Changes in the photosynthetic response of lettuce exposed to toxic element multicontamination under hydroponic conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39651361
PubMed Central
PMC11558601
DOI
10.32615/ps.2023.034
PII: PS61390
Knihovny.cz E-zdroje
- Klíčová slova
- solution, stress, toxic element, translocation factor, transpiration rate,
- Publikační typ
- časopisecké články MeSH
The effect of toxic element multicontamination on photosynthetic responses was observed in a greenhouse hydroponic culture of lettuce plants (Lactuca sativa var. capitata). The experiment focused only on the combined effect of selected toxic elements without the influence of soil, due to the hydroponic conditions. Pre-cultivated (six-true-leaf stage) plants were grown in control and contaminated hydroponic culture for 14 d. The mix of toxic elements (As, Cd, Pb, and Zn) in the contaminated solution corresponded to the water-soluble fraction of soil from the anthropogenically contaminated Litavka River area, Czech Republic. The plant response was measured by determining the toxic element contents, dry biomass, and gas-exchange parameters. Lettuce accumulated toxic elements predominantly in the roots, with low translocation to the leaves. The uptake of toxic elements harmed photosynthesis and caused a decrease in net photosynthetic rate, transpiration rate, and stomatal conductance. Consequently, the whole dry biomass of the plants decreased. The results show that contamination in hydroponic conditions had an irreversible effect on plant fitness due to direct contact between the roots and contaminated solutions.
Zobrazit více v PubMed
Akhter M.F., Omelon C.R., Gordon R.A. et al.: Localization and chemical speciation of cadmium in the roots of barley and lettuce. – Environ. Exp. Bot. 100: 10-19, 2014. 10.1016/j.envexpbot.2013.12.005 DOI
Antoniadis V., Shaheen S.M., Boersch J. et al.: Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. – J. Environ. Manage. 186: 192-200, 2017. 10.1016/j.jenvman.2016.04.036 PubMed DOI
Antonkiewicz J., Jasiewicz C., Koncewicz-Baran M., Bączek-Kwinta R.: Determination of lithium bioretention by maize under hydroponic conditions. – Arch. Environ. Prot. 43: 94-104, 2017. 10.1515/aep-2017-0036 DOI
Bidar G., Pelfrêne A., Schwartz C. et al.: Urban kitchen gardens: Effect of the soil contamination and parameters on the trace element accumulation in vegetables – A review. – Sci. Total Environ. 738: 139569, 2020. 10.1016/j.scitotenv.2020.139569 PubMed DOI
Boechat C.L., Pistóia V.C., Gianelo C., Camargo F.A.O.: Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state, Brazil. – Environ. Sci. Pollut. R. 23: 2371-2380, 2016. 10.1007/s11356-015-5342-5 PubMed DOI
Brengi S.H.M., Abouelsaad I.A.A.: The combined use of beneficial soil microorganisms enhanced the growth and efficiently reduced lead content in leaves of lettuce (Lactuca sativa L.) plant under lead stress. – Alex. J. Agric. Sci. 64: 41-51, 2019. 10.21608/alexja.2019.41854 DOI
Burachevskaya M., Minkina T., Fedorenko A. et al.: Accumulation, translocation, and toxicity of arsenic in barley grown in contaminated soil. – Plant Soil 467: 91-106, 2021. 10.1007/s11104-021-05067-9 DOI
Corradini F., Correa A., Moyano M.S. et al.: Nitrate, arsenic, cadmium, and lead concentrations in leafy vegetables: expected average values for productive regions of Chile. – Arch. Agron. Soil Sci. 64: 299-317, 2018. 10.1080/03650340.2017.1346790 DOI
Dias M.C., Monteiro C., Moutinho-Pereira J. et al.: Cadmium toxicity affects photosynthesis and plant growth at different levels. – Acta Physiol. Plant. 35: 1281-1289, 2013. 10.1007/s11738-012-1167-8 DOI
Ejaz U., Khan S.M., Khalid N. et al.: Detoxifying the heavy metals: a multipronged study of tolerance strategies against heavy metals toxicity in plants. – Front. Plant Sci. 14: 1154571, 2023. 10.3389/fpls.2023.1154571 PubMed DOI PMC
Fahr M., Laplaze L., Bendaou N. et al.: Effect of lead on root growth. – Front. Plant Sci. 4: 175, 2013. 10.3389/fpls.2013.00175 PubMed DOI PMC
