The Dual Role of Zinc in Spinach Metabolism: Beneficial × Toxic
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000845
Ministry of Education, Youth and Sports
PubMed
39683158
PubMed Central
PMC11644758
DOI
10.3390/plants13233363
PII: plants13233363
Knihovny.cz E-zdroje
- Klíčová slova
- hormesis, micronutrient, photosynthesis, spinach, stress, toxicity,
- Publikační typ
- časopisecké články MeSH
The effects of zinc (Zn) on the physiology of spinach (Spinacia oleracea L.) were investigated in a pot experiment with increasing Zn contents in the horticultural substrate (0, 75, 150, and 300 mg Zn kg-1). Interactions among nutrients in the substrate solution affected plant vitality, biomass yield, and nutrient content in plants. The water-soluble Zn fraction increased with the Zn dose, rising from 0.26 mg kg-1 in the Control to 0.98 mg kg-1 in the Zn300 treatment. The most pronounced effects of elevated Zn content were observed for Ca, Mg, and Mn. In spinach, the dual role of Zn was evident through its impact on yield, particularly regarding aboveground biomass. The positive effects of Zn doses up to 150 mg kg-1 were supported by the tolerance index (TI). In contrast, the 300 mg kg-1 Zn dose exhibited toxic effects, resulting in a 33.3% decrease in the yield of aboveground biomass and a TI value of 0.7. The effects of Zn on nutrient content in aboveground biomass varied with the dose, and the relationship between Zn and P, Fe, Mn, Ca, and K content confirmed a correlation. The toxic effect of the Zn300 treatment was evidenced by a decrease in Ca, Cu, and Fe contents. Additionally, the results of the Zn300 treatment indicated a negative effect on the synthesis of photosynthetic pigments and photosynthesis, likely due to induced oxidative stress. The production of oxalic acid also suggested a toxic effect of the highest Zn dose on spinach.
Zobrazit více v PubMed
Hamzah Saleem M., Usman K., Rizwan M., Al Jabri H., Alsafran M. Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Front. Plant Sci. 2022;13:1033092. doi: 10.3389/fpls.2022.1033092. PubMed DOI PMC
Marschner P. Marschner’s Mineral Nutrition of Higher Plants. 3rd ed. Academic Press; London, UK: 2012.
Natasha N., Shahid M., Bibi I., Iqbal J., Khalid S., Murtaza B., Bakhat H.F., Farooq A.B.U., Amjad M., Hammad H.M., et al. Zinc in soil-plant-human system: A data-analysis review. Sci. Total Environ. 2022;808:152024. doi: 10.1016/j.scitotenv.2021.152024. PubMed DOI
Kaur H., Garg N. Zinc toxicity in plants: A review. Planta. 2021;253:129. doi: 10.1007/s00425-021-03642-z. PubMed DOI
Kaur H., Kaur H., Kaur H., Srivastava S. The beneficial roles of trace and ultratrace elements in plants. Plant Growth Regul. 2023;100:219–236. doi: 10.1007/s10725-022-00837-6. DOI
Mapodzeke J.M., Adil M.F., Sehar S., Karim M.F., Saddique M.A.B., Ouyang Y., Shamsi I.H. Myriad of physio-genetic factors determining the fate of plant under zinc nutrient management. Environ. Exp. Bot. 2021;189:104559. doi: 10.1016/j.envexpbot.2021.104559. DOI
Alloway B. Zinc in Soils and Crop Nutrition. 2nd ed. International Zinc Association and International Fertilizer Industry Association; Paris, France: 2008.
