Functional Characterization of Clinically-Relevant Rare Variants in ABCG2 Identified in a Gout and Hyperuricemia Cohort

. 2019 Apr 18 ; 8 (4) : . [epub] 20190418

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31003562

ATP-binding cassette subfamily G member 2 (ABCG2) is a physiologically important urate transporter. Accumulating evidence demonstrates that congenital dysfunction of ABCG2 is an important genetic risk factor in gout and hyperuricemia; recent studies suggest the clinical significance of both common and rare variants of ABCG2. However, the effects of rare variants of ABCG2 on the risk of such diseases are not fully understood. Here, using a cohort of 250 Czech individuals of European descent (68 primary hyperuricemia patients and 182 primary gout patients), we examined exonic non-synonymous variants of ABCG2. Based on the results of direct sequencing and database information, we experimentally characterized nine rare variants of ABCG2: R147W (rs372192400), T153M (rs753759474), F373C (rs752626614), T421A (rs199854112), T434M (rs769734146), S476P (not annotated), S572R (rs200894058), D620N (rs34783571), and a three-base deletion K360del (rs750972998). Functional analyses of these rare variants revealed a deficiency in the plasma membrane localization of R147W and S572R, lower levels of cellular proteins of T153M and F373C, and null urate uptake function of T434M and S476P. Accordingly, we newly identified six rare variants of ABCG2 that showed lower or null function. Our findings contribute to deepening the understanding of ABCG2-related gout/hyperuricemia risk and the biochemical characteristics of the ABCG2 protein.

Zobrazit více v PubMed

Dalbeth N., Merriman T.R., Stamp L.K. Gout. Lancet. 2016;388:2039–2052. doi: 10.1016/S0140-6736(16)00346-9. PubMed DOI

Yeldandi A.V., Wang X.D., Alvares K., Kumar S., Rao M.S., Reddy J.K. Human urate oxidase gene: Cloning and partial sequence analysis reveal a stop codon within the fifth exon. Biochem. Biophys. Res. Commun. 1990;171:641–646. doi: 10.1016/0006-291X(90)91194-W. PubMed DOI

Enomoto A., Kimura H., Chairoungdua A., Shigeta Y., Jutabha P., Cha S.H., Hosoyamada M., Takeda M., Sekine T., Igarashi T., et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417:447–452. doi: 10.1038/nature742. PubMed DOI

Vitart V., Rudan I., Hayward C., Gray N.K., Floyd J., Palmer C.N., Knott S.A., Kolcic I., Polasek O., Graessler J., et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat. Genet. 2008;40:437–442. doi: 10.1038/ng.106. PubMed DOI

Matsuo H., Chiba T., Nagamori S., Nakayama A., Domoto H., Phetdee K., Wiriyasermkul P., Kikuchi Y., Oda T., Nishiyama J., et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am. J. Hum. Genet. 2008;83:744–751. PubMed PMC

Caulfield M.J., Munroe P.B., O’Neill D., Witkowska K., Charchar F.J., Doblado M., Evans S., Eyheramendy S., Onipinla A., Howard P., et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 2008;5:e197. doi: 10.1371/journal.pmed.0050197. PubMed DOI PMC

Ichida K., Matsuo H., Takada T., Nakayama A., Murakami K., Shimizu T., Yamanashi Y., Kasuga H., Nakashima H., Nakamura T., et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat. Commun. 2012;3:764. doi: 10.1038/ncomms1756. PubMed DOI PMC

Woodward O.M., Kottgen A., Coresh J., Boerwinkle E., Guggino W.B., Kottgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc. Natl. Acad. Sci. USA. 2009;106:10338–10342. doi: 10.1073/pnas.0901249106. PubMed DOI PMC

Matsuo H., Takada T., Ichida K., Nakamura T., Nakayama A., Ikebuchi Y., Ito K., Kusanagi Y., Chiba T., Tadokoro S., et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: A function-based genetic analysis in a Japanese population. Sci. Transl. Med. 2009;1:5ra11. doi: 10.1126/scitranslmed.3000237. PubMed DOI

Nakayama A., Matsuo H., Nakaoka H., Nakamura T., Nakashima H., Takada Y., Oikawa Y., Takada T., Sakiyama M., Shimizu S., et al. Common dysfunctional variants of ABCG2 have stronger impact on hyperuricemia progression than typical environmental risk factors. Sci. Rep. 2014;4:5227. doi: 10.1038/srep05227. PubMed DOI PMC

Matsuo H., Nakayama A., Sakiyama M., Chiba T., Shimizu S., Kawamura Y., Nakashima H., Nakamura T., Takada Y., Oikawa Y., et al. ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload. Sci. Rep. 2014;4:3755. doi: 10.1038/srep03755. PubMed DOI PMC