Fattahi B., Arzani K., Souri M.K., Barzegar M.: Morphophysiological and phytochemical responses to cadmium and lead stress in coriander (Coriandrum sativum L.). – Ind. Crop. Prod. 171: 113979, 2021. 10.1016/j.indcrop.2021.113979 DOI
Gao F., Zhang X., Zhang J. et al.: Zinc oxide nanoparticles improve lettuce (Lactuca sativa L.) plant tolerance to cadmium by stimulating antioxidant defense, enhancing lignin content and reducing the metal accumulation and translocation. – Front. Plant Sci. 13: 1015745, 2022. 10.3389/fpls.2022.1015745 PubMed DOI PMC
Genc Y., Huang C.Y., Langridge P.: A study of the role of root morphological traits in growth of barley in zinc-deficient soil. – J. Exp. Bot. 58: 2775-2784, 2007. 10.1093/jxb/erm142 PubMed DOI
Grygar T.M., Faměra M., Hošek M. et al.: Uptake of Cd, Pb, U, and Zn by plants in floodplain pollution hotspots contributes to secondary contamination. – Environ. Sci. Pollut. R. 28: 51183-51198, 2021. 10.1007/s11356-021-14331-5 PubMed DOI
Gupta N., Yadav K.K., Kumar V. et al.: Evaluating heavy metals contamination in soil and vegetables in the region of North India: Levels, transfer and potential human health risk analysis. – Environ. Toxicol. Pharmacol. 82: 103563, 2021. 10.1016/j.etap.2020.103563 PubMed DOI
Gusman G.S., Oliveira J.A., Farnese F.S., Cambraia J.: Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants. – Acta Physiol. Plant. 35: 1201-1209, 2013. 10.1007/s11738-012-1159-8 DOI
Hattab S., Dridi B., Chouba L. et al.: Photosynthesis and growth responses of pea Pisum sativum L. under heavy metals stress. – J. Environ. Sci. 21: 1552-1556, 2009. 10.1016/S1001-0742(08)62454-7 PubMed DOI
He J., Ren Y.: [Effects of cadmium on seedling growth and photosynthesis characteristics of lettuce (Lactuca sativa L.).] – Southwest China J. Agric. Sci. 22: 922-926, 2009. [In Chinese]
Hoagland D.R., Arnon D.I.: The Water-Culture Method for Growing Plants without Soil. California Agriculture Experiment Station Circular 347. Pp. 32. University of California, Berkeley: 1950. https://archive.org/details/watercultureme3450hoag/mode/2up
Chen X., Tao H., Wu Y., Xu X.: Effects of cadmium on metabolism of photosynthetic pigment and photosynthetic system in Lactuca sativa L. revealed by physiological and proteomics analysis. – Sci. Hortic.-Amsterdam 305: 111371, 2022. 10.1016/j.scienta.2022.111371 DOI
Cheng S., Tam N.F.Y., Li R. et al.: Temporal variations in physiological responses of Kandelia obovata seedlings exposed to multiple heavy metals. – Mar. Pollut. Bull. 124: 1089-1095, 2017. 10.1016/j.marpolbul.2017.03.060 PubMed DOI
Ikkonen E., Kaznina N.: Physiological responses of lettuce (Lactuca sativa L.) to soil contamination with Pb. – Horticulturae 8: 951, 2022. 10.3390/horticulturae8100951 DOI
Jibril S.A., Hassan S.A., Ishak C.F., Wahab P.E.M.: Cadmium toxicity affects phytochemicals and nutrient elements composition of lettuce (Lactuca sativa L.). – Adv. Agric. 2017: 1236830, 2017. 10.1155/2017/1236830 DOI
Kaur N., Jhanji S.: Effect of soil cadmium on growth, photosynthesis and quality of Raphanus sativus and Lactuca sativa. – J. Environ. Biol. 37: 993-997, 2016. https://www.researchgate.net/publication/309251418_Effect_of_soil_cadmium_on_growth_photosynthesis_and_quality_of_Raphanus_sativus_and_Lactuca_sativa PubMed
Kebonye N.M., Eze P.N., John K. et al.: An in-depth human health risk assessment of potentially toxic elements in highly polluted riverine soils, Příbram (Czech Republic). – Environ. Geochem. Health 44: 369-385, 2022. 10.1007/s10653-021-00877-3 PubMed DOI
Khan A., Khan S., Khan M.A. et al.: Heavy metals effects on plant growth and dietary intake of trace metals in vegetables cultivated in contaminated soil. – Int. J. Environ. Sci. Technol. 16: 2295-2304, 2019. 10.1007/s13762-018-1849-x DOI
Kotková K., Nováková T., Tůmová Š. et al.: Migration of risk elements within the floodplain of the Litavka River, the Czech Republic. – Geomorphology 329: 46-57, 2019. 10.1016/j.geomorph.2018.12.010 DOI
