Health Risk and Quality Assessment of Vegetables Cultivated on Soils from a Heavily Polluted Old Mining Area

. 2023 Jul 04 ; 11 (7) : . [epub] 20230704

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37505549

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000845 Ministry of Education, Youth and Sports from the European Regional Development Fund Project

Three garden vegetables-radish, carrot and lettuce-were cultivated in a pot experiment using two soils from the Příbram area polluted mainly by cadmium (Cd), zinc (Zn), lead (Pb) and chromium (Cr). The soils of the Příbram district, Czech Republic, are heavily polluted as a result of the atmospheric deposition of toxic elements originating from historic lead-silver mining and smelting activities. The results showed that lettuce absorbed the highest amounts of toxic elements (Cd 28 and 30, Cr 12 and 13, Zn 92 and 205 mg·kg-1 DW), except Pb, which was higher in radish (30 and 49 mg·kg-1 DW). Changes in macronutrient contents in edible parts were not found, except for sulfur. A higher total free amino acids (fAAs) accumulation was shown in all vegetables in more contaminated soil, with the highest fAA content being in radish. A group of essential fAAs reached 7-24% of total fAAs in vegetables. The risk to human health was characterized using the target hazard quotient and total hazard index (HI). The cumulative effect of the consumption of vegetables with HI > 1 showed possible non-carcinogenic health effects for lettuce and carrot. HI decreased in the order Cd > Pb > Cr > Zn. The carcinogenic risk of toxic elements decreased in the order Cd > Cr > Pb (0.00054, 0.00026, 0.00003). These values showed a carcinogenic risk from the consumption of lettuce and carrot and confirmed that the adult population of the studied area is at high risk if lettuce and carrot cultivated in this area are consumed daily.

Zobrazit více v PubMed

Šichorová K., Tlustoš P., Száková J., Kořínek K., Balík J. Horizontal and vertical variability of heavy metals in the soil of a polluted area. Plant Soil Environ. 2004;50:525–534. doi: 10.17221/4069-PSE. DOI

Vaněk A., Ettler V., Grygar T., Borůvka L., Šebek O., Drábek O. Combined chemical and mineralogical evidence for heavy metal binding in mining- and smelting-affected alluvial soils. Pedosphere. 2008;18:464–478. doi: 10.1016/S1002-0160(08)60037-5. DOI

Sucharová J., Suchara I. Distribution of 36 element deposition rates in a historic mining and smelting area as determined through fine-scale biomonitoring techniques. Part I: Relative and absolute current atmospheric deposition levels detected by moss analyses. Water Air Soil Pollut. 2004;153:205–228. doi: 10.1023/B:WATE.0000019944.33209.83. DOI

Bešter P.K., Lobnik F., Eržen I., Kastelec D., Zupan M. Prediction of cadmium concentration in selected home-produced vegetables. Ecotoxicol. Environ. Saf. 2013;96:182–190. doi: 10.1016/j.ecoenv.2013.06.011. PubMed DOI

Fahr M., Laplaze L., Bendaou N., Hocher V., El Mzibri M., Bogusz D., Smouni A. Effect of lead on root growth. Front. Plant Sci. 2013;4:175. doi: 10.3389/fpls.2013.00175. PubMed DOI PMC

Reddy A.M., Kumar S.G., Jyothsnakumari G., Thimmanaik S., Sudhakar C. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.) Chemosphere. 2005;60:97–104. doi: 10.1016/j.chemosphere.2004.11.092. PubMed DOI

Bidar G., Pelfrêne A., Schwartz C., Waterlot C., Sahmer K., Marot F., Douay F. Urban kitchen gardens: Effect of the soil contamination and parameters on the trace element accumulation in vegetables—A review. Sci. Total Environ. 2020;738:139569. doi: 10.1016/j.scitotenv.2020.139569. PubMed DOI

Shanker A.K., Cervantes C., Loza-Tavera H., Avudainayagam S. Chromium toxicity in plants. Environ. Int. 2005;31:739–753. doi: 10.1016/j.envint.2005.02.003. PubMed DOI

Roba C., Roşu C., Piştea I., Ozunu A., Baciu C. Heavy metal content in vegetables and fruits cultivated in Baia Maremining area (Romania) and health risk assessment. Environ. Sci. Pollut. Res. 2016;23:6062–6073. doi: 10.1007/s11356-015-4799-6. PubMed DOI

