Accumulation of Toxic Arsenic by Cherry Radish Tuber (Raphanus sativus var. sativus Pers.) and Its Physiological, Metabolic and Anatomical Stress Responses

. 2023 Mar 10 ; 12 (6) : . [epub] 20230310

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36986945

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000845 Ministry of Education, Youth and Sports from the European Regional Development Fund-Project "Centre for the investigation of synthesis and transformation of nutritional substances in the food chain in interaction with potentially harmful substances of ant

In a pot experiment, cherry radish (Raphanus sativus var. sativus Pers. 'Viola') was cultivated under two levels of As soil contamination-20 and 100 mg/kg. The increasing As content in tubers with increasing soil contamination led to changes in free amino acids (AAs) and phytohormone metabolism and antioxidative metabolites. Changes were mainly observed under conditions of high As contamination (As100). The content of indole-3-acetic acid in tubers varied under different levels of As stress, but As100 contamination led to an increase in its bacterial precursor indole-3-acetamide. A decrease in cis-zeatin-9-riboside-5'-monophosphate content and an increase in jasmonic acid content were found in this treatment. The free AA content in tubers was also reduced. The main free AAs were determined to be transport AAs (glutamate-Glu, aspartate, glutamine-Gln, asparagine) with the main portion being Gln. The Glu/Gln ratio-a significant indicator of primary N assimilation in plants-decreased under the As100 treatment condition. A decrease in antioxidative metabolite content-namely that of ascorbic acid and anthocyanins-was observed in this experiment. A decline in anthocyanin content is related to a decrease in aromatic AA content which is crucial for secondary metabolite production. The changes in tubers caused by As contamination were reflected in anatomical changes in the radish tubers and roots.

Zobrazit více v PubMed

Eisler R. Eisler’s Encyclopedia of Environmentally Hazardous Priority Chemicals. Elsevier; Amsterdam, The Netherlands: 2007.

Paltseva A., Cheng Z., Deeb M., Groffman P.M., Shaw R.K., Maddaloni M. Accumulation of arsenic and lead in garden-grown vegetables: Factors and mitigation strategies. Sci. Total Environ. 2018;640:273–283. doi: 10.1016/j.scitotenv.2018.05.296. PubMed DOI

Abbas G., Murtaza B., Bibi I., Shahid M., Niazi N.K., Khan M.I., Amjad M., Hussain M. Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. Int. J. Environ. Res. Public Health. 2018;15:59. doi: 10.3390/ijerph15010059. PubMed DOI PMC

Warming M., Hansen M.G., Holm P.E., Magid J., Hansen T.H., Trapp S. Does intake of trace elements through urban gardening in Copenhagen pose a risk to human health? Environ. Pollut. 2015;202:17–23. doi: 10.1016/j.envpol.2015.03.011. PubMed DOI

Tremlová J., Sehnal M., Száková J., Goessler W., Steiner O., Najmanová J., Horáková T., Tlustoš P. A profile of arsenic species in different vegetables growing in arsenic-contaminated soils. Arch. Agron. Soil Sci. 2017;63:918–927. doi: 10.1080/03650340.2016.1242721. DOI

Armendariz A.L., Talano M.A., Travaglia C., Reinoso H., Oller A.L.W., Agostini E. Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiol. Biochem. 2016;98:119–127. doi: 10.1016/j.plaphy.2015.11.021. PubMed DOI

Riyazuddin R., Nisha N., Ejaz B., Khan M.I.R., Kumar M., Ramteke P.W., Gupta R. A Comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules. 2022;12:43. doi: 10.3390/biom12010043. PubMed DOI PMC

Zulfiqar F., Ashraf M. Antioxidants as modulators of arsenic-induced oxidative stress tolerance in plants: An overview. J. Hazard. Mater. 2022;427:127891. doi: 10.1016/j.jhazmat.2021.127891. PubMed DOI

Ranjan A., Gautam S., Michael R., Shukla T., Trivedi P.K. Arsenic-induced galactinol synthase1 gene, AtGolS1, provides arsenic stress tolerance in Arabidopsis thaliana. Environ. Exp. Bot. 2023;207:105217. doi: 10.1016/j.envexpbot.2023.105217. DOI

Pickering I.J., Prince R.C., George M.J., Smith R.D., George G.N., Salt D.E. Reduction and coordination of arsenic in Indian mustard. Plant Physiol. 2000;122:1171–1177. doi: 10.1104/pp.122.4.1171. PubMed DOI PMC

Cao X., Ma L.Q. Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environ. Pollut. 2004;132:435–442. doi: 10.1016/j.envpol.2004.05.019. PubMed DOI

Liu W.-J., Wood B.A., Raab A., McGrath S.P., Zhao F.-J., Feldmann J. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. Plant Physiol. 2010;152:2211–2221. doi: 10.1104/pp.109.150862. PubMed DOI PMC

