Leaf fitness and stress response after the application of contaminated soil dust particulate matter

. 2022 Jun 16 ; 12 (1) : 10046. [epub] 20220616

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35710561
Odkazy

PubMed 35710561
PubMed Central PMC9203739
DOI 10.1038/s41598-022-13931-6
PII: 10.1038/s41598-022-13931-6
Knihovny.cz E-zdroje

In this study, we observed the effect of the application of soil dust enriched with risk elements (Cd, Pb, As and Zn) to leaf surfaces of lettuce (Lactuca sativa var. capitata) while it was grown under hydroponic conditions. This study aimed to determine how low soil dust particulate matter (PM) doses affected the activity of or damaged the photosynthetic apparatus and how the uptake of risk elements was associated with both epigenetic changes (5-methylcytosine content, i.e., 5mC) and stress metabolism. During the study, we obtained many results pertaining to risk element contents and biochemical (total phenolic content (TPC), malondialdehyde (MDA) content and the amount of free amino acids (AAs)) and physiological (photosynthesis parameters: net photosynthetic rate, transpiration rate, intercellular CO2 concentration, stomatal conductance, instantaneous water-use efficiency, maximum quantum yield of PSII, chlorophyll and carotenoid contents, and leaf water potential (WP)) plant features. The results showed an increase in MDA and 5mC. However, the transpiration rate, WP and free AAs decreased. In conclusion, contamination by very low doses of soil dust PM had no direct or significant effect on plant fitness, as shown by the TPC and 5mC content, which indicates that plants can overcome the oxidative stress caused by the accumulation of risk elements. From the above, we propose the use of epigenetic changes as biomarkers of potential changes in the activation of plant metabolism under stress caused by environmental pollution.

Zobrazit více v PubMed

Pavlík M, et al. Trace elements present in airborne particulate matter—Stressors of plant metabolism. Ecotox. Environ. Safe. 2012;79:101–107. doi: 10.1016/j.ecoenv.2011.12.009. PubMed DOI

Gajbhiye T, Pandey SK, Kim K-H. Factors controlling the deposition of airborne metals on plant leaves in a subtropical industrial environment. Asian J. Atmos. Environ. 2016;10:162–167. doi: 10.5572/ajae.2016.10.3.162. DOI

Shahid M, et al. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2016;325:36–58. doi: 10.1016/j.jhazmat.2016.11.063. PubMed DOI

Luo X, Bing H, Luo Z, Wang Y, Jin L. Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review. Environ. Pollut. 2019;255:113138. doi: 10.1016/j.envpol.2019.113138. PubMed DOI

Salih Z, Aziz F. Heavy metals accumulation in leaves of five plant species as a bioindicator of steel factory pollution and their effects on pigment content. Pol. J. Environ. Stud. 2019;28:4351–4358. doi: 10.15244/pjoes/99304. DOI

Bender J, Weigel HJ. Changes in atmospheric chemistry and crop health: A review. Agron. Sustain. Dev. 2011;31:81–89. doi: 10.1051/agro/2010013. DOI

Prusty BAK, Mishra PC, Azeez PA. Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotox. Environ. Safe. 2005;60:228–235. doi: 10.1016/j.ecoenv.2003.12.013. PubMed DOI

Xiong T-T, et al. Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environ. Geochem. Health. 2014;36:897–909. doi: 10.1007/s10653-014-9607-6. PubMed DOI

Ram SS, et al. A review on air pollution monitoring and management using plants with special reference to foliar dust adsorption and physiological stress responses. Crit. Rev. Environ. Sci. Technol. 2015;45:2489–2522. doi: 10.1080/10643389.2015.1046775. DOI

Rai PK. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotox. Environ. Safe. 2016;129:120–136. doi: 10.1016/j.ecoenv.2016.03.012. PubMed DOI

Zhao Y, et al. Study on spectral response and estimation of grassland plants dust retention based on hyperspectral data. Remote Sens. 2020;12:2019. doi: 10.3390/rs12122019. DOI

Kuki KN, Oliva MA, Pereira EG. Iron ore industry imissions as a potential ecological risk factor for tropical coastal vegetation. J. Environ. Manage. 2008;42:111–121. PubMed

Schreck E, et al. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead. Sci. Total Environ. 2012;427–428:253–262. doi: 10.1016/j.scitotenv.2012.03.051. PubMed DOI

Hashem H. Cadmium toxicity induces lipid peroxidation and alters cytokinin content and antioxidant enzyme activities in soybean. Botany. 2014;92:1–7. doi: 10.1139/cjb-2013-0164. DOI

Turan V, et al. Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotox. Environ. Safe. 2018;161:409–419. doi: 10.1016/j.ecoenv.2018.05.082. PubMed DOI

