The impact of dysfunctional variants of ABCG2 on hyperuricemia and gout in pediatric-onset patients
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
AZV 15-26693 A, RVO00023728
Ministerstvo Zdravotnictví Ceské Republiky - International
RVO VFN64165
Ministerstvo Zdravotnictví Ceské Republiky - International
PubMed
30894219
PubMed Central
PMC6425717
DOI
10.1186/s13075-019-1860-8
PII: 10.1186/s13075-019-1860-8
Knihovny.cz E-zdroje
- Klíčová slova
- ABCG2, Gout, Hyperuricemia, Urate transport,
- MeSH
- ABC transportér z rodiny G, člen 2 genetika MeSH
- alopurinol terapeutické užití MeSH
- antiuratika terapeutické užití MeSH
- dítě MeSH
- dna (nemoc) diagnóza farmakoterapie genetika MeSH
- dospělí MeSH
- febuxostat terapeutické užití MeSH
- frekvence genu MeSH
- genetická predispozice k nemoci genetika MeSH
- genotyp MeSH
- hyperurikemie diagnóza farmakoterapie genetika MeSH
- jednonukleotidový polymorfismus * MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- předškolní dítě MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- ABC transportér z rodiny G, člen 2 MeSH
- alopurinol MeSH
- antiuratika MeSH
- febuxostat MeSH
BACKGROUND: ABCG2 is a high-capacity urate transporter that plays a crucial role in renal urate overload and extra-renal urate underexcretion. Previous studies have suggested an association between hyperuricemia and gout susceptibility relative to dysfunctional ABCG2 variants, with rs2231142 (Q141K) being the most common. In this study, we analyzed the ABCG2 gene in a hyperuricemia and gout cohort focusing on patients with pediatric-onset, i.e., before 18 years of age. METHOD: The cohort was recruited from the Czech Republic (n = 234) and consisted of 58 primary hyperuricemia and 176 gout patients, with a focus on pediatric-onset patients (n = 31, 17 hyperuricemia/14 gouts); 115 normouricemic controls were used for comparison. We amplified, sequenced, and analyzed 15 ABCG2 exons. The chi-square goodness-of-fit test was used to compare minor allele frequencies (MAF), and the log-rank test was used to compare empirical distribution functions. RESULTS: In the pediatric-onset cohort, two common (p.V12M, p.Q141K) and three very rare (p.K360del, p.T421A, p.T434M) allelic ABCG2 variants were detected. The MAF of p.Q141K was 38.7% compared to adult-onset MAF 21.2% (OR = 2.4, P = 0.005), to the normouricemic controls cohort MAF 8.5% (OR = 6.8, P < 0.0001), and to the European population MAF 9.4% (OR = 5.7, P < 0.0001). The MAF was greatly elevated not only among pediatric-onset gout patients (42.9%) but also among patients with hyperuricemia (35.3%). Most (74%) of the pediatric-onset patients had affected family members (61% were first-degree relatives). CONCLUSION: Our results show that genetic factors affecting ABCG2 function should be routinely considered in a hyperuricemia/gout diagnosis, especially in pediatric-onset patients. Genotyping of ABCG2 is essential for risk estimation of gout/hyperuricemia in patients with very early-onset and/or a family history.
Department of Rheumatology 1st Faculty of Medicine Charles University Prague Czech Republic
Institute of Rheumatology Na Slupi 4 128 50 Prague 2 Czech Republic
Zobrazit více v PubMed
Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011;63:3136–3141. doi: 10.1002/art.30520. PubMed DOI
Hak AE, Curhan GC, Grodstein F, et al. Menopause, postmenopausal hormone use and risk of incident gout. Ann Rheum Dis. 2010;69(7):1305–1309. doi: 10.1136/ard.2009.109884. PubMed DOI PMC
Harrold LR, Yood RA, Mikuls TR, et al. Sex differences in gout epidemiology: evaluation and treatment. Ann Rheum Dis. 2006;65(10):1368–1372. doi: 10.1136/ard.2006.051649. PubMed DOI PMC
Harrold LR, Etzel CJ, Gibofsky A, et al. Sex differences in gout characteristics: tailoring care for women and men. BMC Musculoskelet Disord. 2017;18(1):108. doi: 10.1186/s12891-017-1465-9. PubMed DOI PMC
Zikánová M, Wahezi D, Hay A, et al. Clinical manifestations and molecular aspects of phosphoribosylpyrophosphate synthetase superactivity in females. Rheumatology (Oxford) 2018;57(7):1180–1185. doi: 10.1093/rheumatology/key041. PubMed DOI PMC
Kostalova E, Pavelka K, Vlaskova H, et al. Hyperuricemia and gout due to deficiency of hypoxanthine-guanine phosphoribosyltransferase in female carriers: new insight to differential diagnosis. Clin Chim Acta. 2015;440:214–217. doi: 10.1016/j.cca.2014.11.026. PubMed DOI
Tang W, Miller MB, Rich SS, et al. Linkage analysis of a composite factor for the multiple metabolic syndrome: the National Heart, Lung, and Blood Institute Family Heart Study. Diabetes. 2003;52(11):2840–2847. doi: 10.2337/diabetes.52.11.2840. PubMed DOI
Wilk JB, Djousse L, Borecki I, et al. Segregation analysis of serum uric acid in the NHLBI Family Heart Study. Hum Genet. 2000;106(3):355–359. doi: 10.1007/s004390051050. PubMed DOI