Smith E., Juhasz A.L., Weber J. Arsenic uptake and speciation in vegetables grown under greenhouse conditions. Environ. Geochem. Health. 2009;31:125–132. doi: 10.1007/s10653-008-9242-1. PubMed DOI

Zemanová V., Pavlíková D., Hnilička F., Pavlík M. Arsenic toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. Plants. 2021;10:2009. doi: 10.3390/plants10102009. PubMed DOI PMC

Martínez-Castillo J.I., Saldana-Robles A., Ozuna C. Arsenic stress in plants: A metabolomic perspective. Plant Stress. 2022;3:100055. doi: 10.1016/j.stress.2022.100055. DOI

Farooq M.A., Islam F., Ali B., Najeeb U., Mao B., Gill R.A., Yan G., Siddique K.H.M., Zhou W. Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environ. Exp. Bot. 2016;132:42–52. doi: 10.1016/j.envexpbot.2016.08.004. DOI

Zhang M., Lv D., Ge P., Bian Y., Chen G., Zhu G., Li X., Yan Y. Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.) J. Proteom. 2014;109:290–308. doi: 10.1016/j.jprot.2014.07.010. PubMed DOI

Zemanová V., Pavlík M., Kyjaková P., Pavlíková D. Fatty acid profiles of ecotypes of hyperaccumulator Noccaea caerulescens growing under cadmium stress. J. Plant Physiol. 2015;180:27–34. doi: 10.1016/j.jplph.2015.02.012. PubMed DOI

Pavlíková D., Zemanová V., Pavlík M., Dobrev P.I., Hnilička F., Motyka V. Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress. PLoS ONE. 2020;15:e0233055. doi: 10.1371/journal.pone.0233055. PubMed DOI PMC

Piacentini D., Rovere F.D., Sofo A., Fattorini L., Falasca G., Altamura M.M. Nitric oxide cooperates with auxin to mitigate the alterations in the root system caused by cadmium and arsenic. Front. Plant Sci. 2020;11:1182. doi: 10.3389/fpls.2020.01182. PubMed DOI PMC

Ćosić T., Motyka V., Raspor M., Sajid S., Devrnja N., Dobrev P.I., Ninković S. Comprehensive phytohormone profiling of kohlrabi during in vitro growth and regeneration: The interplay with cytokinin and sucrose. Life. 2022;12:1585. doi: 10.3390/life12101585. PubMed DOI PMC

Islam E., Khan M.T., Irem S. Biochemical mechanisms of signaling: Perspectives in plants under arsenic stress. Ecotox. Environ. Safe. 2015;114:126–133. doi: 10.1016/j.ecoenv.2015.01.017. PubMed DOI

Bano K., Kumar B., Alyemeni M.N., Ahmad P. Protective mechanisms of sulfur against arsenic phytotoxicity in Brassica napus by regulating thiol biosynthesis, sulfur-assimilation, photosynthesis, and antioxidant response. Plant Physiol. Biochem. 2022;188:1–11. doi: 10.1016/j.plaphy.2022.07.026. PubMed DOI

Shi G., Liu H., Zhou D., Zhou H., Fan G., Chen W., Li J., Lou L., Gao Y. Sulfur reduces the root-to-shoot translocation of arsenic and cadmium by regulating their vacuolar sequestration in wheat (Triticum aestivum L.) Front. Plant Sci. 2022;13:1032681. doi: 10.3389/fpls.2022.1032681. PubMed DOI PMC

Pavlík M., Pavlíková D., Staszková L., Neuberg M., Kaliszová R., Száková J., Tlustoš P. The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotoxicol. Environ. Saf. 2010;73:1309–1313. doi: 10.1016/j.ecoenv.2010.07.008. PubMed DOI

Pathare V., Srivastava S., Suprasanna P. Evaluation of effects of arsenic on carbon, nitrogen, and sulfur metabolism in two contrasting varieties of Brassica juncea. Acta Physiol. Plant. 2013;35:3377–3389. doi: 10.1007/s11738-013-1370-2. DOI

Okunev R.V. Free amino acid accumulation in soil and tomato plants (Solanum lycopersicum L.) associated with arsenic stress. Water Air Soil Pollut. 2019;230:253. doi: 10.1007/s11270-019-4309-4. DOI

Kumar N., Gautam A., Dubey A.K., Ranjan R., Pandey A., Kumari B., Singh G., Mandotra S., Chauhan P.S., Srikrishna S., et al. GABA mediated reduction of arsenite toxicity in rice seedling through modulation of fatty acids, stress responsive amino acids and polyamines biosynthesis. Ecotox. Environ. Safe. 2019;173:15–27. doi: 10.1016/j.ecoenv.2019.02.017. PubMed DOI

Praveen A., Pandey A., Gupta M. Protective role of nitric oxide on nitrogen-thiol metabolism and amino acids profiling during arsenic exposure in Oryza sativa L. Ecotoxicology. 2020;29:825–836. doi: 10.1007/s10646-020-02250-z. PubMed DOI