Turan V, et al. Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil. Arch. Agron. Soil Sci. 2018;64:1053–1067. doi: 10.1080/03650340.2017.1410542. DOI

Cakmak I. Tansley review No. 111—Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000;146:185–205. doi: 10.1046/j.1469-8137.2000.00630.x. PubMed DOI

Küpper H, Parameswaran A, Leitenmaier B, Trtílek M, Šetlík I. Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator (Thlaspi caerulescens) New Phytol. 2007;175:655–674. doi: 10.1111/j.1469-8137.2007.02139.x. PubMed DOI

Legocka J, Sobieszczuk-Nowicka E, Wojtyla Ł, Samardakiewicz S. Lead-stress induced changes in the content of free, thylakoid- and chromatin-bound polyamines, photosynthetic parameters and ultrastructure in greening barley leaves. J. Plant Physiol. 2015;186–187:15–24. doi: 10.1016/j.jplph.2015.07.010. PubMed DOI

Li Y, Wang Y, Wang B, Wang Y, Yu W. The response of plant photosynthesis and stomatal conductance to fine particulate matter (PM2.5) based on leaf factors analyzing. J. Plant Biol. 2019;62:120–128. doi: 10.1007/s12374-018-0254-9. DOI

Prajapati SK, Tripathi BD. Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution. J. Environ. Qual. 2008;37:865–870. doi: 10.2134/jeq2006.0511. PubMed DOI

Sundar S, Naresh R. Modeling the effect of dust pollutants on plant biomass and their abatement from the near earth atmosphere. Model. Earth Syst. Environ. 2017;3:42. doi: 10.1007/s40808-017-0302-3. DOI

Arvin AA, Cheraghi S. Evaluation of dust effect on the quantitative and qualitative growth of sugarcane varieties CP57-614. Phys. Geog. Res. 2013;45:95–106.

Zia-Khan S, et al. Effect of dust deposition on stomatal conductance and leaf temperature of cotton in northwest China. Water. 2015;7:116–131. doi: 10.3390/w7010116. DOI

Chaturvedi RK, et al. Effect of dust load on the leaf attributes of the tree species growing along the roadside. Environ. Monit. Assess. 2013;185:383–391. doi: 10.1007/s10661-012-2560-x. PubMed DOI

Rai, P. Leaf dust deposition and its impact on biochemical aspect of some roadside plants in Aizawl, Mizoram, North-East India. Int. J. Environ. Sci.3, (2014).

Giri S, Shrivastava D, Deshmukh K, Dubey P. Effect of air pollution on chlorophyll content of leaves. Curr. Agric. Res. 2013;1:93–98. doi: 10.12944/CARJ.1.2.04. DOI

Bilen S, Bilen M, Turan V. Relationships between cement dust emissionsand soil properties. Pol. J. Environ. Stud. 2019;28:3089–3098. doi: 10.15244/pjoes/92521. DOI

Antonkiewicz J, Jasiewicz C, Koncewicz-Baran M, Bączek-Kwinta R. Determination of lithium bioretention by maize under hydroponic conditions. Arch. Environ. Prot. 2017;43:94–104. doi: 10.1515/aep-2017-0036. DOI

Public notice No. 153/2016. Public notice No. 153/2016 for the management of soil protection. Czech Ministry of the Environment, Prague, 2016 [In Czech]. (2016).

Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207:604–611. doi: 10.1007/s004250050524. PubMed DOI

Heath RL, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968;125:189–198. doi: 10.1016/0003-9861(68)90654-1. PubMed DOI

Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965;16:144–158.

Zemanová V, et al. Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator (Pteris cretica L.) var. Albo-lineata. BMC Plant Biol. 2020;20:130. doi: 10.1186/s12870-020-2325-6. PubMed DOI PMC

Pavlíková D, et al. Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp under arsenic stress. PLoS One. 2020;15:e0233055. doi: 10.1371/journal.pone.0233055. PubMed DOI PMC

Porra RJ, Thompson WA, Kriedemann PE. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta-Bioenerg. 1989;975:384–394. doi: 10.1016/S0005-2728(89)80347-0. DOI

Wellburn AR. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2. DOI

Maletsika PA, Nanos GD. Effects of particulate matter contamination on peach leaf physiological functions. Acta. Hortic. 2013;981:643–650. doi: 10.17660/ActaHortic.2013.981.103. DOI

Žalud P, Száková J, Sysalová J, Tlustoš P. Factors influencing uptake of contaminated particulate matter in leafy vegetables. Open Life Sci. 2012;7:519–530. doi: 10.2478/s11535-012-0029-0. DOI

Molins H, et al. Mutants impaired in vacuolar metal mobilization identify chloroplasts as a target for cadmium hypersensitivity in (Arabidopsis thaliana) Plant Cell Environ. 2013;36:804–817. doi: 10.1111/pce.12016. PubMed DOI

