Evaluation of the Influence of Genetic Variants of SLC2A9 (GLUT9) and SLC22A12 (URAT1) on the Development of Hyperuricemia and Gout

. 2020 Aug 04 ; 9 (8) : . [epub] 20200804

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32759716

Grantová podpora
00023728 (Institute of Rheumatology) This study was supported by the project for the conceptual development of research organization

Urate transporters, which are located in the kidneys, significantly affect the level of uric acid in the body. We looked at genetic variants of genes encoding the major reabsorption proteins GLUT9 (SLC2A9) and URAT1 (SLC22A12) and their association with hyperuricemia and gout. In a cohort of 250 individuals with primary hyperuricemia and gout, we used direct sequencing to examine the SLC22A12 and SLC2A9 genes. Identified variants were evaluated in relation to clinical data, biochemical parameters, metabolic syndrome criteria, and our previous analysis of the major secretory urate transporter ABCG2. We detected seven nonsynonymous variants of SLC2A9. There were no nonsynonymous variants of SLC22A12. Eleven variants of SLC2A9 and two variants of SLC22A12 were significantly more common in our cohort than in the European population (p = 0), while variants p.V282I and c.1002+78A>G had a low frequency in our cohort (p = 0). Since the association between variants and the level of uric acid was not demonstrated, the influence of variants on the development of hyperuricemia and gout should be evaluated with caution. However, consistent with the findings of other studies, our data suggest that p.V282I and c.1002+78A>G (SLC2A9) reduce the risk of gout, while p.N82N (SLC22A12) increases the risk.

Zobrazit více v PubMed

Bobulescu I.A., Moe O.W. Renal transport of uric acid: Evolving concepts and uncertainties. Adv. Chronic Kidney Dis. 2012;19:358–371. doi: 10.1053/j.ackd.2012.07.009. PubMed DOI PMC

So A., Thorens B. Uric acid transport and disease. J. Clin. Investig. 2010;120:1791–1799. doi: 10.1172/JCI42344. PubMed DOI PMC

Nath S.D., Voruganti V.S., Arar N.H., Thameem F., Lopez-Alvarenga J.C., Bauer R., Blangero J., MacCluer J.W., Comuzzie A.G., Abboud H.E. Genome scan for determinants of serum uric acid variability. J. Am. Soc. Nephrol. 2007 doi: 10.1681/ASN.2007040426. PubMed DOI

Sluijs I., Beulens J.W.J., van der A D.L., Spijkerman A.M.W., Schulze M.B., van der Schouw Y.T. Plasma uric acid is associated with increased risk of type 2 diabetes independent of diet and metabolic risk factors. J. Nutr. 2013 doi: 10.3945/jn.112.167221. PubMed DOI

Feig D.I. Hyperuricemia and hypertension. Adv. Chronic Kidney Dis. 2012;19:377–385. doi: 10.1053/j.ackd.2012.05.009. PubMed DOI

Reginato A.M., Mount D.B., Yang I., Choi H.K. The genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 2012;8:610–621. doi: 10.1038/nrrheum.2012.144. PubMed DOI PMC

Yang Q., Guo C.Y., Cupples L.A., Levy D., Wilson P.W.F., Fox C.S. Genome-wide search for genes affecting serum uric acid levels: The Framingham Heart Study. Metabolism. 2005;54:1435–1441. doi: 10.1016/j.metabol.2005.05.007. PubMed DOI

Matsuo H., Yamamoto K., Nakaoka H., Nakayama A., Sakiyama M., Chiba T., Takahashi A., Nakamura T., Nakashima H., Takada Y., et al. Genome-wide association study of clinically defined Gout identifies multiple risk loci and its association with clinical subtypes. Ann. Rheum. Dis. 2016;75:652–659. doi: 10.1136/annrheumdis-2014-206191. PubMed DOI PMC

Nakayama A., Nakaoka H., Yamamoto K., Sakiyama M., Shaukat A., Toyoda Y., Okada Y., Kamatani Y., Nakamura T., Takada T., et al. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes. Ann. Rheum. Dis. 2017;76:869–877. doi: 10.1136/annrheumdis-2016-209632. PubMed DOI PMC

