Functional Characterization of Clinically-Relevant Rare Variants in ABCG2 Identified in a Gout and Hyperuricemia Cohort
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31003562
PubMed Central
PMC6523779
DOI
10.3390/cells8040363
PII: cells8040363
Knihovny.cz E-zdroje
- Klíčová slova
- ABCG2/BCRP, European cohort, WGA., common disease, exon sequence, functional study, gout susceptibility, heritability of serum uric acid, multiple rare variant, urate transporter,
- MeSH
- ABC transportér z rodiny G, člen 2 genetika metabolismus MeSH
- běloši genetika MeSH
- biologický transport MeSH
- dítě MeSH
- dna (nemoc) krev genetika metabolismus MeSH
- dospělí MeSH
- genetická predispozice k nemoci MeSH
- HEK293 buňky MeSH
- hyperurikemie krev genetika MeSH
- jednonukleotidový polymorfismus MeSH
- kohortové studie MeSH
- kyselina močová krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- nádorové proteiny genetika metabolismus MeSH
- předškolní dítě MeSH
- přenašeče organických aniontů metabolismus MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- ABC transportér z rodiny G, člen 2 MeSH
- ABCG2 protein, human MeSH Prohlížeč
- kyselina močová MeSH
- nádorové proteiny MeSH
- přenašeče organických aniontů MeSH
- urate transporter MeSH Prohlížeč
ATP-binding cassette subfamily G member 2 (ABCG2) is a physiologically important urate transporter. Accumulating evidence demonstrates that congenital dysfunction of ABCG2 is an important genetic risk factor in gout and hyperuricemia; recent studies suggest the clinical significance of both common and rare variants of ABCG2. However, the effects of rare variants of ABCG2 on the risk of such diseases are not fully understood. Here, using a cohort of 250 Czech individuals of European descent (68 primary hyperuricemia patients and 182 primary gout patients), we examined exonic non-synonymous variants of ABCG2. Based on the results of direct sequencing and database information, we experimentally characterized nine rare variants of ABCG2: R147W (rs372192400), T153M (rs753759474), F373C (rs752626614), T421A (rs199854112), T434M (rs769734146), S476P (not annotated), S572R (rs200894058), D620N (rs34783571), and a three-base deletion K360del (rs750972998). Functional analyses of these rare variants revealed a deficiency in the plasma membrane localization of R147W and S572R, lower levels of cellular proteins of T153M and F373C, and null urate uptake function of T434M and S476P. Accordingly, we newly identified six rare variants of ABCG2 that showed lower or null function. Our findings contribute to deepening the understanding of ABCG2-related gout/hyperuricemia risk and the biochemical characteristics of the ABCG2 protein.
Department of Cell Biology Faculty of Science Charles University 128 00 Prague 2 Czech Republic
Department of Pharmacy The University of Tokyo Hospital Tokyo 113 8655 Japan
Zobrazit více v PubMed
Dalbeth N., Merriman T.R., Stamp L.K. Gout. Lancet. 2016;388:2039–2052. doi: 10.1016/S0140-6736(16)00346-9. PubMed DOI
Yeldandi A.V., Wang X.D., Alvares K., Kumar S., Rao M.S., Reddy J.K. Human urate oxidase gene: Cloning and partial sequence analysis reveal a stop codon within the fifth exon. Biochem. Biophys. Res. Commun. 1990;171:641–646. doi: 10.1016/0006-291X(90)91194-W. PubMed DOI
Enomoto A., Kimura H., Chairoungdua A., Shigeta Y., Jutabha P., Cha S.H., Hosoyamada M., Takeda M., Sekine T., Igarashi T., et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417:447–452. doi: 10.1038/nature742. PubMed DOI
Vitart V., Rudan I., Hayward C., Gray N.K., Floyd J., Palmer C.N., Knott S.A., Kolcic I., Polasek O., Graessler J., et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat. Genet. 2008;40:437–442. doi: 10.1038/ng.106. PubMed DOI
