Arsenic Toxicity-Induced Physiological and Metabolic Changes in the Shoots of Pteris cretica and Spinacia oleracea
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000845
European Regional Development Fund
PubMed
34685818
PubMed Central
PMC8540401
DOI
10.3390/plants10102009
PII: plants10102009
Knihovny.cz E-zdroje
- Klíčová slova
- abiotic stress, amaranthaceae family, arsenic contamination, fern, metalloid, pteridaceae family, spinach,
- Publikační typ
- časopisecké články MeSH
Arsenic is a ubiquitous toxic element that can be accumulated into plant parts. The present study investigated the response of Pteris cretica and Spinacia oleracea to As treatment through the analysis of selected physiological and metabolic parameters. Plants were grown in pots in As(V) spiked soil (20 and 100 mg/kg). Plants' physiological condition was estimated through the determination of elements, gas-exchange parameters, chlorophyll fluorescence, water potential, photosynthetic pigments, and free amino acid content. The results confirmed differing As accumulation in plants, as well as in shoots and roots, which indicated that P. cretica is an As-hyperaccumulator and that S. oleracea is an As-root excluder. Variations in physiological and metabolic parameters were observed among As treatments. Overall, the results revealed a significant effect of 100 mg/kg As treatment on the analysed parameters. In both plants, this treatment affected growth, N, Mg, S, Mn, and Zn content, as well as net photosynthetic rate, chlorophyll fluorescence, and total free amino acid content. In conclusion, the results reflect the similarity between P. cretica and S. oleracea in some aspects of plants' response to As treatment, while physiological and metabolic parameter changes related to As treatments indicate the higher sensitivity of S. oleracea.
Zobrazit více v PubMed
Li X., Ahammed G.J., Zhang X.N., Zhang L., Yan P., Zhang L.P., Fu J.Y., Han W.Y. Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L. J. Hazard. Mater. 2021;403:123922. doi: 10.1016/j.jhazmat.2020.123922. PubMed DOI
Praveen A., Pandey A., Gupta M. Protective role of nitric oxide on nitrogen-thiol metabolism and amino acids profiling during arsenic exposure in Oryza sativa L. Ecotoxicology. 2020;29:825–836. doi: 10.1007/s10646-020-02250-z. PubMed DOI
Quaghebeur M., Rengel Z. Arsenic speciation governs arsenic uptake and transport in terrestrial plants. Microchim. Acta. 2005;151:141–152. doi: 10.1007/s00604-005-0394-8. DOI
Abbas G., Murtaza B., Bibi I., Shahid M., Niazi N.K., Khan M.I., Amjad M., Hussain M. Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. Int. J. Environ. Res. Public Health. 2018;15:59. doi: 10.3390/ijerph15010059. PubMed DOI PMC
Thakur S., Choudhary S., Majeed A., Singh A., Bhardwaj P. Insights into the molecular mechanism of arsenic phytoremediation. J. Plant Growth Regul. 2020;39:532–543. doi: 10.1007/s00344-019-10019-w. DOI
Sodhi K.K., Kumar M., Agrawal P.K., Singh D.K. Perspectives on arsenic toxicity, carcinogenicity and its systemic remediation strategies. Environ. Technol. Innov. 2019;16:100462. doi: 10.1016/j.eti.2019.100462. DOI