Natasha. Shahid M., Farooq A.B.U., Rabbani F., Khalid S., Dumat C. Risk assessment and biophysiochemical responses of spinach to foliar application of lead oxide nanoparticles: A multivariate analysis. Chemosphere. 2020;245:125605. doi: 10.1016/j.chemosphere.2019.125605. PubMed DOI

Liu X., Gu S., Yang S., Deng J., Xu J. Heavy metals in soil-vegetable system around E-waste site and the health risk assessment. Sci. Total Environ. 2021;779:146438. doi: 10.1016/j.scitotenv.2021.146438. PubMed DOI

Edelstein M., Ben-Hur M. Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Hortic. 2018;234:431–444. doi: 10.1016/j.scienta.2017.12.039. DOI

Chaturvedi R., Favas P.J.C., Pratas J., Varun M., Paul M.S. Metal(loid) induced toxicity and defense mechanisms in Spinacia oleracea L.: Ecological hazard and prospects for phytoremediation. Ecotoxicol. Environ. Saf. 2019;183:109570. doi: 10.1016/j.ecoenv.2019.109570. PubMed DOI

Pavlík M., Zemanová V., Pavlíková D., Kyjaková P., Hlavsa T. Regulation of odd-numbered fatty acid content plays an important part in the metabolism of the hyperaccumulator Noccaea spp. adapted to oxidative stress. J. Plant Physiol. 2017;208:94–101. doi: 10.1016/j.jplph.2016.09.014. PubMed DOI

Riyazuddin R., Nisha N., Ejaz B., Khan M.I.R., Kumar M., Ramteke P.W., Gupta R.A. Comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules. 2022;12:43. doi: 10.3390/biom12010043. PubMed DOI PMC

Li X., Yang Y., Jia L., Chen H., Wei X. Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol. Environ. Saf. 2013;89:150–157. doi: 10.1016/j.ecoenv.2012.11.025. PubMed DOI

Pavlíková D., Zemanová V., Procházková D., Pavlík M., Száková J., Wilhelmová N. The long-term effect of zinc soil contamination on selected free amino acids playing an important role in plant adaptation to stress and senescence. Ecotoxicol. Environ. Saf. 2014;100:166–170. doi: 10.1016/j.ecoenv.2013.10.028. PubMed DOI

Ahmed S., Tuj-Zohra F., Mahdi M.M., Nurnabi M., Alam M.Z., Choudhury T.R. Health risk assessment for heavy metal accumulation in leafy vegetables grown on tannery effluent contaminated soil. Toxicol. Rep. 2022;9:346–355. doi: 10.1016/j.toxrep.2022.03.009. PubMed DOI PMC

Gupta N., Yadav K.K., Kumar V., Krishnan S., Kumar S., Nejad Z.D., Khan M.A.M., Alam J. Evaluating heavy metals contamination in soil and vegetables in the region of North India: Levels, transfer and potential human health risk analysis. Environ. Toxicol. Pharmacol. 2021;82:103563. doi: 10.1016/j.etap.2020.103563. PubMed DOI

Rai P.K., Lee S.S., Zhang M., Tsang Y.F., Kim K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019;125:365–385. doi: 10.1016/j.envint.2019.01.067. PubMed DOI

Rusin M., Domagalska J., Rogala D., Razzaghi M., Szymala I. Concentration of cadmium and lead in vegetables and fruits. Sci. Rep. 2021;11:11913. doi: 10.1038/s41598-021-91554-z. PubMed DOI PMC

Salaskar D., Shrivastava M., Kale S.P. Bioremediation potential of spinach (Spinacia oleracea L.) for decontamination of cadmium in soil. Curr. Sci. 2011;101:10.

Czech Ministry of the Environment . Public Notice No. 153/2016 for the Management of Soil Protection. Czech Ministry of the Environment; Prague, Czech Republic: 2016.

Pavlíková D., Zemanová V., Pavlík M., Dobrev P.I., Hnilička F., Motyka V. Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress. PLoS ONE. 2020;15:e0233055. doi: 10.1371/journal.pone.0233055. PubMed DOI PMC

Pavlíková D., Pavlík M., Zemanová V., Novák M., Doležal P., Dobrev P.I., Motyka V., Kraus K. Accumulation of toxic arsenic by cherry radish tuber (Raphanus sativus var. sativus Pers.) and its physiological, metabolic and anatomical stress responses. Plants. 2023;12:1257. doi: 10.3390/plants12061257. PubMed DOI PMC

Němcová V., Buchtová I. Situation and Outlook Report—Vegetable. The Ministry of Agriculture of the Czech Republic; Prague, Czech Republic: 2022. p. 73.