Matsuo H., Chiba T., Nagamori S., Nakayama A., Domoto H., Phetdee K., Wiriyasermkul P., Kikuchi Y., Oda T., Nishiyama J., et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am. J. Hum. Genet. 2008;83:744–751. PubMed PMC
Caulfield M.J., Munroe P.B., O’Neill D., Witkowska K., Charchar F.J., Doblado M., Evans S., Eyheramendy S., Onipinla A., Howard P., et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 2008;5:e197. doi: 10.1371/journal.pmed.0050197. PubMed DOI PMC
Ichida K., Matsuo H., Takada T., Nakayama A., Murakami K., Shimizu T., Yamanashi Y., Kasuga H., Nakashima H., Nakamura T., et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat. Commun. 2012;3:764. doi: 10.1038/ncomms1756. PubMed DOI PMC
Woodward O.M., Kottgen A., Coresh J., Boerwinkle E., Guggino W.B., Kottgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc. Natl. Acad. Sci. USA. 2009;106:10338–10342. doi: 10.1073/pnas.0901249106. PubMed DOI PMC
Matsuo H., Takada T., Ichida K., Nakamura T., Nakayama A., Ikebuchi Y., Ito K., Kusanagi Y., Chiba T., Tadokoro S., et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: A function-based genetic analysis in a Japanese population. Sci. Transl. Med. 2009;1:5ra11. doi: 10.1126/scitranslmed.3000237. PubMed DOI
Nakayama A., Matsuo H., Nakaoka H., Nakamura T., Nakashima H., Takada Y., Oikawa Y., Takada T., Sakiyama M., Shimizu S., et al. Common dysfunctional variants of ABCG2 have stronger impact on hyperuricemia progression than typical environmental risk factors. Sci. Rep. 2014;4:5227. doi: 10.1038/srep05227. PubMed DOI PMC
Matsuo H., Nakayama A., Sakiyama M., Chiba T., Shimizu S., Kawamura Y., Nakashima H., Nakamura T., Takada Y., Oikawa Y., et al. ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload. Sci. Rep. 2014;4:3755. doi: 10.1038/srep03755. PubMed DOI PMC
Robey R.W., To K.K., Polgar O., Dohse M., Fetsch P., Dean M., Bates S.E. ABCG2: A perspective. Adv. Drug Deliv. Rev. 2009;61:3–13. doi: 10.1016/j.addr.2008.11.003. PubMed DOI PMC
Knutsen T., Rao V.K., Ried T., Mickley L., Schneider E., Miyake K., Ghadimi B.M., Padilla-Nash H., Pack S., Greenberger L., et al. Amplification of 4q21-q22 and the MXR gene in independently derived mitoxantrone-resistant cell lines. Genes Chromosomes Cancer. 2000;27:110–116. doi: 10.1002/(SICI)1098-2264(200001)27:1<110::AID-GCC14>3.0.CO;2-4. PubMed DOI
Major T.J., Dalbeth N., Stahl E.A., Merriman T.R. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 2018;14:341–353. doi: 10.1038/s41584-018-0004-x. PubMed DOI
Nakayama A., Nakaoka H., Yamamoto K., Sakiyama M., Shaukat A., Toyoda Y., Okada Y., Kamatani Y., Nakamura T., Takada T., et al. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes. Ann. Rheum. Dis. 2017;76:869–877. doi: 10.1136/annrheumdis-2016-209632. PubMed DOI PMC
Matsuo H., Yamamoto K., Nakaoka H., Nakayama A., Sakiyama M., Chiba T., Takahashi A., Nakamura T., Nakashima H., Takada Y., et al. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes. Ann. Rheum. Dis. 2016;75:652–659. doi: 10.1136/annrheumdis-2014-206191. PubMed DOI PMC
Kottgen A., Albrecht E., Teumer A., Vitart V., Krumsiek J., Hundertmark C., Pistis G., Ruggiero D., O’Seaghdha C.M., Haller T., et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 2013;45:145–154. doi: 10.1038/ng.2500. PubMed DOI PMC
Kolz M., Johnson T., Sanna S., Teumer A., Vitart V., Perola M., Mangino M., Albrecht E., Wallace C., Farrall M., et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5:e1000504. doi: 10.1371/journal.pgen.1000504. PubMed DOI PMC
