Changes in the photosynthetic response of lettuce exposed to toxic element multicontamination under hydroponic conditions

. 2023 ; 61 (3) : 390-397. [epub] 20230926

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39651361

The effect of toxic element multicontamination on photosynthetic responses was observed in a greenhouse hydroponic culture of lettuce plants (Lactuca sativa var. capitata). The experiment focused only on the combined effect of selected toxic elements without the influence of soil, due to the hydroponic conditions. Pre-cultivated (six-true-leaf stage) plants were grown in control and contaminated hydroponic culture for 14 d. The mix of toxic elements (As, Cd, Pb, and Zn) in the contaminated solution corresponded to the water-soluble fraction of soil from the anthropogenically contaminated Litavka River area, Czech Republic. The plant response was measured by determining the toxic element contents, dry biomass, and gas-exchange parameters. Lettuce accumulated toxic elements predominantly in the roots, with low translocation to the leaves. The uptake of toxic elements harmed photosynthesis and caused a decrease in net photosynthetic rate, transpiration rate, and stomatal conductance. Consequently, the whole dry biomass of the plants decreased. The results show that contamination in hydroponic conditions had an irreversible effect on plant fitness due to direct contact between the roots and contaminated solutions.

Zobrazit více v PubMed

Akhter M.F., Omelon C.R., Gordon R.A. et al.: Localization and chemical speciation of cadmium in the roots of barley and lettuce. – Environ. Exp. Bot. 100: 10-19, 2014. 10.1016/j.envexpbot.2013.12.005 DOI

Antoniadis V., Shaheen S.M., Boersch J. et al.: Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. – J. Environ. Manage. 186: 192-200, 2017. 10.1016/j.jenvman.2016.04.036 PubMed DOI

Antonkiewicz J., Jasiewicz C., Koncewicz-Baran M., Bączek-Kwinta R.: Determination of lithium bioretention by maize under hydroponic conditions. – Arch. Environ. Prot. 43: 94-104, 2017. 10.1515/aep-2017-0036 DOI

Bidar G., Pelfrêne A., Schwartz C. et al.: Urban kitchen gardens: Effect of the soil contamination and parameters on the trace element accumulation in vegetables – A review. – Sci. Total Environ. 738: 139569, 2020. 10.1016/j.scitotenv.2020.139569 PubMed DOI

Boechat C.L., Pistóia V.C., Gianelo C., Camargo F.A.O.: Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state, Brazil. – Environ. Sci. Pollut. R. 23: 2371-2380, 2016. 10.1007/s11356-015-5342-5 PubMed DOI

Brengi S.H.M., Abouelsaad I.A.A.: The combined use of beneficial soil microorganisms enhanced the growth and efficiently reduced lead content in leaves of lettuce (Lactuca sativa L.) plant under lead stress. – Alex. J. Agric. Sci. 64: 41-51, 2019. 10.21608/alexja.2019.41854 DOI

Burachevskaya M., Minkina T., Fedorenko A. et al.: Accumulation, translocation, and toxicity of arsenic in barley grown in contaminated soil. – Plant Soil 467: 91-106, 2021. 10.1007/s11104-021-05067-9 DOI

Corradini F., Correa A., Moyano M.S. et al.: Nitrate, arsenic, cadmium, and lead concentrations in leafy vegetables: expected average values for productive regions of Chile. – Arch. Agron. Soil Sci. 64: 299-317, 2018. 10.1080/03650340.2017.1346790 DOI

Dias M.C., Monteiro C., Moutinho-Pereira J. et al.: Cadmium toxicity affects photosynthesis and plant growth at different levels. – Acta Physiol. Plant. 35: 1281-1289, 2013. 10.1007/s11738-012-1167-8 DOI

Ejaz U., Khan S.M., Khalid N. et al.: Detoxifying the heavy metals: a multipronged study of tolerance strategies against heavy metals toxicity in plants. – Front. Plant Sci. 14: 1154571, 2023. 10.3389/fpls.2023.1154571 PubMed DOI PMC

Fahr M., Laplaze L., Bendaou N. et al.: Effect of lead on root growth. – Front. Plant Sci. 4: 175, 2013. 10.3389/fpls.2013.00175 PubMed DOI PMC

Fattahi B., Arzani K., Souri M.K., Barzegar M.: Morphophysiological and phytochemical responses to cadmium and lead stress in coriander (Coriandrum sativum L.). – Ind. Crop. Prod. 171: 113979, 2021. 10.1016/j.indcrop.2021.113979 DOI