Robey R.W., To K.K., Polgar O., Dohse M., Fetsch P., Dean M., Bates S.E. ABCG2: A perspective. Adv. Drug Deliv. Rev. 2009;61:3–13. doi: 10.1016/j.addr.2008.11.003. PubMed DOI PMC

Knutsen T., Rao V.K., Ried T., Mickley L., Schneider E., Miyake K., Ghadimi B.M., Padilla-Nash H., Pack S., Greenberger L., et al. Amplification of 4q21-q22 and the MXR gene in independently derived mitoxantrone-resistant cell lines. Genes Chromosomes Cancer. 2000;27:110–116. doi: 10.1002/(SICI)1098-2264(200001)27:1<110::AID-GCC14>3.0.CO;2-4. PubMed DOI

Major T.J., Dalbeth N., Stahl E.A., Merriman T.R. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 2018;14:341–353. doi: 10.1038/s41584-018-0004-x. PubMed DOI

Nakayama A., Nakaoka H., Yamamoto K., Sakiyama M., Shaukat A., Toyoda Y., Okada Y., Kamatani Y., Nakamura T., Takada T., et al. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes. Ann. Rheum. Dis. 2017;76:869–877. doi: 10.1136/annrheumdis-2016-209632. PubMed DOI PMC

Matsuo H., Yamamoto K., Nakaoka H., Nakayama A., Sakiyama M., Chiba T., Takahashi A., Nakamura T., Nakashima H., Takada Y., et al. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes. Ann. Rheum. Dis. 2016;75:652–659. doi: 10.1136/annrheumdis-2014-206191. PubMed DOI PMC

Kottgen A., Albrecht E., Teumer A., Vitart V., Krumsiek J., Hundertmark C., Pistis G., Ruggiero D., O’Seaghdha C.M., Haller T., et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 2013;45:145–154. doi: 10.1038/ng.2500. PubMed DOI PMC

Kolz M., Johnson T., Sanna S., Teumer A., Vitart V., Perola M., Mangino M., Albrecht E., Wallace C., Farrall M., et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5:e1000504. doi: 10.1371/journal.pgen.1000504. PubMed DOI PMC

Dehghan A., Kottgen A., Yang Q., Hwang S.J., Kao W.L., Rivadeneira F., Boerwinkle E., Levy D., Hofman A., Astor B.C., et al. Association of three genetic loci with uric acid concentration and risk of gout: A genome-wide association study. Lancet. 2008;372:1953–1961. doi: 10.1016/S0140-6736(08)61343-4. PubMed DOI PMC

Heyes N., Kapoor P., Kerr I.D. Polymorphisms of the Multidrug Pump ABCG2: A Systematic Review of Their Effect on Protein Expression, Function, and Drug Pharmacokinetics. Drug Metab. Dispos. 2018;46:1886–1899. doi: 10.1124/dmd.118.083030. PubMed DOI

Matsuo H., Ichida K., Takada T., Nakayama A., Nakashima H., Nakamura T., Kawamura Y., Takada Y., Yamamoto K., Inoue H., et al. Common dysfunctional variants in ABCG2 are a major cause of early-onset gout. Sci. Rep. 2013;3:2014. doi: 10.1038/srep02014. PubMed DOI PMC

Higashino T., Takada T., Nakaoka H., Toyoda Y., Stiburkova B., Miyata H., Ikebuchi Y., Nakashima H., Shimizu S., Kawaguchi M., et al. Multiple common and rare variants of ABCG2 cause gout. RMD Open. 2017;3:e000464. doi: 10.1136/rmdopen-2017-000464. PubMed DOI PMC

Stiburkova B., Pavelcova K., Zavada J., Petru L., Simek P., Cepek P., Pavlikova M., Matsuo H., Merriman T.R., Pavelka K. Functional non-synonymous variants of ABCG2 and gout risk. Rheumatology (Oxford) 2017;56:1982–1992. doi: 10.1093/rheumatology/kex295. PubMed DOI

Stiburkova B., Miyata H., Zavada J., Tomcik M., Pavelka K., Storkanova G., Toyoda Y., Takada T., Suzuki H. Novel dysfunctional variant in ABCG2 as a cause of severe tophaceous gout: Biochemical, molecular genetics and functional analysis. Rheumatology (Oxford) 2016;55:191–194. doi: 10.1093/rheumatology/kev350. PubMed DOI