Kummerová M., Zezulka Š., Kráľová K., Masarovičová E.: Effect of zinc and cadmium on physiological and production characteristics in Matricaria recutita. – Biol. Plantarum 54: 308-314, 2010. 10.1007/s10535-010-0053-8 DOI
Lavres J., Rabêlo F.H.S., Capaldi F.R. et al.: Investigation into the relationship among Cd bioaccumulation, nutrient composition, ultrastructural changes and antioxidative metabolism in lettuce genotypes under Cd stress. – Ecotox. Environ. Safe. 170: 578-589, 2019. 10.1016/j.ecoenv.2018.12.033 PubMed DOI
Lhotská M., Zemanová V., Pavlík M. et al.: Leaf fitness and stress response after the application of contaminated soil dust particulate matter. – Sci. Rep.-UK 12: 10046, 2022. 10.1038/s41598-022-13931-6 PubMed DOI PMC
Liščáková P., Nawaz A., Molnárová M.: Reciprocal effects of copper and zinc in plants. – Int. J. Environ. Sci. Technol. 19: 9297-9312, 2022. 10.1007/s13762-021-03854-6 DOI
Marschner P.: Marschner's Mineral Nutrition of Higher Plants. Third Edition. Pp. 3-47. Academic Press, London: 2012. 10.1016/B978-0-12-384905-2.00030-3 DOI
Massaccesi L., Meneghini C., Comaschi T. et al.: Ligands involved in Pb immobilization and transport in lettuce, radish, tomato and Italian ryegrass. – J. Plant Nutr. Soil Sci. 177: 766-774, 2014. 10.1002/jpln.201200581 DOI
Matraszek R., Hawrylak-Nowak B., Chwil S., Chwil M.: Macroelemental composition of cadmium stressed lettuce plants grown under conditions of intensive sulphur nutrition. – J. Environ. Manage. 180: 24-34, 2016. 10.1016/j.jenvman.2016.05.017 PubMed DOI
Meng Y., Zhang L., Yao Z.-L. et al.: Arsenic accumulation and physiological response of three leafy vegetable varieties to As stress. – Int. J. Environ. Res. Public Health 19: 2501, 2022. 10.3390/ijerph19052501 PubMed DOI PMC
Monnet F., Vaillant N., Vernay P. et al.: Relationship between PSII activity, CO2 fixation, and Zn, Mn and Mg contents of Lolium perenne under zinc stress. – J. Plant Physiol. 158: 1137-1144, 2001. 10.1078/S0176-1617(04)70140-6 DOI
Namdjoyan S., Kermanian H., Abolhasani Soorki A. et al.: Interactive effects of salicylic acid and nitric oxide in alleviating zinc toxicity of safflower (Carthamus tinctorius L.). – Ecotoxicology 26: 752-761, 2017. 10.1007/s10646-017-1806-3 PubMed DOI
Nazir A., Rafique F., Ahmed K. et al.: Evaluation of heavy metals effects on morpho-anatomical alterations of wheat (Triticum aestivum L.) seedlings. – Microsc. Res. Tech. 84: 2517-2529, 2021. 10.1002/jemt.23801 PubMed DOI
Novotná M., Mikeš O., Komprdová K.: Development and comparison of regression models for the uptake of metals into various field crops. – Environ. Pollut. 207: 357-364, 2015. 10.1016/j.envpol.2015.09.043 PubMed DOI
Pavlíková D., Pavlík M., Procházková D. et al.: Nitrogen metabolism and gas exchange parameters associated with zinc stress in tobacco expressing an ipt gene for cytokinin synthesis. – J. Plant Physiol. 171: 559-564, 2014. 10.1016/j.jplph.2013.11.016 PubMed DOI
Pavlíková D., Pavlík M., Zemanová V. et al.: Accumulation of toxic arsenic by cherry radish tuber (Raphanus sativus var. sativus Pers.) and its physiological, metabolic and anatomical stress responses. – Plants-Basel 12: 1257, 2023. 10.3390/plants12061257 PubMed DOI PMC
Pavlíková D., Zemanová V., Pavlík M. et al.: Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress. – PLoS ONE 15: e0233055, 2020. 10.1371/journal.pone.0233055 PubMed DOI PMC
Prasch C.M., Sonnewald U.: Signaling events in plants: stress factors in combination change the picture. – Environ. Exp. Bot. 114: 4-14, 2015. 10.1016/j.envexpbot.2014.06.020 DOI
Rabêlo F.H.S., Lux A., Rossi M.L. et al.: Adequate S supply reduces the damage of high Cd exposure in roots and increases N, S and Mn uptake by Massai grass grown in hydroponics. – Environ. Exp. Bot. 148: 35-46, 2018. 10.1016/j.envexpbot.2018.01.005 DOI