Gao F., Zhang X., Zhang J. et al.: Zinc oxide nanoparticles improve lettuce (Lactuca sativa L.) plant tolerance to cadmium by stimulating antioxidant defense, enhancing lignin content and reducing the metal accumulation and translocation. – Front. Plant Sci. 13: 1015745, 2022. 10.3389/fpls.2022.1015745 PubMed DOI PMC

Genc Y., Huang C.Y., Langridge P.: A study of the role of root morphological traits in growth of barley in zinc-deficient soil. – J. Exp. Bot. 58: 2775-2784, 2007. 10.1093/jxb/erm142 PubMed DOI

Grygar T.M., Faměra M., Hošek M. et al.: Uptake of Cd, Pb, U, and Zn by plants in floodplain pollution hotspots contributes to secondary contamination. – Environ. Sci. Pollut. R. 28: 51183-51198, 2021. 10.1007/s11356-021-14331-5 PubMed DOI

Gupta N., Yadav K.K., Kumar V. et al.: Evaluating heavy metals contamination in soil and vegetables in the region of North India: Levels, transfer and potential human health risk analysis. – Environ. Toxicol. Pharmacol. 82: 103563, 2021. 10.1016/j.etap.2020.103563 PubMed DOI

Gusman G.S., Oliveira J.A., Farnese F.S., Cambraia J.: Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants. – Acta Physiol. Plant. 35: 1201-1209, 2013. 10.1007/s11738-012-1159-8 DOI

Hattab S., Dridi B., Chouba L. et al.: Photosynthesis and growth responses of pea Pisum sativum L. under heavy metals stress. – J. Environ. Sci. 21: 1552-1556, 2009. 10.1016/S1001-0742(08)62454-7 PubMed DOI

He J., Ren Y.: [Effects of cadmium on seedling growth and photosynthesis characteristics of lettuce (Lactuca sativa L.).] – Southwest China J. Agric. Sci. 22: 922-926, 2009. [In Chinese]

Hoagland D.R., Arnon D.I.: The Water-Culture Method for Growing Plants without Soil. California Agriculture Experiment Station Circular 347. Pp. 32. University of California, Berkeley: 1950. https://archive.org/details/watercultureme3450hoag/mode/2up

Chen X., Tao H., Wu Y., Xu X.: Effects of cadmium on metabolism of photosynthetic pigment and photosynthetic system in Lactuca sativa L. revealed by physiological and proteomics analysis. – Sci. Hortic.-Amsterdam 305: 111371, 2022. 10.1016/j.scienta.2022.111371 DOI

Cheng S., Tam N.F.Y., Li R. et al.: Temporal variations in physiological responses of Kandelia obovata seedlings exposed to multiple heavy metals. – Mar. Pollut. Bull. 124: 1089-1095, 2017. 10.1016/j.marpolbul.2017.03.060 PubMed DOI

Ikkonen E., Kaznina N.: Physiological responses of lettuce (Lactuca sativa L.) to soil contamination with Pb. – Horticulturae 8: 951, 2022. 10.3390/horticulturae8100951 DOI

Jibril S.A., Hassan S.A., Ishak C.F., Wahab P.E.M.: Cadmium toxicity affects phytochemicals and nutrient elements composition of lettuce (Lactuca sativa L.). – Adv. Agric. 2017: 1236830, 2017. 10.1155/2017/1236830 DOI

Kaur N., Jhanji S.: Effect of soil cadmium on growth, photosynthesis and quality of Raphanus sativus and Lactuca sativa. – J. Environ. Biol. 37: 993-997, 2016. https://www.researchgate.net/publication/309251418_Effect_of_soil_cadmium_on_growth_photosynthesis_and_quality_of_Raphanus_sativus_and_Lactuca_sativa PubMed

Kebonye N.M., Eze P.N., John K. et al.: An in-depth human health risk assessment of potentially toxic elements in highly polluted riverine soils, Příbram (Czech Republic). – Environ. Geochem. Health 44: 369-385, 2022. 10.1007/s10653-021-00877-3 PubMed DOI

Khan A., Khan S., Khan M.A. et al.: Heavy metals effects on plant growth and dietary intake of trace metals in vegetables cultivated in contaminated soil. – Int. J. Environ. Sci. Technol. 16: 2295-2304, 2019. 10.1007/s13762-018-1849-x DOI

Kotková K., Nováková T., Tůmová Š. et al.: Migration of risk elements within the floodplain of the Litavka River, the Czech Republic. – Geomorphology 329: 46-57, 2019. 10.1016/j.geomorph.2018.12.010 DOI

Kummerová M., Zezulka Š., Kráľová K., Masarovičová E.: Effect of zinc and cadmium on physiological and production characteristics in Matricaria recutita. – Biol. Plantarum 54: 308-314, 2010. 10.1007/s10535-010-0053-8 DOI