Yu B, et al. Phytoremediation potential of Youngia japonica (L.) DC: A newly discovered cadmium hyperaccumulator. Environ. Sci. Pollut. Res. 2021;28:6044–6057. doi: 10.1007/s11356-020-10853-6. PubMed DOI

Dziri S, Hosni K. Effects of cement dust on volatile oil constituents and antioxidative metabolism of Aleppo pine (Pinus halepensis) needles. Acta Physiol. Plant. 2012;34:1669–1678. doi: 10.1007/s11738-012-0962-6. DOI

Jakhar S, Mukherjee D. Chloroplast pigments, proteins, lipid peroxidation and activities of antioxidative enzymes during maturation and senescence of leaves and reproductive organs of (Cajanus cajan L.) Physiol. Mol. Biol. Plants. 2014;20:171–180. doi: 10.1007/s12298-013-0219-x. PubMed DOI PMC

Nam HG. The molecular genetic analysis of leaf senescence. Curr. Opin. Biotechnol. 1997;8:200–207. doi: 10.1016/S0958-1669(97)80103-6. PubMed DOI

Zemanová V, Pavlík M, Pavlíková D. Cadmium toxicity induced contrasting patterns of concentrations of free sarcosine, specific amino acids and selected microelements in two Noccaea species. PLoS One. 2017;12:e0177963. doi: 10.1371/journal.pone.0177963. PubMed DOI PMC

Cakmak I, Marschner H, Bangerth F. Effect of zinc nutritional status on growth, protein metabolism and levels of indole-3-acetic acid and other phytohormones in bean (Phaseolus vulgaris L.) J. Exp. Bot. 1989;40:405–412. doi: 10.1093/jxb/40.3.405. DOI

Choudhary M, Bailey LD, Grant CA. Effect of zinc on cadmium concentration in the tissue of durum wheat. Can. J. Plant Sci. 1994;74:549–552. doi: 10.4141/cjps94-099. DOI

Vesely T, Neuberg M, Trakal L, Szakova J, Tlustos P. Water lettuce Pistia stratiotes L. response to lead toxicity. Water Air Soil Pollut. 2012;223:1847–1859. doi: 10.1007/s11270-011-0989-0. DOI

Várallyay S, Bódi É, Garousi F, Veres S, Kovács B. Effect of arsenic on dry weight and relative chlorophyll content in greeningmaize and sunflower tissues. J. Microbiol. Biotechnol. Food Sci. 2015;4:167–169. doi: 10.15414/jmbfs.2015.4.special3.167-169. DOI

Gusman GS, Oliveira JA, Farnese FS, Cambraia J. Arsenate and arsenite: The toxic effects on photosynthesis and growth of lettuce plants. Acta Physiol. Plant. 2013;35:1201–1209. doi: 10.1007/s11738-012-1159-8. DOI

Zemanová V, Pavlíková D, Hnilička F, Pavlík M. Arsenic toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. Plants. 2021;10:2009. doi: 10.3390/plants10102009. PubMed DOI PMC

Cortleven A, et al. Cytokinin regulates the etioplast-chloroplast transition through the two-component signaling system and activation of chloroplast-related genes1. Plant Physiol. 2016;172:464–478. doi: 10.1104/pp.16.00640. PubMed DOI PMC

Kobayashi NI, et al. Leaf senescence in rice due to magnesium deficiency mediated defect in transpiration rate before sugar accumulation and chlorosis. Physiol. Plant. 2013;148:490–501. doi: 10.1111/j.1399-3054.2012.12003.x. PubMed DOI

Ciećko Z, Kalembasa S, Wyszkowski M, Rolka E. The magnesium content in plants in soil contaminated with cadmium. Pol. J. Environ. Stud. 2005;14:365–370.

Zemanová V, Pavlík M, Pavlíková D, Hnilička F, Vondráčková S. Responses to Cd stress in two Noccaea species (Noccaea praecox and (Noccaea caerulescens) originating from two contaminated sites in Mežica, Slovenia and Redlschlag, Austria. Arch. Environ. Contam. Toxicol. 2016;70:464–474. doi: 10.1007/s00244-015-0198-8. PubMed DOI

He M, et al. Alleviation of pericarp browning in harvested litchi fruit by synephrine hydrochloride in relation to membrane lipids metabolism. Postharvest. Biol. Technol. 2020;166:111223. doi: 10.1016/j.postharvbio.2020.111223. DOI

Pavlík M, Zemanová V, Pavlíková D, Kyjaková P, Hlavsa T. Regulation of odd-numbered fatty acid content plays an important part in the metabolism of the hyperaccumulator Noccaea spp. adapted to oxidative stress. J. Plant Physiol. 2017;208:94–101. doi: 10.1016/j.jplph.2016.09.014. PubMed DOI