Tang Z., Zhao F.J. The roles of membrane transporters in arsenic uptake, translocation and detoxification in plants. Crit. Rev. Environ. Sci. Technol. 2020 doi: 10.1080/10643389.2020.1795053. in press. DOI
Kofroňová M., Hrdinová A., Mašková P., Tremlová J., Soudek P., Petrová Š., Pinkas D., Lipavská H. Multi-component antioxidative system and robust carbohydrate status, the essence of plant arsenic tolerance. Antioxidants. 2020;9:283. doi: 10.3390/antiox9040283. PubMed DOI PMC
Chattopadhyay A., Singh A.P., Kasote D., Sen I., Regina A. Effect of phosphorus application on arsenic species accumulation and co-deposition of polyphenols in rice grain: Phyto and food safety evaluation. Plants. 2021;10:281. doi: 10.3390/plants10020281. PubMed DOI PMC
Fayiga A.O., Saha U.K. Arsenic hyperaccumulating fern: Implications for remediation of arsenic contaminated soils. Geoderma. 2016;284:132–143. doi: 10.1016/j.geoderma.2016.09.003. DOI
Rodríguez-Ruiz M., Aparicio-Chacón M.V., Palma J.M., Corpas F.J. Arsenate disrupts ion balance, sulfur and nitric oxide metabolisms in roots and leaves of pea (Pisum sativum L.) plants. Environ. Exp. Bot. 2019;161:143–156. doi: 10.1016/j.envexpbot.2018.06.028. DOI
Solórzano E., Corpas F.J., González-Gordo S., Palma J.M. Reactive oxygen species (ROS) metabolism and nitric oxide (NO) content in roots and shoots of rice (Oryza sativa L.) plants under arsenic-induced stress. Agronomy. 2020;10:1014. doi: 10.3390/agronomy10071014. DOI
Raab A., Feldmann J., Meharg A.A. The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant. Physiol. 2004;134:1113–1122. doi: 10.1104/pp.103.033506. PubMed DOI PMC
Li G., Hu S., Zhao X., Kumar S., Li Y., Yang J., Hou H. Mechanisms of the morphological plasticity induced by phytohormones and the environment in plants. Int. J. Mol. Sci. 2021;22:765. doi: 10.3390/ijms22020765. PubMed DOI PMC
Bandaru V., Hansen D.J., Codling E.E., Daughtry C.S., White-Hansen S., Green C.E. Quantifying arsenic-induced morphological changes in spinach leaves: Implications for remote sensing. Int. J. Remote Sens. 2010;31:4163–4177. doi: 10.1080/01431161.2010.498453. DOI
Finnegan P.M., Chen W. Arsenic toxicity: The effects on plant metabolism. Front. Physiol. 2012;3:182. doi: 10.3389/fphys.2012.00182. PubMed DOI PMC
Pathare V., Srivastava S., Suprasanna P. Evaluation of effects of arsenic on carbon, nitrogen, and sulfur metabolism in two contrasting varieties of Brassica juncea. Acta Physiol. Plant. 2013;35:3377–3389. doi: 10.1007/s11738-013-1370-2. DOI
Pavlík M., Pavlíková D., Staszková L., Neuberg M., Kaliszová R., Száková J., Tlustoš P. The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotox. Environ. Saf. 2010;73:1309–1313. doi: 10.1016/j.ecoenv.2010.07.008. PubMed DOI
Tripathi P., Tripathi R.D., Singh R.P., Dwivedi S., Chakrabarty D., Trivedi P.K., Adhikari B. Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids. Environ. Sci. Pollut. Res. 2013;20:884–896. doi: 10.1007/s11356-012-1205-5. PubMed DOI
Campos N.V., Araújo T.O., Arcanjo-Silva S., Freitas-Silva L., Azevedo A.A., Nunes-Nesi A. Arsenic hyperaccumulation induces metabolic reprogramming in Pityrogramma calomelanos to reduce oxidative stress. Physiol. Plant. 2016;157:135–146. doi: 10.1111/ppl.12426. PubMed DOI