Ding J., Liu L., Wang C., Shi L., Xu F., Cai H. High level of zinc triggers phosphorus starvation by inhibiting root-to-shoot translocation and preferential distribution of phosphorus in rice plants. Environ. Pollut. 2021;277:116778. doi: 10.1016/j.envpol.2021.116778. PubMed DOI
Andresen E., Peiter E., Küpper H. Trace metal metabolism in plants. J. Exp. Bot. 2018;69:909–954. doi: 10.1093/jxb/erx465. PubMed DOI
Hänsch R., Mendel R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl) Curr. Opin. Plant Biol. 2009;12:259–266. doi: 10.1016/j.pbi.2009.05.006. PubMed DOI
Wei C., Jiao Q., Agathokleous E., Liu H., Li G., Zhang J., Fahad S., Jiang Y. Hormetic effects of zinc on growth and antioxidant defense system of wheat plants. Sci. Total Environ. 2022;807:50992. doi: 10.1016/j.scitotenv.2021.150992. PubMed DOI
Kaur H., Srivastava S., Goyal N., Walia S. Behavior of zinc in soils and recent advances on strategies for ameliorating zinc phyto-toxicity. Environ. Exp. Bot. 2024;220:105676. doi: 10.1016/j.envexpbot.2024.105676. DOI
Alia N., Sardar K., Said M., Salma K., Sadia A., Sadaf S., Toqeer A., Miklas S. Toxicity and bioaccumulation of heavy metals in spinach (Spinacia oleracea) grown in a controlled environment. Int. J. Environ. Res. Public Health. 2015;12:7400–7416. doi: 10.3390/ijerph120707400. PubMed DOI PMC
Chaturvedi R., Favas P.J.C., Pratas J., Varun M., Paul M.S. Metal(loid) induced toxicity and defense mechanisms in Spinacia oleracea L.: Ecological hazard and prospects for phytoremediation. Ecotoxicol. Environ. Saf. 2019;183:109570. doi: 10.1016/j.ecoenv.2019.109570. PubMed DOI
Amna S., Qamar S., Naqvi A.A.T., Al-Huqail A.A., Qureshi M.I. Role of sulfur in combating arsenic stress through upregulation of important proteins, and in-silico analysis to study the interaction between phosphate transporter (PHO1), arsenic and phosphate in spinach. Plant Physiol. Biochem. 2020;157:348–358. doi: 10.1016/j.plaphy.2020.11.002. PubMed DOI
Natasha, Shahid M., Farooq A.B.U., Rabbani F., Khalid S., Dumat C. Risk assessment and biophysiochemical responses of spinach to foliar application of lead oxide nanoparticles: A multivariate analysis. Chemosphere. 2020;245:125605. doi: 10.1016/j.chemosphere.2019.125605. PubMed DOI
Natasha, Shahid M., Khalid S., Saleem M. Unrevealing arsenic and lead toxicity and antioxidant response in spinach: A human health perspective. Environ. Geochem. Health. 2022;44:487–496. doi: 10.1007/s10653-021-00818-0. PubMed DOI
Zemanová V., Pavlíková D., Hnilička F., Pavlík M. Arsenic toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. Plants. 2021;10:2009. doi: 10.3390/plants10102009. PubMed DOI PMC
Barben S.A., Hopkins B.G., Jolley V.D., Webb B.L., Nichols B.A., Buxton E.A. Zinc, manganese and phosphorous interrelationships and their effects on iron and copper in chelator-buffered solution grown Russet Burbank potato. J. Plant Nutr. 2011;34:1144–1163. doi: 10.1080/01904167.2011.558158. DOI
Moreno-Lora A., Delgado A. Factors determining Zn availability and uptake by plants in soils developed under Mediterranean climate. Geoderma. 2020;376:114509. doi: 10.1016/j.geoderma.2020.114509. DOI
Li X., Zhang L., Ren H., Wang X., Mi F. Zinc toxicity response in Ceratoides arborescens and identification of CaMTP, a novel zinc transporter. Front. Plant Sci. 2022;13:976311. doi: 10.3389/fpls.2022.976311. PubMed DOI PMC
