Multicontamination Toxicity Evaluation in the Model Plant Lactuca sativa L
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000845
the Ministry of Education, Youth and Sports from the European Regional Development Fund Project
PubMed
38794427
PubMed Central
PMC11125215
DOI
10.3390/plants13101356
PII: plants13101356
Knihovny.cz E-zdroje
- Klíčová slova
- anthropogenic contamination, bioaccumulation, metals/metalloids, nitrogen metabolism, oxidative stress, stress response,
- Publikační typ
- časopisecké články MeSH
Many contaminated soils contain several toxic elements (TEs) in elevated contents, and plant-TE interactions can differ from single TE contamination. Therefore, this study investigated the impact of combined contamination (As, Cd, Pb, Zn) on the physiological and metabolic processes of lettuce. After 45 days of exposure, TE excess in soil resulted in the inhibition of root and leaf biomass by 40 and 48%, respectively. Oxidative stress by TE accumulation was indicated by markers-malondialdehyde and 5-methylcytosine-and visible symptoms of toxicity (leaf chlorosis, root browning) and morpho-anatomical changes, which were related to the change in water regime (water potential decrease). An analysis of free amino acids (AAs) indicated that TEs disturbed N and C metabolism, especially in leaves, increasing the total content of free AAs and their families. Stress-induced senescence by TEs suggested changes in gas exchange parameters (increase in transpiration rate, stomatal conductance, and intercellular CO2 concentration), photosynthetic pigments (decrease in chlorophylls and carotenoids), a decrease in water use efficiency, and the maximum quantum yield of photosystem II. These results confirmed that the toxicity of combined contamination significantly affected the processes of lettuce by damaging the antioxidant system and expressing higher leaf sensitivity to TE multicontamination.
Zobrazit více v PubMed
Vaněk A., Ettler V., Grygar T., Borůvka L., Šebek O., Drábek O. Combined chemical and mineralogical evidence for heavy metal binding in mining- and smelting-affected alluvial soils. Pedosphere. 2008;18:464–478. doi: 10.1016/S1002-0160(08)60037-5. DOI
Kebonye N.M., Eze P.N., John K., Agyeman P.C., Němeček K., Borůvka L. An in-depth human health risk assessment of potentially toxic elements in highly polluted riverine soils, Příbram (Czech Republic) Environ. Geochem. Health. 2021;44:369–385. doi: 10.1007/s10653-021-00877-3. PubMed DOI
Pavlíková D., Zemanová V., Pavlík M. Health risk and quality assessment of vegetables cultivated on soils from a heavily polluted old mining area. Toxics. 2023;11:583. doi: 10.3390/toxics11070583. PubMed DOI PMC
Antoniadis V., Levizou E., Shaheen S.M., Ok Y.S., Sebastian A., Baum C., Prasad M.N., Wenzel W.W., Rinklebe J. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation—A review. Earth Sci. Rev. 2017;171:621–645. doi: 10.1016/j.earscirev.2017.06.005. DOI
Jibril S.A., Hassan S.A., Ishak C.F., Megat Wahab P.E. Cadmium toxicity affects phytochemicals and nutrient elements composition of lettuce (Lactuca sativa L.) Adv. Agric. 2017;2017:1236830. doi: 10.1155/2017/1236830. DOI
Pietrelli L., Menegoni P., Papetti P. Bioaccumulation of heavy metals by herbaceous species grown in urban and rural sites. Water Air Soil Pollut. 2022;233:141. doi: 10.1007/s11270-022-05577-x. DOI
Riyazuddin R., Nisha N., Ejaz B., Khan M.I.R., Kumar M., Ramteke P.W., Gupta R. A Comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules. 2022;12:43. doi: 10.3390/biom12010043. PubMed DOI PMC
Ivanov V.B., Zhukovskaya N.V. Effect of heavy metals on root growth and the use of roots as test objects. Russ. J. Plant Physiol. 2021;68:S1–S25. doi: 10.1134/S1021443721070049. DOI
Nazir A., Rafique F., Ahmed K., Khan S.A., Khan N., Akbar M., Zafar M. Evaluation of heavy metals effects on morpho-anatomical alterations of wheat (Triticum aestivum L.) seedlings. Microsc. Res. Tech. 2021;84:2517–2529. doi: 10.1002/jemt.23801. PubMed DOI
Dey U., Mondal N.K. Ultrastructural deformation of plant cell under heavy metal stress in Gram seedlings. Cogent Environ. Sci. 2016;2:1196472. doi: 10.1080/23311843.2016.1196472. DOI