Dehghan A., Kottgen A., Yang Q., Hwang S.J., Kao W.L., Rivadeneira F., Boerwinkle E., Levy D., Hofman A., Astor B.C., et al. Association of three genetic loci with uric acid concentration and risk of gout: A genome-wide association study. Lancet. 2008;372:1953–1961. doi: 10.1016/S0140-6736(08)61343-4. PubMed DOI PMC
Heyes N., Kapoor P., Kerr I.D. Polymorphisms of the Multidrug Pump ABCG2: A Systematic Review of Their Effect on Protein Expression, Function, and Drug Pharmacokinetics. Drug Metab. Dispos. 2018;46:1886–1899. doi: 10.1124/dmd.118.083030. PubMed DOI
Matsuo H., Ichida K., Takada T., Nakayama A., Nakashima H., Nakamura T., Kawamura Y., Takada Y., Yamamoto K., Inoue H., et al. Common dysfunctional variants in ABCG2 are a major cause of early-onset gout. Sci. Rep. 2013;3:2014. doi: 10.1038/srep02014. PubMed DOI PMC
Higashino T., Takada T., Nakaoka H., Toyoda Y., Stiburkova B., Miyata H., Ikebuchi Y., Nakashima H., Shimizu S., Kawaguchi M., et al. Multiple common and rare variants of ABCG2 cause gout. RMD Open. 2017;3:e000464. doi: 10.1136/rmdopen-2017-000464. PubMed DOI PMC
Stiburkova B., Pavelcova K., Zavada J., Petru L., Simek P., Cepek P., Pavlikova M., Matsuo H., Merriman T.R., Pavelka K. Functional non-synonymous variants of ABCG2 and gout risk. Rheumatology (Oxford) 2017;56:1982–1992. doi: 10.1093/rheumatology/kex295. PubMed DOI
Stiburkova B., Miyata H., Zavada J., Tomcik M., Pavelka K., Storkanova G., Toyoda Y., Takada T., Suzuki H. Novel dysfunctional variant in ABCG2 as a cause of severe tophaceous gout: Biochemical, molecular genetics and functional analysis. Rheumatology (Oxford) 2016;55:191–194. doi: 10.1093/rheumatology/kev350. PubMed DOI
Stiburkova B., Pavelcova K., Pavlikova M., Jesina P., Pavelka K. The impact of dysfunctional variants of ABCG2 on hyperuricemia and gout in pediatric-onset patients. Arthritis Res. Ther. 2019;21:77. doi: 10.1186/s13075-019-1860-8. PubMed DOI PMC
Wallace S.L., Robinson H., Masi A.T., Decker J.L., McCarty D.J., Yu T.F. Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis Rheum. 1977;20:895–900. doi: 10.1002/art.1780200320. PubMed DOI
Toyoda Y., Takada T., Miyata H., Ishikawa T., Suzuki H. Regulation of the Axillary Osmidrosis-Associated ABCC11 Protein Stability by N-Linked Glycosylation: Effect of Glucose Condition. PLoS ONE. 2016;11:e0157172. doi: 10.1371/journal.pone.0157172. PubMed DOI PMC
Toyoda Y., Sakurai A., Mitani Y., Nakashima M., Yoshiura K., Nakagawa H., Sakai Y., Ota I., Lezhava A., Hayashizaki Y., et al. Earwax, osmidrosis, and breast cancer: Why does one SNP (538G>A) in the human ABC transporter ABCC11 gene determine earwax type? FASEB J. 2009;23:2001–2013. doi: 10.1096/fj.09-129098. PubMed DOI
Toyoda Y., Takada T., Gomi T., Nakagawa H., Ishikawa T., Suzuki H. Clinical and Molecular Evidence of ABCC11 Protein Expression in Axillary Apocrine Glands of Patients with Axillary Osmidrosis. Int. J. Mol. Sci. 2017;18:417. doi: 10.3390/ijms18020417. PubMed DOI PMC
Nakagawa H., Wakabayashi-Nakao K., Tamura A., Toyoda Y., Koshiba S., Ishikawa T. Disruption of N-linked glycosylation enhances ubiquitin-mediated proteasomal degradation of the human ATP-binding cassette transporter ABCG2. FEBS J. 2009;276:7237–7252. doi: 10.1111/j.1742-4658.2009.07423.x. PubMed DOI
Miyata H., Takada T., Toyoda Y., Matsuo H., Ichida K., Suzuki H. Identification of Febuxostat as a New Strong ABCG2 Inhibitor: Potential Applications and Risks in Clinical Situations. Front. Pharmacol. 2016;7:518. doi: 10.3389/fphar.2016.00518. PubMed DOI PMC
Toyoda Y., Takada T., Suzuki H. Halogenated hydrocarbon solvent-related cholangiocarcinoma risk: Biliary excretion of glutathione conjugates of 1,2-dichloropropane evidenced by untargeted metabolomics analysis. Sci. Rep. 2016;6:24586. doi: 10.1038/srep24586. PubMed DOI PMC