Lavres J., Rabêlo F.H.S., Capaldi F.R. et al.: Investigation into the relationship among Cd bioaccumulation, nutrient composition, ultrastructural changes and antioxidative metabolism in lettuce genotypes under Cd stress. – Ecotox. Environ. Safe. 170: 578-589, 2019. 10.1016/j.ecoenv.2018.12.033 PubMed DOI

Lhotská M., Zemanová V., Pavlík M. et al.: Leaf fitness and stress response after the application of contaminated soil dust particulate matter. – Sci. Rep.-UK 12: 10046, 2022. 10.1038/s41598-022-13931-6 PubMed DOI PMC

Liščáková P., Nawaz A., Molnárová M.: Reciprocal effects of copper and zinc in plants. – Int. J. Environ. Sci. Technol. 19: 9297-9312, 2022. 10.1007/s13762-021-03854-6 DOI

Marschner P.: Marschner's Mineral Nutrition of Higher Plants. Third Edition. Pp. 3-47. Academic Press, London: 2012. 10.1016/B978-0-12-384905-2.00030-3 DOI

Massaccesi L., Meneghini C., Comaschi T. et al.: Ligands involved in Pb immobilization and transport in lettuce, radish, tomato and Italian ryegrass. – J. Plant Nutr. Soil Sci. 177: 766-774, 2014. 10.1002/jpln.201200581 DOI

Matraszek R., Hawrylak-Nowak B., Chwil S., Chwil M.: Macroelemental composition of cadmium stressed lettuce plants grown under conditions of intensive sulphur nutrition. – J. Environ. Manage. 180: 24-34, 2016. 10.1016/j.jenvman.2016.05.017 PubMed DOI

Meng Y., Zhang L., Yao Z.-L. et al.: Arsenic accumulation and physiological response of three leafy vegetable varieties to As stress. – Int. J. Environ. Res. Public Health 19: 2501, 2022. 10.3390/ijerph19052501 PubMed DOI PMC

Monnet F., Vaillant N., Vernay P. et al.: Relationship between PSII activity, CO2 fixation, and Zn, Mn and Mg contents of Lolium perenne under zinc stress. – J. Plant Physiol. 158: 1137-1144, 2001. 10.1078/S0176-1617(04)70140-6 DOI

Namdjoyan S., Kermanian H., Abolhasani Soorki A. et al.: Interactive effects of salicylic acid and nitric oxide in alleviating zinc toxicity of safflower (Carthamus tinctorius L.). – Ecotoxicology 26: 752-761, 2017. 10.1007/s10646-017-1806-3 PubMed DOI

Nazir A., Rafique F., Ahmed K. et al.: Evaluation of heavy metals effects on morpho-anatomical alterations of wheat (Triticum aestivum L.) seedlings. – Microsc. Res. Tech. 84: 2517-2529, 2021. 10.1002/jemt.23801 PubMed DOI

Novotná M., Mikeš O., Komprdová K.: Development and comparison of regression models for the uptake of metals into various field crops. – Environ. Pollut. 207: 357-364, 2015. 10.1016/j.envpol.2015.09.043 PubMed DOI

Pavlíková D., Pavlík M., Procházková D. et al.: Nitrogen metabolism and gas exchange parameters associated with zinc stress in tobacco expressing an ipt gene for cytokinin synthesis. – J. Plant Physiol. 171: 559-564, 2014. 10.1016/j.jplph.2013.11.016 PubMed DOI

Pavlíková D., Pavlík M., Zemanová V. et al.: Accumulation of toxic arsenic by cherry radish tuber (Raphanus sativus var. sativus Pers.) and its physiological, metabolic and anatomical stress responses. – Plants-Basel 12: 1257, 2023. 10.3390/plants12061257 PubMed DOI PMC

Pavlíková D., Zemanová V., Pavlík M. et al.: Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress. – PLoS ONE 15: e0233055, 2020. 10.1371/journal.pone.0233055 PubMed DOI PMC

Prasch C.M., Sonnewald U.: Signaling events in plants: stress factors in combination change the picture. – Environ. Exp. Bot. 114: 4-14, 2015. 10.1016/j.envexpbot.2014.06.020 DOI

Rabêlo F.H.S., Lux A., Rossi M.L. et al.: Adequate S supply reduces the damage of high Cd exposure in roots and increases N, S and Mn uptake by Massai grass grown in hydroponics. – Environ. Exp. Bot. 148: 35-46, 2018. 10.1016/j.envexpbot.2018.01.005 DOI