DalCorso G., Manara A., Furini A. An overview of heavy metal challenge in plants: From roots to shoots. Metallomics. 2013;5:1117–1132. doi: 10.1039/c3mt00038a. PubMed DOI
García-Caparrós P., De Filippis L., Gul A., Hasanuzzaman M., Ozturk M., Altay V., Lao M.T. Oxidative stress and antioxidant metabolism under adverse environmental conditions: A review. Bot. Rev. 2021;87:421–466. doi: 10.1007/s12229-020-09231-1. DOI
Singh S., Parihar P., Singh R., Singh V.P., Prasad S.M. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 2016;6:1143. doi: 10.3389/fpls.2015.01143. PubMed DOI PMC
Bidar G., Pelfrêne A., Schwartz C., Waterlot C., Sahmer K., Marot F., Douay F. Urban kitchen gardens: Effect of the soil contamination and parameters on the trace element accumulation in vegetables—A review. Sci. Total Environ. 2020;738:139569. doi: 10.1016/j.scitotenv.2020.139569. PubMed DOI
Mustățea G., Belc N., Ungureanu E.L., Lăcătușu R., Petre J., Pruteanu A. Heavy metals contamination of the soil—Water—Vegetables chain in the Ilfov region. E3S Web Conf. 2019;112:03030. doi: 10.1051/e3sconf/201911203030. DOI
Trovato M., Funck D., Forlani G., Okumoto S., Amir R. Editorial: Amino acids in plants: Regulation and functions in development and stress defense. Front. Plant Sci. 2021;12:772810. doi: 10.3389/fpls.2021.772810. PubMed DOI PMC
Gong B., He E., Qiu H., Van Gestel C.A.M., Romero-Freire A., Zhao L., Xu X., Cao X. Interactions of arsenic, copper, and zinc in soil-plant system: Partition, uptake and phytotoxicity. Sci. Total Environ. 2020;745:140926. doi: 10.1016/j.scitotenv.2020.140926. PubMed DOI
Ackova D.G. Heavy metals and their general toxicity on plants. Plant Sci. Today. 2018;5:15–19. doi: 10.14719/pst.2018.5.1.355. DOI
Ejaz U., Khan S.M., Khalid N., Ahmad Z., Jehangir S., Rizvi Z.F., Lho L.H., Han H., Raposo A. Detoxifying the heavy metals: A multipronged study of tolerance strategies against heavy metals toxicity in plants. Front. Plant Sci. 2023;14:1154571. doi: 10.3389/fpls.2023.1154571. PubMed DOI PMC
Zhou H., Yang W.-T., Liu L., Gu J.F., Wang W.-L., Zou J.-L., Tian T., Peng P.-Q., Liao B.-H. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. Int. J. Environ. Res. Public Health. 2016;13:289. doi: 10.3390/ijerph13030289. PubMed DOI PMC
Xiao W., Ye X.Z., Zhang Q., Chen D., Hu J., Gao N. Evaluation of cadmium transfer from soil to leafy vegetables: Influencing factors, transfer models, and indication of soil threshold contents. Ecotox. Environ. Saf. 2018;164:355–362. doi: 10.1016/j.ecoenv.2018.08.041. PubMed DOI
Wang C.-C., Li M.-Y., Yan C.-A., Tian W., Deng Z.-H., Wang Z.-X., Xu W.-M., Tuo Y.-F., Xiang P. Refining health risk assessment of heavy metals in vegetables from high geochemical background areas: Role of bioaccessibility and cytotoxicity. Process SAF Environ. 2022;159:345–353. doi: 10.1016/j.psep.2022.01.003. DOI
Meng Y., Zhang L., Yao Z.-L., Ren Y.-B., Wang L.-Q., Ou X.-B. Arsenic accumulation and physiological response of three leafy vegetable varieties to as stress. Int. J. Environ. Res. Public Health. 2022;19:2501. doi: 10.3390/ijerph19052501. PubMed DOI PMC
Cui S., Wang Z., Li X., Wang H., Wang H., Chen W. A comprehensive assessment of heavy metal(loid) contamination in leafy vegetables grown in two mining areas in Yunnan, China-a focus on bioaccumulation of cadmium in Malabar spinach. Environ. Sci. Pollut. Res. Int. 2022;30:14959–14974. doi: 10.1007/s11356-022-23017-5. PubMed DOI
Tajdar-Oranj B., Javanmardi F., Parastouei K., Taghdir M., Fathi M., Abbaszadeh S. Health Risk assessment of lead, cadmium, and arsenic in leafy vegetables in Tehran, Iran: The concentration data study. Biol. Trace Elem. Res. 2024;202:800–810. doi: 10.1007/s12011-023-03707-y. PubMed DOI
Zorrig W., Cornu J.Y., Maisonneuve B., Rouached A., Sarrobert C., Shahzad Z., Berthomieu P. Genetic analysis of cadmium accumulation in lettuce (Lactuca sativa) Plant Physiol. Biochem. 2019;136:67–75. doi: 10.1016/j.plaphy.2019.01.011. PubMed DOI
Capelo A., Santos C., Loureiro S., Pedrosa M.A. Phytotoxicity of lead on Lactuca sativa: Effects on growth, mineral nutrition, phytosynthetic activity and oxidant metabolism. Fresenius Environ. Bull. 2012;21:450–459.