Chary N.S., Kamala C.T., Raj D.S.S. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 2008;69:513–524. doi: 10.1016/j.ecoenv.2007.04.013. PubMed DOI

Li H.X., Ji H.B., Shi C.J., Gao Y., Zhang Y., Xu X.Y., Ding H.J., Tang L., Xing Y.X. Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health. Chemosphere. 2017;172:505–515. doi: 10.1016/j.chemosphere.2017.01.021. PubMed DOI

Braak T., Šmilauer P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination. Microcomputer Power; Ithaca, NY, USA: 2002. Version 4.5.

Lhotská M., Zemanová V., Pavlík M., Pavlíková D., Hnilička F., Popov M. Leaf fitness and stress response after the application of contaminated soil dust particulate matter. Sci. Rep. 2022;12:10046. doi: 10.1038/s41598-022-13931-6. PubMed DOI PMC

Kabata-Pendias A., Mukherjee A.B. Trace Elements from Soil to Human. Springer; Berlin/Heidelberg, Germany: 2007. p. 550.

Warman P.R., Havard K.A. Yield, vitamin and mineral contents of organically and conventionally grown carrots and cabbage. Agric. Ecosyst. Environ. 1997;61:155–162. doi: 10.1016/S0167-8809(96)01110-3. DOI

Knez E., Kadac-Czapska K., Dmochowska-Slezak K., Grembecka M. Root vegetables—Composition, health effects, and contaminants. Int. J. Environ. Res. Public Health. 2022;19:15531. doi: 10.3390/ijerph192315531. PubMed DOI PMC

Marschner P. Marschner’s Mineral Nutrition of Higher Plants. 3rd ed. Academic Press—Elsevier; Amsterdam, The Netherlands: 2012. p. 651.

Manea D.N., Ienciu A.A., Stef R., Smuleac I.L., Gergen I.I., Nica D.V. Health risk assessment of dietary heavy metals intake from fruits and vegetables grown in selected old mining areas—A case study: The Banat area of southern Carpathians. Int. J. Environ. Res. Public Health. 2020;17:5172. doi: 10.3390/ijerph17145172. PubMed DOI PMC

Xiao Q., Wang S., Chi Y. Accumulation and chemical forms of cadmium in tissues of different vegetable crops. Agronomy. 2023;13:680. doi: 10.3390/agronomy13030680. DOI

Musilová J., Franková H., Lidiková J., Chlpík J., Vollmannová A., Árvay J., Harangozo L., Urminská J., Tóth T. Impact of old environmental burden in the Spiš region (Slovakia) on soil and home-grown vegetable contamination, and health effects of heavy metals. Sci. Rep. 2022;12:16371. doi: 10.1038/s41598-022-20847-8. PubMed DOI PMC

Guo Z., Dai H., Pan S. Health risk assessment of heavy metal exposure through vegetable consumption around a phosphorus chemical plant in the Kaiyang karst area, southwestern China. Environ. Sci. Pollut. Res. 2023;30:35617–35634. doi: 10.1007/s11356-022-24662-6. PubMed DOI

Dogan M., Karatas M., Aasim M. Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: A laboratory study. Ecotoxicol. Environ. Saf. 2018;148:431–440. doi: 10.1016/j.ecoenv.2017.10.058. PubMed DOI

Zheng S.N., Wang Q., Yuan Y.Z., Sun W.M. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chem. 2020;316:126213. doi: 10.1016/j.foodchem.2020.126213. PubMed DOI

Antoniadis V., Shaheen S.M., Boersch J., Frohne T., Du Laing G., Rinklebe J. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. J. Environ. Manag. 2017;186:192–200. doi: 10.1016/j.jenvman.2016.04.036. PubMed DOI

Ametepey S.T., Cobbina S.J., Akpabey F.J., Duwiejuah A.B., Abuntori Z.N. Health risk assessment and heavy metal contamination levels in vegetables from Tamale Metropolis, Ghana. Int. J. Food Contam. 2018;5:5. doi: 10.1186/s40550-018-0067-0. DOI