Zemanová V., Pavlíková D., Pavlík M. Free amino acid regulation in fronds and roots of two Pteris cretica L. ferns under arsenic stress. Plant Soil Environ. 2020;66:483–492. doi: 10.17221/369/2020-PSE. DOI
Kumar V., Sharma A., Kaur R., Thukral A.K., Bhardwaj R., Ahmad P. Differential distribution of amino acids in plants. Amino Acids. 2017;49:821–869. doi: 10.1007/s00726-017-2401-x. PubMed DOI
Zhao F.J., Dunham S.J., McGrath S.P. Arsenic hyperaccumulation by different fern species. New Phytol. 2002;156:27–31. doi: 10.1046/j.1469-8137.2002.00493.x. DOI
Wang H.B., Xie F., Yao Y.Z., Zhao B., Xiao Q.Q., Pan Y.H., Wang H.J. The effects of arsenic and induced-phytoextraction methods on photosynthesis in Pteris species with different arsenic-accumulating abilities. Environ. Exp. Bot. 2012;75:298–306. doi: 10.1016/j.envexpbot.2011.08.002. DOI
Srivastava M., Ma L.Q., Santos J.A.G. Three new arsenic hyperaccumulating ferns. Sci. Total Environ. 2006;364:24–31. doi: 10.1016/j.scitotenv.2005.11.002. PubMed DOI
Zhao F.J., McGrath S.P., Meharg A.A. Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant Biol. 2010;61:535–559. doi: 10.1146/annurev-arplant-042809-112152. PubMed DOI
Angulo-Bejarano P.I., Puente-Rivera J., Cruz-Ortega R. Metal and metalloid toxicity in plants: An overview on molecular aspects. Plants. 2021;10:635. doi: 10.3390/plants10040635. PubMed DOI PMC
Popov M., Zemanová V., Sácký J., Pavlík M., Leonhardt T., Matoušek T., Kaňa A., Pavlíková D., Kotrba P. Arsenic accumulation and speciation in two cultivars of Pteris cretica L. and characterization of arsenate reductase PcACR2 and arsenite transporter PcACR3 genes in the hyperaccumulating cv. Albo-lineata. Ecotox. Ecotox. Environ. Saf. 2021;216:112196. doi: 10.1016/j.ecoenv.2021.112196. PubMed DOI
Shahid M., Pinelli E., Pourrut B., Silvestre J., Dumat C. Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotox. Environ. Saf. 2011;74:78–84. doi: 10.1016/j.ecoenv.2010.08.037. PubMed DOI
Chaturvedi R., Favas P.J.C., Pratas J., Varun M., Paul M.S. Metal(loid) induced toxicity and defense mechanisms in Spinacia oleracea L. Ecological hazard and prospects for phytoremediation Ecotox. Environ. Saf. 2019;183:109570. doi: 10.1016/j.ecoenv.2019.109570. PubMed DOI
Alia N., Sardar K., Said M., Salma K., Sadia A., Sadaf S., Toqeer A., Miklas S. Toxicity and bioaccumulation of heavy metals in spinach (Spinacia oleracea) grown in a controlled environment . Int. J. Environ. Res. Public Health. 2015;12:7400–7416. doi: 10.3390/ijerph120707400. PubMed DOI PMC
Zubair M., Khan Q.U., Mirza N., Sarwar R., Khan A.A., Baloch M.S., Fahad S., Shah A.N. Physiological response of spinach to toxic heavy metal stress. Environ. Sci. Pollut. Res. 2019;26:31667–31674. doi: 10.1007/s11356-019-06292-7. PubMed DOI
Baker A.J.M. Accumulators and excluders—Strategies in the response of plants to heavy metals. J. Plant Nutr. 1981;3:643–654. doi: 10.1080/01904168109362867. DOI
Baker A.J.M., McGrath S.P., Reeves R.D., Smith J.A.C. Metal hyperaccumulator plants: A review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In: Terry N., Bañuelos G., editors. Phytoremediation of Contaminated Soil and Water. 1st ed. Lewis Publishers; Boca Raton, FL, USA: 2000. pp. 85–107.