Kongtawee K., Ketrot D., Wisawapipat W., Tawornpruek S. Assessing critical level of lead in soils for leafy vegetables. Water Air Soil Pollut. 2022;233:459. doi: 10.1007/s11270-022-05937-7. DOI
Commission Regulation (EU) Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006 (Text with EEA Relevance) Off. J. Eur. Union. 2023;119:103–157.
Akhter M.F., Omelon C., Gordon R.A., Moser D., Macfie S.M. Localization and chemical speciation of cadmium in the roots of barley and lettuce. Environ. Exp. Bot. 2014;100:10–19. doi: 10.1016/j.envexpbot.2013.12.005. DOI
Pérez-Figueroa C.E., Salazar-Moreno R., Rodríguez E.F., Cruz I.L.L.L., Schmidt U., Danneh D. Heavy metals accumulation in lettuce and cherry tomatoes cultivated in cities. Pol. J. Environ. Stud. 2023;32:2293–2308. doi: 10.15244/pjoes/157316. PubMed DOI
Musilová J., Franková H., Lidiková J., Chlpík J., Vollmannová A., Árvay J., Harangozo L., Urminská J., Tóth T. Impact of old environmental burden in the Spiš region (Slovakia) on soil and home-grown vegetable contamination, and health effects of heavy metals. Sci. Rep. 2022;12:16371. doi: 10.1038/s41598-022-20847-8. PubMed DOI PMC
Guo Z., Dai H., Pan S. Health risk assessment of heavy metal exposure through vegetable consumption around a phosphorus chemical plant in the Kaiyang karst area, southwestern China. Environ. Sci. Pollut. Res. 2023;30:35617–35634. doi: 10.1007/s11356-022-24662-6. PubMed DOI
Sanjosé I., Navarro-Roldán F., Montero Y., Ramírez-Acosta S., Jiménez-Nieva F.J., Infante-Izquierdo M.D., Polo-Ávila A., Muñoz-Rodríguez A.F. The bioconcentration and the translocation of heavy metals in recently consumed Salicornia ramosissima J. woods in highly contaminated estuary marshes and its food risk. Diversity. 2022;14:452. doi: 10.3390/d14060452. DOI
Fahr M., Laplaze L., Bendaou N., Hocher V., El Mzibri M., Bogusz D., Smouni A. Effect of lead on root growth. Front. Plant Sci. 2013;4:175. doi: 10.3389/fpls.2013.00175. PubMed DOI PMC
Dutta S., Mitra M., Agarwal P., Mahapatra K., De S., Sett U., Roy S. Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant Signal. Behav. 2018;13:e1460048. doi: 10.1080/15592324.2018.1460048. PubMed DOI PMC
Berni R., Luyckx M., Xu X., Legay S., Sergeanty K., Hausman J.F., Lutts S., Cai G., Guirriero G. Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environ. Exp. Bot. 2019;161:98–106. doi: 10.1016/j.envexpbot.2018.10.017. DOI
Gill R.A., Kanwar M.K., dos Reis A.R., Ali B. Editorial: Heavy metal toxicity in plants: Recent insights on physiological and molecular aspects. Front. Plant Sci. 2022;12:830682. doi: 10.3389/fpls.2021.830682. PubMed DOI PMC
Ripoll J., Charles F., Vidal V., Laurent S., Klopp C., Lauri F., Sallanon H., Roux D. Transcriptomic view of detached lettuce leaves during storage: A crosstalk between wounding, dehydration and senescence. Postharvest Biol. Technol. 2019;152:73–88. doi: 10.1016/j.postharvbio.2019.02.004. DOI
Dubrovina A.S., Kiselev K.V. Age-associated alterations in the somatic mutation and DNA methylation levels in plants. Plant Biol. 2016;18:185–196. doi: 10.1111/plb.12375. PubMed DOI
Ikkonen E., Kaznina N. Physiological responses of lettuce (Lactuca sativa L.) to soil contamination with Pb. Horticulturae. 2022;8:951. doi: 10.3390/horticulturae8100951. DOI