Stiburkova B., Taylor J., Marinaki A.M., Sebesta I. Acute kidney injury in two children caused by renal hypouricaemia type 2. Pediatr. Nephrol. 2012;27:1411–1415. doi: 10.1007/s00467-012-2174-0. PubMed DOI

Mancikova A., Krylov V., Hurba O., Sebesta I., Nakamura M., Ichida K., Stiburkova B. Functional analysis of novel allelic variants in URAT1 and GLUT9 causing renal hypouricemia type 1 and 2. Clin. Exp. Nephrol. 2016;20:578–584. doi: 10.1007/s10157-015-1186-z. PubMed DOI

Hosomi A., Nakanishi T., Fujita T., Tamai I. Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. PLoS ONE. 2012;7:2–9. doi: 10.1371/journal.pone.0030456. PubMed DOI PMC

Toyoda Y., Mančíková A., Krylov V., Morimoto K., Pavelcová K., Bohatá J., Pavelka K., Pavlíková M., Suzuki H., Matsuo H., et al. Functional characterization of clinically-relevant rare variants in abcg2 identified in a gout and hyperuricemia cohort. Cells. 2019;8:363. doi: 10.3390/cells8040363. PubMed DOI PMC

Stiburkova B., Pavelcova K., Pavlikova M., Ješina P., Pavelka K. The impact of dysfunctional variants of ABCG2 on hyperuricemia and gout in pediatric-onset patients. Arthritis Res. Ther. 2019;21 doi: 10.1186/s13075-019-1860-8. PubMed DOI PMC

Zhu W., Deng Y., Zhou X. Multiple membrane transporters and some immune regulatory genes are major genetic factors to gout. Open Rheumatol. J. 2018;12:94–113. doi: 10.2174/1874312901812010094. PubMed DOI PMC

Stiburkova B., Pavelcova K., Zavada J., Petru L., Simek P., Cepek P., Pavlikova M., Matsuo H., Merriman T.R., Pavelka K. Functional non-synonymous variants of ABCG2 and gout risk. Rheumatology. 2017;56:1982–1992. doi: 10.1093/rheumatology/kex295. PubMed DOI

Neogi T., Jansen T.L.T.A., Dalbeth N., Fransen J., Schumacher H.R., Berendsen D., Brown M., Choi H., Edwards N.L., Janssens H.J.E.M., et al. 2015 Gout classification criteria: An American College of Rheumatology/European League against Rheumatism Collaborative Initiative. Arthritis Rheumatol. 2015;67:2557–2568. doi: 10.1002/art.39254. PubMed DOI PMC

Cho S.K., Kim S., Chung J.Y., Jee S.H. Discovery of URAT1 SNPs and association between serum uric acid levels and URAT1. BMJ Open. 2015;5 doi: 10.1136/bmjopen-2015-009360. PubMed DOI PMC

Sun H., Qu Q., Qu J., Lou X.Y., Peng Y., Zeng Y., Wang G. URAT1 gene polymorphisms influence uricosuric action of losartan in hypertensive patients with hyperuricemia. Pharmacogenomics. 2015;16:855–863. doi: 10.2217/pgs.15.52. PubMed DOI

Duong N.T., Ngoc N.T., Thang N.T.M., Phuong B.T.H., Nga N.T., Tinh N.D., Quynh D.H., Ton N.D., van Hai N. Polymorphisms of ABCG2 and SLC22A12 genes associated with gout risk in Vietnamese population. Medicina. 2019;55:8. doi: 10.3390/medicina55010008. PubMed DOI PMC

Meng Q., Yue J., Shang M., Shan Q., Qi J., Mao Z., Li J., Zhang F., Wang B., Zhao T., et al. Correlation of GLUT9 polymorphisms with gout risk. Medicine. 2015;94:e1742. doi: 10.1097/MD.0000000000001742. PubMed DOI PMC