Zhao F.J., Wang J.R., Barker J.H.A., Schat H., Bleeker P.M., McGrath S.P. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol. 2003;159:403–410. doi: 10.1046/j.1469-8137.2003.00784.x. PubMed DOI
Ma L.Q., Komar K.M., Tu C., Zhang W.H., Cai Y., Kennelley E.D. A fern that hyperaccumulates arsenic—A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature. 2001;409:579. doi: 10.1038/35054664. PubMed DOI
Zemanová V., Popov M., Pavlíková D., Kotrba P., Hnilička F., Česká J., Pavlík M. Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator Pteris cretica (L.) var. Albo-lineata. BMC Plant Biol. 2020;20:130. doi: 10.1186/s12870-020-2325-6. PubMed DOI PMC
Pavlíková D., Zemanová V., Pavlík M., Dobrev P.I., Hnilička F., Motyka V. Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress. PLoS ONE. 2020;15:e0233055. doi: 10.1371/journal.pone.0233055. PubMed DOI PMC
Shahid M., Rafiq M., Niazi N.K., Dumat C., Shamshad S., Khalid S., Bibi I. Arsenic accumulation and physiological attributes of spinach in the presence of amendments: An implication to reduce health risk. Environ. Sci. Pollut. Res. 2017;24:16097–16106. doi: 10.1007/s11356-017-9230-z. PubMed DOI
Natasha, Shahid M., Khalid S., Saleem M. Unrevealing arsenic and lead toxicity and antioxidant response in spinach: A human health perspective. Environ. Geochem. Health. 2021 doi: 10.1007/s10653-021-00818-0. in press. PubMed DOI
Wang Q., Wen J., Zheng J., Zhao J., Qiu C., Xiao D., Mu L., Liu X. Arsenate phytotoxicity regulation by humic acid and related metabolic mechanisms Ecotox. Environ. Saf. 2021;207:111379. doi: 10.1016/j.ecoenv.2020.111379. PubMed DOI
Amna S., Qamar S., Naqvi A.A.T., Al-Huqail A.A., Qureshi M.I. Role of sulfur in combating arsenic stress through upregulation of important proteins, and in-silico analysis to study the interaction between phosphate transporter (PHO1), arsenic and phosphate in spinach. Plant Physiol. Biochem. 2020;157:348–358. doi: 10.1016/j.plaphy.2020.11.002. PubMed DOI
Kumar S., Kumar S., Mohapatra T. Interaction between macro- and micro-nutrients in plants. Front. Plant Sci. 2021;12:665583. doi: 10.3389/fpls.2021.665583. PubMed DOI PMC
Amjad M., Raza H., Murtaza B., Abbas G., Imran M., Shahid M., Naeem M.A., Zakir A., Iqbal M.M. Nickel toxicity induced changes in nutrient dynamics and antioxidant profiling in two maize (Zea mays L.) hybrids. Plants. 2020;9:5. doi: 10.3390/plants9010005. PubMed DOI PMC
Mascher R., Lippmann B., Holzinger S., Bergmann H. Arsenate toxicity: Effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci. 2002;163:961–969. doi: 10.1016/S0168-9452(02)00245-5. DOI
Khan S., Khan A., Khan M.A., Aamir M., Li G. Arsenic interaction and bioaccumulation in food crops grown on degraded soil: Effect on plant nutritional components and other dietary qualities. Land Degrad. Dev. 2019;30:1954–1967. doi: 10.1002/ldr.3392. DOI
Rofkar J.R., Dwyer D.F. Irrigation of three wetland species and a hyperaccumulating fern with arsenic-laden solutions: Observations of growth, arsenic uptake, nutrient status, and chlorophyll content. Int. J. Phytoremediat. 2013;15:561–572. doi: 10.1080/15226514.2012.723059. PubMed DOI