Stiburkova B., Pavelcova K., Pavlikova M., Jesina P., Pavelka K. The impact of dysfunctional variants of ABCG2 on hyperuricemia and gout in pediatric-onset patients. Arthritis Res. Ther. 2019;21:77. doi: 10.1186/s13075-019-1860-8. PubMed DOI PMC

Wallace S.L., Robinson H., Masi A.T., Decker J.L., McCarty D.J., Yu T.F. Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis Rheum. 1977;20:895–900. doi: 10.1002/art.1780200320. PubMed DOI

Toyoda Y., Takada T., Miyata H., Ishikawa T., Suzuki H. Regulation of the Axillary Osmidrosis-Associated ABCC11 Protein Stability by N-Linked Glycosylation: Effect of Glucose Condition. PLoS ONE. 2016;11:e0157172. doi: 10.1371/journal.pone.0157172. PubMed DOI PMC

Toyoda Y., Sakurai A., Mitani Y., Nakashima M., Yoshiura K., Nakagawa H., Sakai Y., Ota I., Lezhava A., Hayashizaki Y., et al. Earwax, osmidrosis, and breast cancer: Why does one SNP (538G>A) in the human ABC transporter ABCC11 gene determine earwax type? FASEB J. 2009;23:2001–2013. doi: 10.1096/fj.09-129098. PubMed DOI

Toyoda Y., Takada T., Gomi T., Nakagawa H., Ishikawa T., Suzuki H. Clinical and Molecular Evidence of ABCC11 Protein Expression in Axillary Apocrine Glands of Patients with Axillary Osmidrosis. Int. J. Mol. Sci. 2017;18:417. doi: 10.3390/ijms18020417. PubMed DOI PMC

Nakagawa H., Wakabayashi-Nakao K., Tamura A., Toyoda Y., Koshiba S., Ishikawa T. Disruption of N-linked glycosylation enhances ubiquitin-mediated proteasomal degradation of the human ATP-binding cassette transporter ABCG2. FEBS J. 2009;276:7237–7252. doi: 10.1111/j.1742-4658.2009.07423.x. PubMed DOI

Miyata H., Takada T., Toyoda Y., Matsuo H., Ichida K., Suzuki H. Identification of Febuxostat as a New Strong ABCG2 Inhibitor: Potential Applications and Risks in Clinical Situations. Front. Pharmacol. 2016;7:518. doi: 10.3389/fphar.2016.00518. PubMed DOI PMC

Toyoda Y., Takada T., Suzuki H. Halogenated hydrocarbon solvent-related cholangiocarcinoma risk: Biliary excretion of glutathione conjugates of 1,2-dichloropropane evidenced by untargeted metabolomics analysis. Sci. Rep. 2016;6:24586. doi: 10.1038/srep24586. PubMed DOI PMC

Takada T., Yamamoto T., Matsuo H., Tan J.K., Ooyama K., Sakiyama M., Miyata H., Yamanashi Y., Toyoda Y., Higashino T., et al. Identification of ABCG2 as an Exporter of Uremic Toxin Indoxyl Sulfate in Mice and as a Crucial Factor Influencing CKD Progression. Sci. Rep. 2018;8:11147. doi: 10.1038/s41598-018-29208-w. PubMed DOI PMC

Hurba O., Mancikova A., Krylov V., Pavlikova M., Pavelka K., Stiburkova B. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: No evidence of effect on hyperuricemia and gout. PLoS ONE. 2014;30:e107902. doi: 10.1371/journal.pone.0107902. PubMed DOI PMC

Taylor N.M.I., Manolaridis I., Jackson S.M., Kowal J., Stahlberg H., Locher K.P. Structure of the human multidrug transporter ABCG2. Nature. 2017;546:504–509. doi: 10.1038/nature22345. PubMed DOI

Beitz E. T(E)Xtopo: Shaded membrane protein topology plots in LAT(E)X2epsilon. Bioinformatics. 2000;16:1050–1051. doi: 10.1093/bioinformatics/16.11.1050. PubMed DOI

Tamura A., Watanabe M., Saito H., Nakagawa H., Kamachi T., Okura I., Ishikawa T. Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: Identification of alleles that are defective in porphyrin transport. Mol. Pharmacol. 2006;70:287–296. PubMed

Toyoda Y., Takada T., Umezawa M., Tomura F., Yamanashi Y., Takeda K., Suzuki H. Identification of hepatic NPC1L1 as an NAFLD risk factor evidenced by ezetimibe-mediated steatosis prevention and recovery. FASEB BioAdv. 2019 doi: 10.1096/fba.2018-00044. in press. PubMed DOI PMC