Rai P.K., Lee S.S., Zhang M. et al.: Heavy metals in food crops: Health risks, fate, mechanisms, and management. – Environ. Int. 125: 365-385, 2019. 10.1016/j.envint.2019.01.067 PubMed DOI

Rivelli A.R., Puschenreiter M., De Maria S.: Assessment of cadmium uptake and nutrient content in sunflower plants grown under Cd stress. – Plant Soil Environ. 60: 80-86, 2014. 10.17221/520/2013-PSE DOI

Riyazuddin R., Nisha N., Ejaz B. et al.: A comprehensive review on the heavy metal toxicity and sequestration in plants. – Biomolecules 12: 43, 2022. 10.3390/biom12010043 PubMed DOI PMC

Rucińska-Sobkowiak R.: Water relations in plants subjected to heavy metal stresses. – Acta Physiol. Plant. 38: 257, 2016. 10.1007/s11738-016-2277-5 DOI

Sagardoy R., Vázquez S., Florez-Sarasa I.D. et al.: Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc. – New Phytol. 187: 145-158, 2010. 10.1111/j.1469-8137.2010.03241.x PubMed DOI

Saison C., Schwartz C., Morel J.-L.: Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd–Zn/Ca–Mg interactions. – Int. J. Phytoremediat. 6: 49-61, 2004. 10.1080/16226510490439981 PubMed DOI

Sanz-Saez A., Pérez-López U., del-Canto A. et al.: Changes in environmental CO2 concentration can modify Rhizobium-soybean specificity and condition plant fitness and productivity. – Environ. Exp. Bot. 162: 133-143, 2019. 10.1016/j.envexpbot.2019.01.013 DOI

Savvas D., Gruda N.: Application of soilless culture technologies in the modern greenhouse industry – A review. – Eur. J. Hortic. Sci. 83: 280-293, 2018. 10.17660/eJHS.2018/83.5.2 DOI

Shiyab S.: Effect of Pb on growth, chlorophyll and Pb content in two varieties of lettuce (Lactuca sativa L.). – Res. Crop. 14: 257-265, 2013.

Silva S., Pinto G., Santos C.: Low doses of Pb affected Lactuca sativa photosynthetic performance. – Photosyntetica 55: 50-57, 2017. 10.1007/s11099-016-0220-z DOI

Sofo A., Vitti A., Nuzzaci M. et al.: Correlation between hormonal homeostasis and morphogenic responses in Arabidopsis thaliana seedlings growing in a Cd/Cu/Zn multi-pollution context. – Physiol. Plantarum 149: 487-498, 2013. 10.1111/ppl.12050 PubMed DOI

Soran M.-L., Sîrb A.N., Lung I. et al.: A multi-method approach for impact assessment of some heavy metals on Lactuca sativa L. – Molecules 28: 759, 2023. 10.3390/molecules28020759 PubMed DOI PMC

Tang X., Pang Y., Ji P. et al.: Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.). – Ecotox. Environ. Safe. 125: 102-106, 2016. 10.1016/j.ecoenv.2015.11.033 PubMed DOI

Vaněk A., Ettler V., Grygar T. et al.: Combined chemical and mineralogical evidence for heavy metal binding in mining- and smelting-affected alluvial soils. – Pedosphere 18: 464-478, 2008. 10.1016/S1002-0160(08)60037-5 DOI

Wang Y., Yang R., Zheng J. et al.: Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). – Ecotox. Environ. Safe. 167: 10-19, 2019. 10.1016/j.ecoenv.2018.08.064 PubMed DOI

Wu H., Sui F., Duan H. et al.: Comparison of heavy metal speciation, transfer and their key influential factors in vegetable soils contaminated from industrial operation and organic fertilization. – J. Soils Sediments 22: 1735-1745, 2022. 10.1007/s11368-022-03187-y DOI

Yang Y., Chen W., Wang M. et al.: Evaluating the potential health risk of toxic trace elements in vegetables: Accounting for variations in soil factors. – Sci. Total Environ. 584-585: 942-949, 2017. 10.1016/j.scitotenv.2017.01.143 PubMed DOI

Zemanová V., Pavlíková D., Hnilička F., Pavlík M.: Arsenic toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. – Plants-Basel 10: 2009, 2021. 10.3390/plants10102009 PubMed DOI PMC

Zemanová V., Pavlíková D., Novák M. et al.: Arsenic-induced response in roots of arsenic-hyperaccumulator fern and soil enzymatic activity changes. – Plant Soil Environ. 68: 213-222, 2022. 10.17221/65/2022-PSE DOI

Zemanová V., Popov M., Pavlíková D. et al.: Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator (Pteris cretica L.) var. Albo-lineata. – BMC Plant Biol. 20: 130, 2020. 10.1186/s12870-020-2325-6 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...