Tu C., Ma L.Q. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L. Environ. Pollut. 2005;135:333–340. doi: 10.1016/j.envpol.2004.03.026. PubMed DOI
Bashir H., Ahmad J., Bagheri R., Nauman M., Qureshi M.I. Limited sulfur resource forces Arabidopsis thaliana to shift towards non-sulfur tolerance under cadmium stress. Environ. Exp. Bot. 2013;94:19–32. doi: 10.1016/j.envexpbot.2012.05.004. DOI
Ribera A., Bai Y., Wolters A.M.A., van Treuren R., Kik C. A review on the genetic resources, domestication and breeding history of spinach (Spinacia oleracea L.) Euphytica. 2020;216:48. doi: 10.1007/s10681-020-02585-y. DOI
Rosas-Castor J.M., Guzmán-Mar J.L., Hernández-Ramírez A., Garza-González M.T., Hinojosa-Reyes L. Arsenic accumulation in maize crop (Zea mays): A review. Sci. Total Environ. 2014;488:176–187. doi: 10.1016/j.scitotenv.2014.04.075. PubMed DOI
Singh R., Jha A.B., Misra A.N., Sharma P. Differential responses of growth, photosynthesis, oxidative stress, metals accumulation and NRAMP genes in contrasting Ricinus communis genotypes under arsenic stress. Environ. Sci. Pollut. Res. 2019;26:31166–31177. doi: 10.1007/s11356-019-06243-2. PubMed DOI
Whittaker J.W. Molecular relaxation and metalloenzyme active site Modeling. Int. J. Quantum Chem. 2002;90:1529–1535. doi: 10.1002/qua.10422. DOI
Ye X., Chen X.F., Deng C.L., Yang L.T., Lai N.W., Guo J.X., Chen L.S. Magnesium-deficiency effects on pigments, photosynthesis and photosynthetic electron transport of leaves, and nutrients of leaf blades and veins in Citrus sinensis seedlings. Plants. 2019;8:389. doi: 10.3390/plants8100389. PubMed DOI PMC
Zemanová V., Pavlíková D., Hnilička F., Pavlík M., Zámečníková H., Hlavsa T. A comparison of the photosynthesis response to arsenic stress in two Pteris cretica ferns. Photosynthetica. 2021;59:228–236. doi: 10.32615/ps.2021.014. DOI
Karimi N., Shayesteh L.S., Ghasmpour H., Alavi M. Effects of arsenic on growth, photosynthetic activity, and accumulation in two new hyperaccumulating populations of Isatis cappadocica Desv. J. Plant Growth Regul. 2013;32:823–830. doi: 10.1007/s00344-013-9350-8. DOI
Srivastava S., Sinha P., Sharma Y.K. Status of photosynthetic pigments, lipid peroxidation and anti-oxidative enzymes in Vigna mungo in presence of arsenic. J. Plant Nutr. 2017;40:298–306. doi: 10.1080/01904167.2016.1240189. DOI
Singh V.P., Srivastava P.K., Prasad S.M. Nitric oxide alleviates arsenic-induced toxic effects in ridged Luffa seedlings. Plant Physiol. Biochem. 2013;71:155–163. doi: 10.1016/j.plaphy.2013.07.003. PubMed DOI
Srivastava S., Srivastava A.K., Singh B., Suprasanna P., D’Souza S.F. The effect of arsenic on pigment composition and photosynthesis in Hydrilla verticillata. Biol. Plant. 2013;57:385–389. doi: 10.1007/s10535-012-0288-7. DOI
Joardar J.C., Afrin N., Halder M. Arsenic stress on photosynthesis and growth in Ipomoea aquatica. Plant Sci. Today. 2019;6:420–426. doi: 10.14719/pst.2019.6.4.589. DOI
Gago J., Coopman R.E., Cabrera H.M., Hermida C., Molins A., Conesa M.A., Galmes J., Ribas-Carbo M., Flexas J. Photosynthesis limitations in three fern species. Physiol. Plant. 2013;149:599–611. doi: 10.1111/ppl.12073. PubMed DOI