Finnegan P.M., Chen W. Arsenic toxicity: The effects on plant metabolism. Front. Physiol. 2012;3:182. doi: 10.3389/fphys.2012.00182. PubMed DOI PMC

Kruse J., Hansch R., Mendel R.R., Rennenberg H. The role of root nitrate reduction in the systemic control of biomass partitioning between leaves and roots in accordance to the C/N-status of tobacco plants. Plant Soil. 2010;32:387–403. doi: 10.1007/s11104-010-0305-6. DOI

Zemanová V., Pavlík M., Pavlíková D., Tlustoš P. The significance of methionine, histidine and tryptophan in plant responses and adaptation to cadmium stress. Plant Soil Environ. 2014;60:426–432. doi: 10.17221/544/2014-PSE. DOI

Zemanová V., Popov M., Pavlíková D., Kotrba P., Hnilička F., Česká J., Pavlík M. Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator Pteris cretica (L.) var. Albo-lineata. BMC Plant Biol. 2020;20:1–10. doi: 10.1186/s12870-020-2325-6. PubMed DOI PMC

Kofroňová M., Hrdinová A., Mašková P., Soudek P., Tremlová J., Pinkas D., Lipavská H. Strong antioxidant capacity of horseradish hairy root cultures under arsenic stress indicates the possible use of Armoracia rusticana plants for phytoremediation. Ecotox. Environ. Safe. 2019;174:295–304. doi: 10.1016/j.ecoenv.2019.02.028. PubMed DOI

Hu L., Fan H., Wu D., Liao Y., Shen F., Liu W., Huang R., Zhang B., Wang X. Effects of selenium on antioxidant enzyme activity and bioaccessibility of arsenic in arsenic-stressed radish. Ecotox. Environ. Safe. 2020;200:110768. doi: 10.1016/j.ecoenv.2020.110768. PubMed DOI

Smirnoff N. The function and metabolism of ascorbic acid in plants. Ann. Bot. 1996;78:661–669. doi: 10.1006/anbo.1996.0175. DOI

Saleem M.H., Mfarrej M.F.B., Alatawi A., Mumtaz S., Imran M., Ashraf M.A., Rizwan M., Usman K., Ahmad P., Ali S. Silicon enhances morpho-physio-biochemical responses in arsenic stressed spinach (Spinacia oleracea L.) by minimizing its uptake. J. Plant Growth Regul. :1–20. doi: 10.1007/s00344-022-10681-7. DOI

Horbowicz M., Kosson R., Sempruch C., Debski H., Koczkodaj D. Effect of methyl jasmonate vapors on level of anthocyanins, biogenic amines and decarboxylases activity in seedlings of chosen vegetable species. Acta Sci. Pol.-Hortorum. Cult. 2014;13:3–15.

Marconi S., Beni C., Ciampa A., Diana G., Neri U., Aromolo R., Sequi P., Valentini M. Arsenic contamination in radish tuber investigated by means of MRI and ICO OES. J. Food Qual. 2010;33:529–543. doi: 10.1111/j.1745-4557.2010.00329.x. DOI

Nazir A., Rafique F., Ahmed K., Khan S.A., Khan N., Akbar M., Zafar M. Evaluation of heavy metals effects on morpho-anatomical alterations of wheat (Triticum aestivum L.) seedlings. Microsc. Res. Tech. 2021;84:2517–2529. doi: 10.1002/jemt.23801. PubMed DOI

Prerostova S., Dobrev P.I., Knirsch V., Jarosova J., Gaudinova A., Zupkova B., Prášil I.T., Janda T., Brzobohatý B., Skalák J., et al. Light quality and intensity modulate cold acclimation in Arabidopsis. Int. J. Mol. Sci. 2021;22:2736. doi: 10.3390/ijms22052736. PubMed DOI PMC

Zemanová V., Pavlík M., Pavlíková D. Cadmium toxicity induced contrasting patterns of concentrations of free sarcosine, specific amino acids and selected microelements in two Noccaea species. PLoS ONE. 2017;12:e0177963. doi: 10.1371/journal.pone.0177963. PubMed DOI PMC

Pavlík M., Pavlíková D., Zemanová V., Hnilička F., Urbanová V., Száková J. Trace elements present in airborne particulate matter–Stressors of plant metabolism. Ecotox. Environ. Safe. 2012;79:101–107. doi: 10.1016/j.ecoenv.2011.12.009. PubMed DOI

Kofroňová M., Hrdinová A., Mašková P., Tremlová J., Soudek P., Petrová P., Pinkas D., Lipavská H. Multi-component antioxidative system and robust carbohydrate status, the essence of plant arsenic tolerance. Antioxidants. 2020;9:283. doi: 10.3390/antiox9040283. PubMed DOI PMC

Abdel-Aal E.-S.M., Hucl P. A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem. 1999;76:350–354. doi: 10.1094/CCHEM.1999.76.3.350. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...