Takada T., Yamamoto T., Matsuo H., Tan J.K., Ooyama K., Sakiyama M., Miyata H., Yamanashi Y., Toyoda Y., Higashino T., et al. Identification of ABCG2 as an Exporter of Uremic Toxin Indoxyl Sulfate in Mice and as a Crucial Factor Influencing CKD Progression. Sci. Rep. 2018;8:11147. doi: 10.1038/s41598-018-29208-w. PubMed DOI PMC
Hurba O., Mancikova A., Krylov V., Pavlikova M., Pavelka K., Stiburkova B. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: No evidence of effect on hyperuricemia and gout. PLoS ONE. 2014;30:e107902. doi: 10.1371/journal.pone.0107902. PubMed DOI PMC
Taylor N.M.I., Manolaridis I., Jackson S.M., Kowal J., Stahlberg H., Locher K.P. Structure of the human multidrug transporter ABCG2. Nature. 2017;546:504–509. doi: 10.1038/nature22345. PubMed DOI
Beitz E. T(E)Xtopo: Shaded membrane protein topology plots in LAT(E)X2epsilon. Bioinformatics. 2000;16:1050–1051. doi: 10.1093/bioinformatics/16.11.1050. PubMed DOI
Tamura A., Watanabe M., Saito H., Nakagawa H., Kamachi T., Okura I., Ishikawa T. Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: Identification of alleles that are defective in porphyrin transport. Mol. Pharmacol. 2006;70:287–296. PubMed
Toyoda Y., Takada T., Umezawa M., Tomura F., Yamanashi Y., Takeda K., Suzuki H. Identification of hepatic NPC1L1 as an NAFLD risk factor evidenced by ezetimibe-mediated steatosis prevention and recovery. FASEB BioAdv. 2019 doi: 10.1096/fba.2018-00044. in press. PubMed DOI PMC
Kondo C., Suzuki H., Itoda M., Ozawa S., Sawada J., Kobayashi D., Ieiri I., Mine K., Ohtsubo K., Sugiyama Y. Functional analysis of SNPs variants of BCRP/ABCG2. Pharm. Res. 2004;21:1895–1903. doi: 10.1023/B:PHAM.0000045245.21637.d4. PubMed DOI
Nakagawa H., Toyoda Y., Wakabayashi-Nakao K., Tamaki H., Osumi M., Ishikawa T. Ubiquitin-mediated proteasomal degradation of ABC transporters: A new aspect of genetic polymorphisms and clinical impacts. J. Pharm. Sci. 2011;100:3602–3619. doi: 10.1002/jps.22615. PubMed DOI
Zambo B., Bartos Z., Mozner O., Szabo E., Varady G., Poor G., Palinkas M., Andrikovics H., Hegedus T., Homolya L., et al. Clinically relevant mutations in the ABCG2 transporter uncovered by genetic analysis linked to erythrocyte membrane protein expression. Sci. Rep. 2018;8:7487. doi: 10.1038/s41598-018-25695-z. PubMed DOI PMC
Haider A.J., Cox M.H., Jones N., Goode A.J., Bridge K.S., Wong K., Briggs D., Kerr I.D. Identification of residues in ABCG2 affecting protein trafficking and drug transport, using co-evolutionary analysis of ABCG sequences. Biosci. Rep. 2015;35:e00241. doi: 10.1042/BSR20150150. PubMed DOI PMC
Li C., Li Z., Liu S., Wang C., Han L., Cui L., Zhou J., Zou H., Liu Z., Chen J., et al. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese. Nat. Commun. 2015;6:7041. doi: 10.1038/ncomms8041. PubMed DOI PMC
Sakiyama M., Matsuo H., Takada Y., Nakamura T., Nakayama A., Takada T., Kitajiri S., Wakai K., Suzuki H., Shinomiya N. Ethnic differences in ATP-binding cassette transporter, sub-family G, member 2 (ABCG2/BCRP): Genotype combinations and estimated functions. Drug Metab. Pharmacokinet. 2014;29:490–492. doi: 10.2133/dmpk.DMPK-14-SC-041. PubMed DOI
Giacomini K.M., Huang S.M., Tweedie D.J., Benet L.Z., Brouwer K.L., Chu X., Dahlin A., Evers R., Fischer V., Hillgren K.M., et al. Membrane transporters in drug development. Nat. Rev. Drug Discov. 2010;9:215–236. PubMed PMC
Toyoda Y., Takada T., Suzuki H. Inhibitors of human ABCG2: From technical background to recent updates with clinical implications. Front. Pharmacol. 2019;10:208. doi: 10.3389/fphar.2019.00208. PubMed DOI PMC
Interleukin-37: associations of plasma levels and genetic variants in gout