Mano J. Reactive carbonyl species: Their production from lipid peroxides, action in environmental stress, and the detoxification mechanism. Plant Physiol. Biochem. 2012;59:90–97. doi: 10.1016/j.plaphy.2012.03.010. PubMed DOI

Zemanová V, Pavlík M, Kyjaková P, Pavlíková D. Fatty acid profiles of ecotypes of hyperaccumulator Noccaea caerulescens growing under cadmium stress. J. Plant Physiol. 2015;180:27–34. doi: 10.1016/j.jplph.2015.02.012. PubMed DOI

Wang Y, Yang R, Zheng J, Shen Z, Xu X. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.) Ecotox. Environ. Safe. 2019;167:10–19. doi: 10.1016/j.ecoenv.2018.08.064. PubMed DOI

Mithöfer A, Schulze B, Boland W. Biotic and heavy metal stress response in plants: Evidence for common signals. FEBS Lett. 2004;566:1–5. doi: 10.1016/j.febslet.2004.04.011. PubMed DOI

Harmatha J. Structural abundance and biological significance of lignans and related plant phenylpropanoids. Chem. Listy. 2005;99:622–632.

Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 1993;125:27–58. doi: 10.1111/j.1469-8137.1993.tb03863.x. PubMed DOI

Agati G, et al. Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiol. Biochem. 2013;72:35–45. doi: 10.1016/j.plaphy.2013.03.014. PubMed DOI

Anterola AM, Lewis NG. Trends in lignin modification: A comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry. 2002;61:221–294. doi: 10.1016/S0031-9422(02)00211-X. PubMed DOI

Iwase Y, Shiraya T, Takeno K. Flowering and dwarfism induced by DNA demethylation in Pharbitis nil. Physiol. Plant. 2010;139:118–127. doi: 10.1111/j.1399-3054.2009.01345.x. PubMed DOI

Brown JCL, De Decker MM, Fieldes MA. A comparative analysis of developmental profiles for DNA methylation in 5-azacytidine-induced early-flowering flax lines and their control. Plant Sci. 2008;175:217–225. doi: 10.1016/j.plantsci.2008.03.023. DOI

Yanez Barrientos E, Wrobel K, Lopez Torres A, Gutiérrez Corona F, Wrobel K. Application of reversed-phase high-performance liquid chromatography with fluorimetric detection for simultaneous assessment of global DNA and total RNA methylation in Lepidium sativum: Effect of plant exposure to Cd(II) and Se(IV) Anal. Bioanal. Chem. 2013;405:2397–2404. doi: 10.1007/s00216-013-6703-x. PubMed DOI

Anwar S, et al. Mitigation of drought stress and yield improvement in wheat by zinc foliar spray relates to enhanced water use efficiency and zinc contents. Int. J. Plant. Prod. 2021;15:377–389. doi: 10.1007/s42106-021-00136-6. DOI

Chaneva G, Parvanova P, Tzvetkova N, Uzunova A. Photosynthetic response of maize plants against cadmium and paraquat impact. Water Air Soil Pollut. 2010;208:287–293. doi: 10.1007/s11270-009-0166-x. DOI

Mensah E, Odai SN, Ofori E, Kyei-Baffo N. Influence of transpiration on cadmium (Cd) and lead (Pb) uptake by cabbage, carrots and lettuce from irrigation water in Ghana. Asian J. Agric. Res. 2008;2:56–60.

FuChun Z, et al. Effect of floating dust weather on leaf photosynthesis and water potential of grapes in Karakash River Basin. Chinese J. Plant Ecol. 2018;26:990–998.

Kaya C, et al. Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere. 2019;225:627–638. doi: 10.1016/j.chemosphere.2019.03.026. PubMed DOI

Kiseleva IS, Kaminskaya OA. Hormonal regulation of assimilate utilization in barley leaves in relation to the development of their source function. Russ. J. Plant Physiol. 2002;49:534–540. doi: 10.1023/A:1016324312244. DOI

Pavlíková D, et al. Glutamate kinase as a potential biomarker of heavy metal stress in plants. Ecotox. Environ. Safe. 2008;70:223–230. doi: 10.1016/j.ecoenv.2007.07.006. PubMed DOI

Battaglia M, et al. Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings. Planta. 2007;225:1121–1133. doi: 10.1007/s00425-006-0423-9. PubMed DOI

Smirnoff N. The function and metabolism of ascorbic acid in plants. Ann. Bot. 1996;78:661–669. doi: 10.1006/anbo.1996.0175. DOI

Park S-W, et al. Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proc. Natl. Acad. Sci. USA. 2013;110:9559–9564. doi: 10.1073/pnas.1218872110. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace