22052736. PubMed DOI PMC
Zemanová V., Pavlík M., Pavlíková D. Cadmium toxicity induced contrasting patterns of concentrations of free sarcosine, specific amino acids and selected microelements in two Noccaea species. PLoS ONE. 2017;12:e0177963. doi: 10.1371/journal.pone.0177963. PubMed DOI PMC
Pavlík M., Pavlíková D., Zemanová V., Hnilička F., Urbanová V., Száková J. Trace elements present in airborne particulate matter–Stressors of plant metabolism. Ecotox. Environ. Safe. 2012;79:101–107. doi: 10.1016/j.ecoenv.2011.12.009. PubMed DOI
Kofroňová M., Hrdinová A., Mašková P., Tremlová J., Soudek P., Petrová P., Pinkas D., Lipavská H. Multi-component antioxidative system and robust carbohydrate status, the essence of plant arsenic tolerance. Antioxidants. 2020;9:283. doi: 10.3390/antiox9040283. PubMed DOI PMC
Abdel-Aal E.-S.M., Hucl P. A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem. 1999;76:350–354. doi: 10.1094/CCHEM.1999.76.3.350. DOI