Kofroňová M., Mašková P., Lipavská H. Two facets of world arsenic problem solution: Crop poisoning restriction and enforcement of phytoremediation. Planta. 2018;248:19–35. doi: 10.1007/s00425-018-2906-x. PubMed DOI
Sicher R.C., Bunce J.A. Adjustments of net photosynthesis in Solanum tuberosum in response to reciprocal changes in ambient and elevated growth CO2 partial pressures. Physiol. Plant. 2001;112:55–61. doi: 10.1034/j.1399-3054.2001.1120108.x. PubMed DOI
Gao M., Qi Y., Song W., Xu H. Effects of di-n-butyl phthalate and di (2-ethylhexyl) phthalate on the growth, photosynthesis, and chlorophyll fluorescence of wheat seedlings. Chemosphere. 2016;151:76–83. doi: 10.1016/j.chemosphere.2016.02.061. PubMed DOI
Stoeva N., Berova M., Zlatev Z. Effect of arsenic on some physiological parameters in bean plants. Biol. Plant. 2005;49:293–296. doi: 10.1007/s10535-005-3296-z. DOI
Anjum S.A., Tanveer M., Hussain S., Ashraf U., Khan I., Wang L. Alteration in growth, leaf gas exchange, and photosynthetic pigments of maize plants under combined cadmium and arsenic stress. Water Air Soil Pollut. 2017;228:13. doi: 10.1007/s11270-016-3187-2. DOI
Vezza M.E., Llanes A., Travaglia C., Agostini E., Talano M.A. Arsenic stress effects on root water absorption in soybean plants: Physiological and morphological aspects. Plant Physiol. Biochem. 2018;123:8–17. doi: 10.1016/j.plaphy.2017.11.020. PubMed DOI
Yang N., Wang X., Cotrozzi L., Chen Y., Zheng F. Ozone effects on photosynthesis of ornamental species suitable for urban green spaces of China. Urban For. Urban Green. 2016;20:437–447. doi: 10.1016/j.ufug.2016.10.014. DOI
Ros R., Muñoz-Bertomeu J., Krueger S. Serine in plants: Biosynthesis, metabolism, and functions. Trends Plant Sci. 2014;19:564–569. doi: 10.1016/j.tplants.2014.06.003. PubMed DOI
González-Orenga S., Ferrer-Gallego P.P., Laguna E., López-Gresa M.P., Donat-Torres M.P., Verdeguer M., Vicente O., Boscaiu M. Insights on salt tolerance of two endemic Limonium species from Spain. Metabolites. 2019;9:294. doi: 10.3390/metabo9120294. PubMed DOI PMC
Okumoto S., Funck D., Trovato M., Forlani G. Editorial: Amino acids of the glutamate family: Functions beyond primary metabolism. Front. Plant Sci. 2016;7:318. doi: 10.3389/fpls.2016.00318. PubMed DOI PMC
Szabados L., Savouré A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010;15:89–97. doi: 10.1016/j.tplants.2009.11.009. PubMed DOI
Showalter A.M. Structure and function of plant cell wall proteins. Plant Cell. 1993;5:9–23. doi: 10.1105/tpc.5.1.9. PubMed DOI PMC
Cassab G.I. Plant cell wall proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998;49:281–309. doi: 10.1146/annurev.arplant.49.1.281. PubMed DOI
Zemanová V., Pavlík M., Pavlíková D., Hnilička F., Vondráčková S. Responses to Cd stress in two Noccaea species (Noccaea praecox and Noccaea caerulescens) originating from two contaminated sites in Mežica, Slovenia and Redlschlag, Austria. Arch. Environ. Contam. Toxicol. 2016;70:464–474. doi: 10.1007/s00244-015-0198-8. PubMed DOI
Pavlíková D., Pavlík M., Staszková L., Motyka V., Száková J., Tlustoš P., Balík J. Glutamate kinase as a potential biomarker of heavy metal stress in plants. Ecotox. Environ. Saf. 2008;70:223–230. doi: 10.1016/j.ecoenv.2007.07.006. PubMed DOI