Wang M., Chen Z.Q., Chen D., Liu L., Hamid Y., Zhang S.J., Shan A.Q., Kang K.J., Feng Y., Yang X.E. Combined cadmium and fluorine inhibit lettuce growth through reducing root elongation, photosynthesis, and nutrient absorption. Environ. Sci. Pollut. Res. Int. 2022;29:91255–91267. doi: 10.1007/s11356-022-22195-6. PubMed DOI
Janku M., Luhova L., Petrivalsky M. On the origin and fate of reactive oxygen species in plant cell compartments. Antioxidants. 2019;8:105. doi: 10.3390/antiox8040105. PubMed DOI PMC
Morales M., Munné-Bosch S. Malondialdehyde: Facts and artifacts. Plant Physiol. 2019;180:1246–1250. doi: 10.1104/pp.19.00405. PubMed DOI PMC
de Dios Alché J. A concise appraisal of lipid oxidation and lipoxidation in higher plants. Redox Biol. 2019;23:101136. doi: 10.1016/j.redox.2019.101136. PubMed DOI PMC
Zhang Y., Luan Q., Jiang J., Li Y. Prediction and utilization of malondialdehyde in exotic pine under drought stress using near-infrared spectroscopy. Front. Plant Sci. 2021;12:735275. doi: 10.3389/fpls.2021.735275. PubMed DOI PMC
Khaleghi A., Naderi R., Brunetti C., Maserti B.E., Salami S.A., Babalar M. Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Sci. Rep. 2019;9:19250. doi: 10.1038/s41598-019-55889-y. PubMed DOI PMC
Zha L., Liu W., Zhang Y., Zhou C., Shao M. Morphological and physiological stress responses of lettuce to different intensities of continuous light. Front. Plant Sci. 2019;6:1440. doi: 10.3389/fpls.2019.01440. PubMed DOI PMC
Liang L., Li X., Li H., Peng X., Zhang R., Tang W., Dong Y., Tang Y. Intercropping affects the physiology and cadmium absorption of pakchoi, lettuce, and radish seedlings. Environ. Sci. Pollut. Res. 2023;30:4744–4753. doi: 10.1007/s11356-022-22381-6. PubMed DOI
da Cunha Neto A.R., Carvalho M., Morais G.M.M., Guaraldo M.M.D.S., dos Santos H.O., Pereira W.V.S., Barbosa S. Changes in chromosome complement and germination of lettuce (Lactuca sativa L.) exposed to heavy metal stress. Water Air Soil Pollut. 2023;234:243. doi: 10.1007/s11270-023-06262-3. DOI
Gao T., Wang H., Li C., Zuo M., Wang X., Liu Y., Yang Y., Xu D., Liu Y., Fang X. Effects of heavy metal stress on physiology, hydraulics, and anatomy of three desert plants in the Jinchang mining area, China. Int. J. Environ. Res. Public Health. 2022;19:15873. doi: 10.3390/ijerph192315873. PubMed DOI PMC
Knieper M., Viehhauser A., Dietz K.J. Oxylipins and reactive carbonyls as regulators of the plant redox and reactive oxygen species network under stress. Antioxidants. 2023;12:814. doi: 10.3390/antiox12040814. PubMed DOI PMC
Lewandowska-Gnatowska E., Polkowska-Kowalczyk L., Szczegielniak J., Barciszewska M., Barciszewski J., Muszyńska G. Is DNA methylation modulated by wounding-induced oxidative burstin maize? Plant. Physiol. Biochem. 2014;82:202–208. doi: 10.1016/j.plaphy.2014.06.003. PubMed DOI
Kumar S., Mohapatra T. Dynamics of DNA methylation and its functions in plant growth and development. Front. Plant Sci. 2021;12:596236. doi: 10.3389/fpls.2021.596236. PubMed DOI PMC
Liu P., Liu R., Xu Y., Zhang C., Niu Q., Lang Z. DNA cytosine methylation dynamics and functional roles in horticultural crops. Hortic. Res. 2023;10:uhad170. doi: 10.1093/hr/uhad170. PubMed DOI PMC
Sun M., Yang Z., Liu L., Duan L. DNA methylation in plant responses and adaption to abiotic stresses. Int. J. Mol. Sci. 2022;23:6910. doi: 10.3390/ijms23136910. PubMed DOI PMC