Cherfi A., Abdoun S., Gaci O. Food survey:Levels and potential health risks of chromium, lead, zinc and copper content in fruits and vegetables consumed in Algeria. Food Chem. Toxicol. 2014;70:48.e53. doi: 10.1016/j.fct.2014.04.044. PubMed DOI

Li X.Y., Li Z.G., Lin C.J., Bi X.Y., Liu J.L., Feng X., Zhang H., Chen J., Wu T.T. Health risks of heavy metal exposure through vegetable consumption near a large-scale Pb/Zn smelter in central China. Ecotoxicol. Environ. Saf. 2018;161:99–110. doi: 10.1016/j.ecoenv.2018.05.080. PubMed DOI

Gebeyehu H.R., Bayissa L.D. Levels of heavy metals in soil and vegetables and associated health risks in Mojo area, Ethiopia. PLoS ONE. 2020;15:e0227883. doi: 10.1371/journal.pone.0227883. PubMed DOI PMC

Zemanová V., Pavlíková D., Hnilička F., Pavlík M. Arsenic toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. Plants. 2021;10:2009. doi: 10.3390/plants10102009. PubMed DOI PMC

Kim M.J., Moon Y., Tou J.C., Mou B.Q., Waterland N.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.) J. Food Compos. Anal. 2016;49:19–34. doi: 10.1016/j.jfca.2016.03.004. DOI

Procházková D., Pavlíková D., Pavlík M. Sulphur: Role in Alleviation in Environmental Stress in Crop Plants. In: Azooz M.M., Ahmad P., editors. Plant-Environmental Interaction: Responses and Approaches to Mitigate Stress. John Wiley and Sons, Ltd.; West Sussex, UK: 2016. pp. 84–96.

Colovic M.B., Vasic V.M., Djuric D.M., Krstic D.Z. Sulphur-containing amino acids:Protective role against free radicals and heavy metals. Curr. Med. Chem. 2018;25:324–335. doi: 10.2174/0929867324666170609075434. PubMed DOI

Shi G., Liu H., Zhou D., Zhou H., Fan G., Chen W., Li J., Lou L., Gao Y. Sulfur reduces the root-to-shoot translocation of arsenic and cadmium by regulating their vacuolar sequestration in wheat (Triticum aestivum L.) Front. Plant Sci. 2022;13:1032681. doi: 10.3389/fpls.2022.1032681. PubMed DOI PMC

Kumar M., Tomar M., Punia S., Dhakane-Lad J., Dhumal S., Changan S., Senapathy M., Berwal M.K., Sampathrajan V., Sayed A.A.S., et al. Plant-based proteins and their multifaceted industrial applications. LWT—Food Sci. Technol. 2022;154:112620. doi: 10.1016/j.lwt.2021.112620. DOI

Zemanová V., Pavlík M., Pavlíková D., Kyjaková P. Changes in the contents of amino acids and the profile of fatty acids in response to cadmium contamination in spinach. Plant Soil Environ. 2015;61:285–290. doi: 10.17221/274/2015-PSE. DOI

Okunev R.V. Free Amino acid accumulation in soil and tomato plants (Solanum lycopersicum L.) associated with arsenic stress. Water Air Soil Pollut. 2019;230:253. doi: 10.1007/s11270-019-4309-4. DOI

Chaffei C., Pageau K., Suzuki A., Gouia H., Ghorbel M.H., Masclaux-Daubresse C. Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol. 2004;45:1681–1693. doi: 10.1093/pcp/pch192. PubMed DOI

Zemanová V., Pavlík M., Pavlíková D., Tlustoš P. The significance of methionine, histidine and tryptophan in plant responses and adaptation to cadmium stress. Plant Soil Environ. 2014;60:426–432. doi: 10.17221/544/2014-PSE. DOI

Kirma M., Araújo W.L., Fernie A.R., Galili G. The multifaceted role of aspartate-family amino acids in plant metabolism. J. Exp. Bot. 2012;63:4995–5001. doi: 10.1093/jxb/ers119. PubMed DOI

Pavlík M., Pavlíková D., Zemanová V., Hnilička F., Urbanová V., Száková J. Trace elements present in airborne particulate matter—Stressors of plant metabolism. Ecotoxicol. Environ. Saf. 2012;79:101–107. doi: 10.1016/j.ecoenv.2011.12.009. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...