Ajeesh Krishna T.P., Maharajan T., Victor Roch G., Ignacimuthu S., Antony Ceasar S. Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Front. Plant Sci. 2020;11:662. doi: 10.3389/fpls.2020.00662. PubMed DOI PMC
Nath S., Dey S., Kundu R., Paul S. Phosphate and zinc interaction in soil and plants: A reciprocal cross-talk. Plant Growth Regul. 2024;104:591–615. doi: 10.1007/s10725-024-01201-6. DOI
Fan X., Zhou X., Chen H., Tang M., Xie X. Cross-talks between macro- and micronutrient uptake and signaling in plants. Front. Plant Sci. 2021;12:663477. doi: 10.3389/fpls.2021.663477. PubMed DOI PMC
Wolf M., Baretta D., Becegato V.A., Almeida V.D., Paulino A.T. Copper/zinc bioaccumulation and the effect of phytotoxicity on the growth of lettuce (Lactuca sativa L.) in non-contaminated, metal-contaminated and swine manure-enriched soils. Water Air Soil Pollut. 2017;228:152. doi: 10.1007/s11270-017-3345-1. DOI
Adamczyk-Szabela D., Wolf W.M. The influence of copper and zinc on photosynthesis and phenolic levels in basil (Ocimum basilicum L.), borage (Borago officinalis L.), common nettle (Urtica dioica L.) and peppermint (Mentha piperita L.) Int. J. Mol. Sci. 2024;25:3612. doi: 10.3390/ijms25073612. PubMed DOI PMC
Mondal S., Hazra G.C., Mani P.K. Effect of phosphorus and zinc application on zinc transformation and phyto-availability of zinc fraction in rice soil. J. Plant Nutr. 2024;47:3793–3805. doi: 10.1080/01904167.2024.2385584. DOI
Boudali G., Ghnaya T., Ben-Abdallah S., Chalh A., Sebei A., Ouirghi Z., Chaffei-Haouari C. Zincum Metallicum, a homeopathic drug, alleviates Zn-induced toxic effects and promotes plant growth and antioxidant capacity in Lepidium sativum L. Environ. Sci. Pollut. Res. 2022;29:33872–33884. doi: 10.1007/s11356-022-18633-0. PubMed DOI
Mengel K., Kirkby E.A. Principles of Plant Nutrition. 5th ed. Springer; Dordrecht, The Netherlands: 2001.
Qin L., Wang M., Zhao S., Li S., Lei X., Wang L., Chen S. Effect of soil leaching on the toxicity thresholds (ECx) of Zn in soils with different properties. Ecotoxicol. Environ. Saf. 2021;228:112999. doi: 10.1016/j.ecoenv.2021.112999. PubMed DOI
Zhao S., Qin L., Wang L., Sun X.Y., Yu L., Wang M., Chen S.B. Ecological risk thresholds for Zn in Chinese soils. Sci. Total Environ. 2022;833:155182. doi: 10.1016/j.scitotenv.2022.155182. PubMed DOI
Broadley M.R., White P.J., Hammond J.P., Zelko I., Lux A. Zinc in plants. New Phytol. 2007;173:677–702. doi: 10.1111/j.1469-8137.2007.01996.x. PubMed DOI
Barman H., Das S.K., Roy A. Zinc in soil environment for plant health and management strategy. Univers. J. Agric. Res. 2018;6:149–154. doi: 10.13189/ujar.2018.060501. DOI
Kiliç H.E., Tunca H., Sevindik T.O., Doğru A. Assessment of the effects of zinc on the growth and antioxidant enzymes in Scenedesmus ellipsoideus Chodat. Oceanol. Hydrobiol. Stud. 2019;48:270–278. doi: 10.2478/ohs-2019-0024. DOI
Singh K., Gupta S., Singh A.P. Review: Nutrient-nutrient interactions governing underground plant adaptation strategies in a heterogeneous environment. Plant Sci. 2024;342:112024. doi: 10.1016/j.plantsci.2024.112024. PubMed DOI
Wang C., Zhang S.H., Wang P.F., Hou J., Zhang W.J., Li W., Lin Z.P. The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere. 2009;75:1468–1476. doi: 10.1016/j.chemosphere.2009.02.033. PubMed DOI
Caldelas C., Araus J.L., Febrero A., Bort J. Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L. Acta Physiol. Plant. 2012;34:1217–1228. doi: 10.1007/s11738-012-0956-4. DOI