Chmielowska-Bąk J., Searle I.R., Wakai T.N., Arasimowicz-Jelonek M. The role of epigenetic and epitranscriptomic modifications in plants exposed to nonessential metals. Front. Plant Sci. 2023;14:1278185. doi: 10.3389/fpls.2023.1278185. PubMed DOI PMC
Sun D.D., Sun J.W., Huang L.Y., Chen N., Wang Q.W. Effects of cadmium stress on DNA methylation in soybean. Biotechnol. Biotechnol. Eq. 2021;35:1696–1705. doi: 10.1080/13102818.2021.1980107. DOI
Tang M.J., Xu L.A., Wang Y., Dong J.H., Zhang X.L., Wang K., Ying J.L., Li C., Liu L.W. Melatonin-induced DNA demethylation of metal transporters and antioxidant genes alleviates lead stress in radish plants. Hortic. Res. 2021;8:124. doi: 10.1038/s41438-021-00561-8. PubMed DOI PMC
Lhotská M., Zemanová V., Pavlík M., Pavlíková D., Hnilička F., Popov M. Leaf fitness and stress response after the application of contaminated soil dust particulate matter. Sci. Rep. 2022;12:10046. doi: 10.1038/s41598-022-13931-6. PubMed DOI PMC
Zhu G., Xiao H., Guo Q., Zhang Z., Zhao J., Yang D. Effects of cadmium stress on growth and amino acid metabolism in two Compositae plants. Ecotoxicol. Environ. Saf. 2018;158:300–308. doi: 10.1016/j.ecoenv.2018.04.045. PubMed DOI
Zhu G., Cheng D., Wang X., Guo Q., Zhang Q., Zhang J., Tu Q., Li W. Free amino acids, carbon and nitrogen isotopic compositions responses to cadmium stress in two castor (Ricinus communis L.) species. Plant Physiol. Biochem. 2022;184:40–46. doi: 10.1016/j.plaphy.2022.05.013. PubMed DOI
Kumar A., Dwivedi S., Singh R.P., Chakrabarty D., Mallick S., Trivedi P.K., Adhikari B., Tripathi R.D. Evaluation of amino acid profile in contrasting arsenic accumulating rice genotypes under arsenic stress. Biol. Plant. 2014;58:733–742. doi: 10.1007/s10535-014-0435-4. DOI
Campos N.V., Araújo T.O., Arcanjo-Silva S., Freitas-Silva L., Azevedo A.A., Nunes-Nesi A. Arsenic hyperaccumulation induces metabolic reprogramming in Pityrogramma calomelanos to reduce oxidative stress. Physiol. Plant. 2016;157:135–146. doi: 10.1111/ppl.12426. PubMed DOI
Okunev R.V. Free amino acid accumulation in soil and tomato plants (Solanum lycopersicum L.) associated with arsenic stress. Water Air Soil Pollut. 2019;230:253. doi: 10.1007/s11270-019-4309-4. DOI
Zemanova V., Popov M., Pavlíková D., Kotrba P., Hnilička F., Česká J., Pavlík M. Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator Pteris cretica (L.) var. Albo-lineata. BMC Plant Biol. 2020;20:130. doi: 10.1186/s12870-020-2325-6. PubMed DOI PMC
Zemanová V., Pavlíková D., Hnilička F., Pavlík M. Arsenic toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. Plants. 2021;10:2009. doi: 10.3390/plants10102009. PubMed DOI PMC
Dguimi H.M., Nasraoui H.A., Alzahrani F.O. Cadmium effect on growth, ammonium assimilation, and amino acids levels in roots of Arabidopsis thaliana. Euro-Mediterr. J. Environ. Integrat. 2023;8:161–165. doi: 10.1007/s41207-023-00349-3. DOI
Hildebrandt T., Nunes-Nesi A., Araujo W., Braun H.-P. Amino acid catabolism in plants. Mol. Plant. 2015;8:1563–1579. doi: 10.1016/j.molp.2015.09.005. PubMed DOI
Kumar N., Gautam A., Dubey A.K., Ranjan R., Pandey A., Kumari B., Singh G., Mandotra S., Chauhan P.S., Srikrishna S., et al. GABA mediated reduction of arsenite toxicity in rice seedling through modulation of fatty acids, stress responsive amino acids and polyamines biosynthesis. Ecotoxicol. Environ. Saf. 2019;173:15–27. doi: 10.1016/j.ecoenv.2019.02.017. PubMed DOI