Kondo C., Suzuki H., Itoda M., Ozawa S., Sawada J., Kobayashi D., Ieiri I., Mine K., Ohtsubo K., Sugiyama Y. Functional analysis of SNPs variants of BCRP/ABCG2. Pharm. Res. 2004;21:1895–1903. doi: 10.1023/B:PHAM.0000045245.21637.d4. PubMed DOI

Nakagawa H., Toyoda Y., Wakabayashi-Nakao K., Tamaki H., Osumi M., Ishikawa T. Ubiquitin-mediated proteasomal degradation of ABC transporters: A new aspect of genetic polymorphisms and clinical impacts. J. Pharm. Sci. 2011;100:3602–3619. doi: 10.1002/jps.22615. PubMed DOI

Zambo B., Bartos Z., Mozner O., Szabo E., Varady G., Poor G., Palinkas M., Andrikovics H., Hegedus T., Homolya L., et al. Clinically relevant mutations in the ABCG2 transporter uncovered by genetic analysis linked to erythrocyte membrane protein expression. Sci. Rep. 2018;8:7487. doi: 10.1038/s41598-018-25695-z. PubMed DOI PMC

Haider A.J., Cox M.H., Jones N., Goode A.J., Bridge K.S., Wong K., Briggs D., Kerr I.D. Identification of residues in ABCG2 affecting protein trafficking and drug transport, using co-evolutionary analysis of ABCG sequences. Biosci. Rep. 2015;35:e00241. doi: 10.1042/BSR20150150. PubMed DOI PMC

Li C., Li Z., Liu S., Wang C., Han L., Cui L., Zhou J., Zou H., Liu Z., Chen J., et al. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese. Nat. Commun. 2015;6:7041. doi: 10.1038/ncomms8041. PubMed DOI PMC

Sakiyama M., Matsuo H., Takada Y., Nakamura T., Nakayama A., Takada T., Kitajiri S., Wakai K., Suzuki H., Shinomiya N. Ethnic differences in ATP-binding cassette transporter, sub-family G, member 2 (ABCG2/BCRP): Genotype combinations and estimated functions. Drug Metab. Pharmacokinet. 2014;29:490–492. doi: 10.2133/dmpk.DMPK-14-SC-041. PubMed DOI

Giacomini K.M., Huang S.M., Tweedie D.J., Benet L.Z., Brouwer K.L., Chu X., Dahlin A., Evers R., Fischer V., Hillgren K.M., et al. Membrane transporters in drug development. Nat. Rev. Drug Discov. 2010;9:215–236. PubMed PMC

Toyoda Y., Takada T., Suzuki H. Inhibitors of human ABCG2: From technical background to recent updates with clinical implications. Front. Pharmacol. 2019;10:208. doi: 10.3389/fphar.2019.00208. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Examining the Association of Rare Allelic Variants in Urate Transporters SLC22A11, SLC22A13, and SLC17A1 with Hyperuricemia and Gout

. 2024 ; 2024 () : 5930566. [epub] 20240106

Alterations in lipidome profiles distinguish early-onset hyperuricemia, gout, and the effect of urate-lowering treatment

. 2023 Dec 02 ; 25 (1) : 234. [epub] 20231202

Interleukin-37: associations of plasma levels and genetic variants in gout

. 2023 Oct 18 ; 25 (1) : 203. [epub] 20231018

Functional Characterization of Rare Variants in OAT1/SLC22A6 and OAT3/SLC22A8 Urate Transporters Identified in a Gout and Hyperuricemia Cohort

. 2022 Mar 22 ; 11 (7) : . [epub] 20220322

Identification of a dysfunctional exon-skipping splice variant in GLUT9/SLC2A9 causal for renal hypouricemia type 2

. 2022 ; 13 () : 1048330. [epub] 20230117

Identification of Two Dysfunctional Variants in the ABCG2 Urate Transporter Associated with Pediatric-Onset of Familial Hyperuricemia and Early-Onset Gout

. 2021 Feb 16 ; 22 (4) : . [epub] 20210216

Evaluation of the Influence of Genetic Variants of SLC2A9 (GLUT9) and SLC22A12 (URAT1) on the Development of Hyperuricemia and Gout

. 2020 Aug 04 ; 9 (8) : . [epub] 20200804

Interaction of the p.Q141K Variant of the ABCG2 Gene with Clinical Data and Cytokine Levels in Primary Hyperuricemia and Gout

. 2019 Nov 14 ; 8 (11) : . [epub] 20191114

Familial early-onset hyperuricemia and gout associated with a newly identified dysfunctional variant in urate transporter ABCG2

. 2019 Oct 28 ; 21 (1) : 219. [epub] 20191028

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...