Yang Q, Guo CY, Cupples LA, et al. Genome-wide search for genes affecting serum uric acid levels: the Framingham Heart Study. Metabolism. 2005;54(11):1435–1434. doi: 10.1016/j.metabol.2005.05.007. PubMed DOI
Köttgen A, Albrecht E, Teumer A, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet. 2013;45(2):145–154. doi: 10.1038/ng.2500. PubMed DOI PMC
Nakayama A, Nakaoka H, Yamamoto K, et al. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes. Ann Rheum Dis. 2017;76(5):869–877. doi: 10.1136/annrheumdis-2016-209632. PubMed DOI PMC
Ichida K, Matsuo H, Takada T, et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun. 2012;3(3):764. doi: 10.1038/ncomms1756. PubMed DOI PMC
Vivante A, Hildebrandt F. Exploring the genetic basis of early-onset chronic kidney disease. Nat Rev Nephrol. 2016;12(3):133–146. doi: 10.1038/nrneph.2015.205. PubMed DOI PMC
Matsuo H, Ichida K, Takada T, et al. Common dysfunctional variants in ABCG2 are a major cause of early-onset gout. Sci Rep. 2013;3:2014. doi: 10.1038/srep02014. PubMed DOI PMC
Stiburkova B, Pavelcova K, Zavada J, et al. Functional non-synonymous variants of ABCG2 and gout risk. Rheumatology (Oxford) 2017;56(11):1982–1992. doi: 10.1093/rheumatology/kex295. PubMed DOI
Sakiyama M, Matsuo H, Takada Y, et al. Ethnic differences in ATPbinding cassette transporter, sub-family G, member 2 (ABCG2/BCRP): genotype combinations and estimated functions. Drug Metab Pharmacokinet. 2014;29(6):490–492. doi: 10.2133/dmpk.DMPK-14-SC-041. PubMed DOI
Nakayama A, Matsuo H, Nakaoka H, et al. Common dysfunctional variants of ABCG2 have stronger impact on hyperuricemia progression than typical environmental risk factors. Sci Rep. 2014;4:5227. doi: 10.1038/srep05227. PubMed DOI PMC
Matsuo H, Yamamoto K, Nakaoka H, et al. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes. Ann Rheum Dis. 2016;75(4):652–659. doi: 10.1136/annrheumdis-2014-206191. PubMed DOI PMC
Li C, Li Z, Liu S, et al. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese. Nat Commun. 2015;13(6):7041. doi: 10.1038/ncomms8041. PubMed DOI PMC
Matsuo H, Takada T, Ichida K, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med. 2009;1:5ra11. doi: 10.1126/scitranslmed.3000237. PubMed DOI
Higashino T, Takada T, Nakaoka H, et al. Multiple common and rare variants of ABCG2 cause gout. RMD Open. 2017;3(2):e000464. doi: 10.1136/rmdopen-2017-000464. PubMed DOI PMC
Wallace SL, Robinson H, Masi AT, et al. Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis Rheum. 1977;20(3):895–900. doi: 10.1002/art.1780200320. PubMed DOI
Woodward OM, Köttgen A, Coresh J, et al. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A. 2009;106(25):10338–10342. doi: 10.1073/pnas.0901249106. PubMed DOI PMC
Abhishek A, Courtney P, Jenkins W, et al. Monosodium urate crystal deposits are common in asymptomatic sons of people with gout - the sons of gout study. Arthritis Rheumatol. 2018;70(11):1847–1852. doi: 10.1002/art.40572. PubMed DOI PMC
Voruganti VS, Laston S, Haack K, et al. Serum uric acid concentrations and SLC2A9 genetic variation in Hispanic children: the Viva La Familia study. Am J Clin Nutr. 2015;101(4):725–732. doi: 10.3945/ajcn.114.095364. PubMed DOI PMC
Hurba O, Mancikova A, Krylov V, et al. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: no evidence of effect on hyperuricemia and gout. PLoS One. 2014;9(9):e107902. doi: 10.1371/journal.pone.0107902. PubMed DOI PMC
Maliepaard M, Scheffer GL, Faneyte IF, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 2001;61(8):3458–3464. PubMed
Matsuo H, Nakayama A, Sakiyama M, et al. ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload. Sci Rep. 2014;4:3755. doi: 10.1038/srep03755. PubMed DOI PMC
Roberts RL, Wallace MC, Phipps-Green AJ, et al. ABCG2 loss-of-function polymorphism predicts poor response to allopurinol in patients with gout. Pharmacogenomics J. 2016;17(2):201–203. doi: 10.1038/tpj.2015.101. PubMed DOI
Wen CC, Yee SW, Liang X, et al. Genome-wide association study identifies ABCG2 (BCRP) as an allopurinol transporter and a determinant of drug response. Clin Pharmacol Ther. 2015;97(5):518–525. doi: 10.1002/cpt.89. PubMed DOI PMC
Petru L, Pavelcova K, Sebesta I, Stiburkova B. Genetic background of uric acid metabolism in a patient with severe chronic tophaceous gout. Clin Chim Acta. 2016;460:46–49. doi: 10.1016/j.cca.2016.06.007. PubMed DOI
Perez-Ruiz F, Calabozo M, Erauskin GG, Ruibal A, Herrero-Beites AM. Renal underexcretion of uric acid is present in patients with apparent high urinary uric acid output. Arthritis & Rheum. 2002;47(6):610–613. doi: 10.1002/art.10792. PubMed DOI
Kannangara DRW, Phipps-Green AJ, Dalbeth N, et al. Hyperuricaemia: contributions of urate transporter ABCG2 and the fractional renal clearance of urate. Ann Rheum Dis. 2016;75(7):1363–1366. doi: 10.1136/annrheumdis-2015-208111. PubMed DOI
Stamp L, Dalbeth N. Urate-lowering therapy for asymptomatic hyperuricaemia: a need for caution. Semin Arthritis Rheum. 2017;46(4):457–464. doi: 10.1016/j.semarthrit.2016.07.015. PubMed DOI