Praveen A., Pandey A., Gupta M. Protective role of nitric oxide on nitrogen-thiol metabolism and amino acids profiling during arsenic exposure in Oryza sativa L. Ecotoxicology. 2020;29:825–836. doi: 10.1007/s10646-020-02250-z. PubMed DOI
Yang Q., Zhao D., Liu Q. Connections between amino acid metabolisms in plants: Lysine as an example. Front. Plant Sci. 2020;11:928. doi: 10.3389/fpls.2020.00928. PubMed DOI PMC
Lea P.J., Sodek L., Parry M.A., Shewry P.R., Halford N.G. Asparagine in plants. Ann. Appl. Biol. 2007;150:1–26. doi: 10.1111/j.1744-7348.2006.00104.x. DOI
González-Orenga S., Ferrer-Gallego P.P., Laguna E., López-Gresa M.P., Donat-Torres M.P., Verdeguer M., Vicente O., Boscaiu M. Insights on salt tolerance of two endemic Limonium species from Spain. Metabolites. 2019;9:294. doi: 10.3390/metabo9120294. PubMed DOI PMC
Okumoto S., Funck D., Trovato M., Forlani G. Editorial: Amino acids of the glutamate family: Functions beyond primary metabolism. Front. Plant Sci. 2016;7:318. doi: 10.3389/fpls.2016.00318. PubMed DOI PMC
Kirma M., Araujo W.L., Fernie A.R., Galili G. The multifaceted role of aspartate-family amino acids in plant metabolism. J. Exp. Bot. 2012;63:4995–5001. doi: 10.1093/jxb/ers119. PubMed DOI
Planchet E., Limami A.M. Amino acid synthesis under abiotic stress. In: D’Mello J.P.F., editor. Amino Acids in Higher Plants. CAB International; Wallingford, UK: 2015. pp. 262–276. DOI
Ros R., Muñoz-Bertomeu J., Krueger S. Serine in plants: Biosynthesis, metabolism, and functions. Trends Plant Sci. 2014;19:564–569. doi: 10.1016/j.tplants.2014.06.003. PubMed DOI
Liu X., Yang C., Zhang L., Li L., Liu S., Yu J., You L., Zhou D., Xia C., Zhao J., et al. Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics. Ecotoxicology. 2011;20:1422–1431. doi: 10.1007/s10646-011-0699-9. PubMed DOI
Ingle R.A. Histidine biosynthesis. Arabidopsis Book. 2011;9:e0141. doi: 10.1199/tab.0141. PubMed DOI PMC
Kishor P.B.K., Suravajhala R., Rajasheker G., Marka N., Shridhar K.K., Dhulala D., Scinthia K.P., Divya K., Doma M., Edupuganti S., et al. Lysine, lysine-rich, serine, and serine-rich proteins: Link between metabolism, development, and abiotic stress tolerance and the role of ncRNAs in their regulation. Front. Plant Sci. 2020;11:546213. doi: 10.3389/fpls.2020.546213. PubMed DOI PMC
Sharma S.S., Dietz K.J. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot. 2006;57:711–726. doi: 10.1093/jxb/erj073. PubMed DOI
Azevedo Neto A.D., Prisco J.T., Gomes-Filho E. Changes in soluble amino-N, soluble proteins and free amino acids in leaves and roots of salt-stressed maize genotypes. J. Plant Interact. 2009;4:137–144. doi: 10.1080/17429140902866954. DOI
Kang T., Wu H.D., Lu B.Y., Luo X.J., Gong C.M., Bai J. Low concentrations of glycine inhibit photorespiration and enhance the net rate of photosynthesis in Caragana Korshinskii. Photosynthetica. 2018;56:512–519. doi: 10.1007/s11099-017-0688-1. DOI
Cochavi A., Cohen I.H., Rachmilevitch S. The role of different root orders in nutrient uptake. Environ. Exp. Bot. 2020;179:104212. doi: 10.1016/j.envexpbot.2020.104212. DOI