Campos N.V., Arcanjo-Silva S., Viana I.B., Batista B.L., Barbosa F., Loureiro M.E., Ribeiro C., Azevedo A.A. Arsenic-induced responses in Pityrogramma calomelanos (L.) Link: Arsenic speciation, mineral nutrition and antioxidant defenses. Plant Physiol. Biochem. 2015;97:28–35. doi: 10.1016/j.plaphy.2015.09.011. PubMed DOI
Novitskaya L., Trevanion S.J., Driscoll S., Foyer C.H., Noctor G. How does photorespiration modulate leaf amino acid contents? A dual approach through modelling and metabolite analysis. Plant Cell Environ. 2002;25:821–835. doi: 10.1046/j.1365-3040.2002.00866.x. DOI
Liu X., Yang C., Zhang L., Li L., Liu S., Yu J., You L., Zhou D., Xia C., Zhao J., et al. Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics. Ecotoxicology. 2011;20:1422–1431. doi: 10.1007/s10646-011-0699-9. PubMed DOI
Azevedo Neto A.D., Prisco J.T., Gomes-Filho E. Changes in soluble amino-N, soluble proteins and free amino acids in leaves and roots of salt-stressed maize genotypes. J. Plant Interact. 2009;4:137–144. doi: 10.1080/17429140902866954. DOI
Rocha M., Licausi F., Araújo W.L., Nunes-Nesi A., Sodek L., Fernie A.R., van Dongen J.T. Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiol. 2010;152:1501–1513. doi: 10.1104/pp.109.150045. PubMed DOI PMC
Hjorth M., Mathiassen S.K., Kudsk P., Ravn H.W. Amino acids in loose silky-bent (Apera spica-venti (L.) Beauv.) responding to prosulfocarb exposure and the correlation with physiological effects. Pestic. Biochem. Physiol. 2006;86:138–145. doi: 10.1016/j.pestbp.2006.02.006. DOI
Tripathi R.D., Singh R., Tripathi P., Dwivedi S., Chauhan R., Adhikari B., Trivedi P.K. Arsenic accumulation and tolerance in rootless macrophyte Najas indica are mediated through antioxidants, amino acids and phytochelatins. Aquat. Toxicol. 2014;157:70–80. doi: 10.1016/j.aquatox.2014.09.011. PubMed DOI
Kumar A., Dwivedi S., Singh R.P., Chakrabarty D., Mallick S., Trivedi P.K., Adhikari B., Tripathi R.D. Evaluation of amino acid profile in contrasting arsenic accumulating rice genotypes under arsenic stress. Biol. Plant. 2014;58:733–742. doi: 10.1007/s10535-014-0435-4. DOI
Pavlíková D., Pavlík M., Procházková D., Zemanová V., Hnilička F., Wilhelmová N. Nitrogen metabolism and gas exchange parameters associated with zinc stress in tobacco expressing an ipt gene for cytokinin synthesis. J. Plant Physiol. 2014;171:559–564. doi: 10.1016/j.jplph.2013.11.016. PubMed DOI
Porra R.J., Thompson W.A., Kriedemann P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta Bioenerg. 1989;975:384–394. doi: 10.1016/S0005-2728(89)80347-0. DOI
Wellburn A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2. DOI
Kudrna J., Hnilička F., Kubeš J., Váchová P., Hniličková H., Kuklová M. Effect of acetaminophen (APAP) on physiological indicators in Lactuca sativa. Life. 2020;10:303. doi: 10.3390/life10110303. PubMed DOI PMC
The Dual Role of Zinc in Spinach Metabolism: Beneficial × Toxic
Multicontamination Toxicity Evaluation in the Model Plant Lactuca sativa L
Metabolic and Oxidative Changes in the Fern Adiantum raddianum upon Foliar Application of Metals
Leaf fitness and stress response after the application of contaminated soil dust particulate matter