Kumari V.V., Banerjee P., Verma V.C., Sukumaran S., Chandran M.A.S., Gopinath K.A., Venkatesh G., Yadav S.K., Singh V.K., Awasthi N.K. Plant nutrition: An effective way to alleviate abiotic stress in agricultural crops. Int. J. Mol. Sci. 2022;23:8519. doi: 10.3390/ijms23158519. PubMed DOI PMC
Bashir H., Ahmad J., Bagheri R., Nauman M., Qureshi M.I. Limited sulfur resource forces Arabidopsis thaliana to shift towards non-sulfur tolerance under cadmium stress. Environ. Exp. Bot. 2013;94:19–32. doi: 10.1016/j.envexpbot.2012.05.004. DOI
Xu Q.S., Chu W.Y., Qiu H., Fu Y.Y., Cai S.J., Sha S. Responses of Hydrilla verticillata (L.f.) Royle to zinc: In situ localization, subcellular distribution and physiological and ultrastructural modifications. Plant Physiol. Biochem. 2013;69:43–48. doi: 10.1016/j.plaphy.2013.04.018. PubMed DOI
Repkina N., Nilova I., Kaznina N. Effect of zinc excess in substrate on physiological responses of Sinapis alba L. Plants. 2023;12:211. doi: 10.3390/plants12010211. PubMed DOI PMC
Mateos-Naranjo E., Pérez-Romero J.A., Redondo-Gómez S., Mesa-Marín J., Castellanos E.M., Davy A.J. Salinity alleviates zinc toxicity in the saltmarsh zinc-accumulator Juncus acutus. Ecotoxicol. Environ. Saf. 2018;163:478–485. doi: 10.1016/j.ecoenv.2018.07.092. PubMed DOI
Schmidt S.B., Husted S. The biochemical properties of manganese in plants. Plants. 2019;8:381. doi: 10.3390/plants8100381. PubMed DOI PMC
Salgado N., Silva M.A., Figueira M.E., Costa H.S., Albuquerque T.G. Oxalate in Foods: Extraction conditions, analytical methods, occurrence, and health implications. Foods. 2023;12:3201. doi: 10.3390/foods12173201. PubMed DOI PMC
Liu D., Liu A.H., He C., Wang J.H., Wang Y.A. Response of organic acids to zinc homeostasis in zinc-deficient and zinc-toxic apple rootstock roots. Pedosphere. 2012;22:803–814. doi: 10.1016/S1002-0160(12)60066-6. DOI
Pavlíková D., Zemanová V., Pavlík M. Health risk and quality assessment of vegetables cultivated on soils from a heavily polluted old mining area. Toxics. 2023;11:583. doi: 10.3390/toxics11070583. PubMed DOI PMC
Zemanová V., Lhotská M., Novák M., Hnilička F., Popov M., Pavlíková D. Multicontamination toxicity evaluation in the model plant Lactuca sativa L. Plants. 2024;13:1356. doi: 10.3390/plants13101356. PubMed DOI PMC
Pavlíková D., Pavlík M., Vašíčková S., Száková J., Vokáč K., Balík J., Tlustoš P. Development of a procedure for the sequential extraction of substances binding trace elements in plant biomass. Anal. Bioanal. Chem. 2005;381:863–872. doi: 10.1007/s00216-004-2955-9. PubMed DOI
Antoniadis V., Shaheen S.M., Boersch J., Frohne T., Du Laing G., Rinklebe J. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. J. Environ. Manag. 2017;186:192–200. doi: 10.1016/j.jenvman.2016.04.036. PubMed DOI
Němcová V., Buchtová I. Situation and Outlook Report—Vegetable. The Ministry of Agriculture of the Czech Republic; Prague, Czech Republic: 2022. p. 73.
USEPA . Exposure Factors Handbook, Final. U.S. Environment Protection Agency; Washington, DC, USA: 2011.
de Souza R.E., Fontes M.P.F., Tucci C.A.F., Lima H.N., Ferreira M.D. Health risk assessment and quality reference values of potentially toxic elements in soils of the Southwestern Amazonas State—Brazil. Sci. Total Environ. 2024;912:168937. doi: 10.1016/j.scitotenv.2023.168937. PubMed DOI