Steudle E. Water uptake by roots: Effects of water deficit. J. Exp. Bot. 2002;51:1531–1542. doi: 10.1093/jexbot/51.350.1531. PubMed DOI
Gregersen P.L., Holm P.B. Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.) Plant Biotechnol. J. 2007;5:192–206. doi: 10.1111/j.1467-7652.2006.00232.x. PubMed DOI
Chen X.J., Tao H.F., Wu Y.Z., Xu X.M. Effects of cadmium on metabolism of photosynthetic pigment and photosynthetic system in Lactuca sativa L. revealed by physiological and proteomics analysis. Sci. Hortic. 2022;305:111371. doi: 10.1016/j.scienta.2022.111371. DOI
Tuba Z., Lichtenthaler H., Csintalan Z., Nagy Z., Szente K. Loss of chlorophylls, cessation of photosynthesis CO2 assimilation and respiration in the poikilochlorophyllous plant Xerophyta scabrida during desiccation. Physiol. Plant. 1996;96:383–388. doi: 10.1111/j.1399-3054.1996.tb00448.x. DOI
Li Y., He N., Hou J., Xu L., Liu C., Zhang J., Wang Q., Zhang X., Wu X. Factors influencing leaf chlorophyll content in natural forests at the biome scale. Front. Ecol. Evol. 2018;6:64. doi: 10.3389/fevo.2018.00064. DOI
Kotakis C., Kyzeridou A., Manetas Y. Photosynthetic electron flow during leaf senescence: Evidence for a preferential maintenance of photosystem I activity and increased cyclic electron flow. Photosynthetica. 2014;52:413–420. doi: 10.1007/s11099-014-0046-5. DOI
Maxwell K., Johnson G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000;51:659–668. doi: 10.1093/jexbot/51.345.659. PubMed DOI
Sobejano-Paz V., Mo X., Liu S., Mikkelsen T.N., He L., Jin H., García M. Heat dissipation from photosynthesis contributes to maize thermoregulation under suboptimal temperature conditions. bioRxiv. 2023 doi: 10.1101/2023.01.27.525868. bioRxiv:2023.01.27.525868. DOI
Firmansyah, Argosubekti N. A review of heat stress signaling in plants. IOP Conf. Ser. Earth Environ. Sci. 2020;484:012041. doi: 10.1088/1755-1315/484/1/012041. DOI
Rastgoo L., Alemzadeh A. Biochemical responses of Gouan (Aeluropus littoralis) to heavy metals stress. Aust. J. Crop Sci. 2011;5:375–383.
Chandra R., Kang H. Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. For. Sci. Technol. 2016;12:55–61. doi: 10.1080/21580103.2015.1044024. DOI
Gao F., Zhang X., Zhang J., Li J., Niu T., Tang C., Wang C., Xie J. Zinc oxide nanoparticles improve lettuce (Lactuca sativa L.) plant tolerance to cadmium by stimulating antioxidant defense, enhancing lignin content and reducing the metal accumulation and translocation. Front. Plant Sci. 2022;13:1015745. doi: 10.3389/fpls.2022.1015745. PubMed DOI PMC
Felemban A., Braguy J., Zurbriggen M.D., Al-Babili S. Apocarotenoids involved in plant development and stress response. Front. Plant Sci. 2019;10:1168. doi: 10.3389/fpls.2019.01168. PubMed DOI PMC
Sun T., Rao S., Zhou X., Li L. Plant carotenoids: Recent advances and future perspectives. Mol. Hortic. 2022;2:3. doi: 10.1186/s43897-022-00023-2. PubMed DOI PMC
Czech Ministry of the Environment . Public Notice No. 153/2016 for the Management of Soil Protection. Czech Ministry of the Environment; Prague, Czech Republic: 2016.
Porra R.J., Thompson W.A., Kriedemann P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta BBA Bioenerg. 1989;975:384–394. doi: 10.1016/S0005-2728(89)80347-0. DOI
Wellburn A.R. The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2. DOI
The Dual Role of Zinc in Spinach Metabolism: Beneficial × Toxic