Rai P.K., Lee S.S., Zhang M. et al.: Heavy metals in food crops: Health risks, fate, mechanisms, and management. – Environ. Int. 125: 365-385, 2019. 10.1016/j.envint.2019.01.067 PubMed DOI
Rivelli A.R., Puschenreiter M., De Maria S.: Assessment of cadmium uptake and nutrient content in sunflower plants grown under Cd stress. – Plant Soil Environ. 60: 80-86, 2014. 10.17221/520/2013-PSE DOI
Riyazuddin R., Nisha N., Ejaz B. et al.: A comprehensive review on the heavy metal toxicity and sequestration in plants. – Biomolecules 12: 43, 2022. 10.3390/biom12010043 PubMed DOI PMC
Rucińska-Sobkowiak R.: Water relations in plants subjected to heavy metal stresses. – Acta Physiol. Plant. 38: 257, 2016. 10.1007/s11738-016-2277-5 DOI
Sagardoy R., Vázquez S., Florez-Sarasa I.D. et al.: Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc. – New Phytol. 187: 145-158, 2010. 10.1111/j.1469-8137.2010.03241.x PubMed DOI
Saison C., Schwartz C., Morel J.-L.: Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd–Zn/Ca–Mg interactions. – Int. J. Phytoremediat. 6: 49-61, 2004. 10.1080/16226510490439981 PubMed DOI
Sanz-Saez A., Pérez-López U., del-Canto A. et al.: Changes in environmental CO2 concentration can modify Rhizobium-soybean specificity and condition plant fitness and productivity. – Environ. Exp. Bot. 162: 133-143, 2019. 10.1016/j.envexpbot.2019.01.013 DOI
Savvas D., Gruda N.: Application of soilless culture technologies in the modern greenhouse industry – A review. – Eur. J. Hortic. Sci. 83: 280-293, 2018. 10.17660/eJHS.2018/83.5.2 DOI
Shiyab S.: Effect of Pb on growth, chlorophyll and Pb content in two varieties of lettuce (Lactuca sativa L.). – Res. Crop. 14: 257-265, 2013.
Silva S., Pinto G., Santos C.: Low doses of Pb affected Lactuca sativa photosynthetic performance. – Photosyntetica 55: 50-57, 2017. 10.1007/s11099-016-0220-z DOI
Sofo A., Vitti A., Nuzzaci M. et al.: Correlation between hormonal homeostasis and morphogenic responses in Arabidopsis thaliana seedlings growing in a Cd/Cu/Zn multi-pollution context. – Physiol. Plantarum 149: 487-498, 2013. 10.1111/ppl.12050 PubMed DOI
Soran M.-L., Sîrb A.N., Lung I. et al.: A multi-method approach for impact assessment of some heavy metals on Lactuca sativa L. – Molecules 28: 759, 2023. 10.3390/molecules28020759 PubMed DOI PMC
Tang X., Pang Y., Ji P. et al.: Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.). – Ecotox. Environ. Safe. 125: 102-106, 2016. 10.1016/j.ecoenv.2015.11.033 PubMed DOI
Vaněk A., Ettler V., Grygar T. et al.: Combined chemical and mineralogical evidence for heavy metal binding in mining- and smelting-affected alluvial soils. – Pedosphere 18: 464-478, 2008. 10.1016/S1002-0160(08)60037-5 DOI
Wang Y., Yang R., Zheng J. et al.: Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). – Ecotox. Environ. Safe. 167: 10-19, 2019. 10.1016/j.ecoenv.2018.08.064 PubMed DOI
Wu H., Sui F., Duan H. et al.: Comparison of heavy metal speciation, transfer and their key influential factors in vegetable soils contaminated from industrial operation and organic fertilization. – J. Soils Sediments 22: 1735-1745, 2022. 10.1007/s11368-022-03187-y DOI
Yang Y., Chen W., Wang M. et al.: Evaluating the potential health risk of toxic trace elements in vegetables: Accounting for variations in soil factors. – Sci. Total Environ. 584-585: 942-949, 2017. 10.1016/j.scitotenv.2017.01.143 PubMed DOI
Zemanová V., Pavlíková D., Hnilička F., Pavlík M.: Arsenic toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. – Plants-Basel 10: 2009, 2021. 10.3390/plants10102009 PubMed DOI PMC
Zemanová V., Pavlíková D., Novák M. et al.: Arsenic-induced response in roots of arsenic-hyperaccumulator fern and soil enzymatic activity changes. – Plant Soil Environ. 68: 213-222, 2022. 10.17221/65/2022-PSE DOI
Zemanová V., Popov M., Pavlíková D. et al.: Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator (Pteris cretica L.) var. Albo-lineata. – BMC Plant Biol. 20: 130, 2020. 10.1186/s12870-020-2325-6 PubMed DOI PMC