Tu H.P., Chen C.J., Tovosia S., Ko A.M.S., Lee C.H., Ou T.T., Lin G.T., Chang S.J., Chiang S.L., Chiang H.C., et al. Associations of a non-synonymous variant in SLC2A9 with gouty arthritis and uric acid levels in Han Chinese subjects and Solomon Islanders. Ann. Rheum. Dis. 2010;69:887–890. doi: 10.1136/ard.2009.113357. PubMed DOI

Zhang D., Yang M., Zhou D., Li Z., Cai L., Bao Y., Li H., Shan Z., Liu J., Lv D., et al. The polymorphism rs671 at ALDH2 associated with serum uric acid levels in Chinese Han males: A genome-wide association study. Gene. 2018;651:62–69. doi: 10.1016/j.gene.2018.01.064. PubMed DOI

Tu H.P., Ko A.M.S., Lee S.S., Lee C.P., Kuo T.M., Huang C.M., Ko Y.C. Variants of ALPK1 with ABCG2, SLC2A9, and SLC22A12 increased the positive predictive value for gout. J. Hum. Genet. 2018;63:63–70. doi: 10.1038/s10038-017-0368-9. PubMed DOI

Zou Y., Du J., Zhu Y., Xie X., Chen J., Ling G. Associations between the SLC22A12 gene and gout susceptibility: A meta-analysis. Clin. Exp. Rheumatol. 2018;36:0442–0447. PubMed

Hurba O., Mancikova A., Krylov V., Pavlikova M., Pavelka K., Stiburková B. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: No evidence of effect on hyperuricemia and gout. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0107902. PubMed DOI PMC

Horváthová V., Bohatá J., Pavlíková M., Pavelcová K., Pavelka K., Šenolt L., Stibůrková B. Interaction of the p.Q141K variant of the ABCG2 gene with clinical data and cytokine levels in primary hyperuricemia and gout. J. Clin. Med. 2019;8:1965. doi: 10.3390/jcm8111965. PubMed DOI PMC

Torres R.J., De Miguel E., Bailén R., Banegas J.R., Puig J.G. Tubular urate transporter gene polymorphisms differentiate patients with gout who have normal and decreased urinary uric acid excretion. J. Rheumatol. 2014;41:1863–1870. doi: 10.3899/jrheum.140126. PubMed DOI

Stiburkova B., Gabrikova D., Čepek P., Šimek P., Kristian P., Cordoba-Lanus E., Claverie-Martin F. Prevalence of URAT1 allelic variants in the Roma population. Nucleosides Nucleotides Nucleic Acids. 2016 doi: 10.1080/15257770.2016.1168839. PubMed DOI

Matsuo H., Chiba T., Nagamori S., Nakayama A., Domoto H., Phetdee K., Wiriyasermkul P., Kikuchi Y., Oda T., Nishiyama J., et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am. J. Hum. Genet. 2008;83:744–751. doi: 10.1016/j.ajhg.2008.11.001. PubMed DOI PMC

Sarzynski M.A., Jacobson P., Rankinen T., Carlsson B., Sjöström L., Bouchard C., Carlsson L.M.S. Changes in uric acid levels following bariatric surgery are not associated with SLC2A9 Variants in the swedish obese subjects study. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0051658. PubMed DOI PMC

Graessler J., Graessler A., Unger S., Kopprasch S., Tausche A.K., Kuhlisch E., Schroeder H.E. Association of the human urate transporter 1 with reduced renal uric acid. Excretion and hyperuricemia in a German caucasian population. Arthritis Rheum. 2006;54:292–300. doi: 10.1002/art.21499. PubMed DOI

Dinour D., Gray N.K., Campbell S., Shu X., Sawyer L., Richardson W., Rechavi G., Amariglio N., Ganon L., Sela B.A., et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia. J. Am. Soc. Nephrol. 2010 doi: 10.1681/ASN.2009040406. PubMed DOI PMC

Claverie-Martin F., Trujillo-Suarez J., Gonzalez-Acosta H., Aparicio C., Justa Roldan M.L., Stiburkova B., Ichida K., Martín-Gomez M.A., Herrero Goñi M., Carrasco Hidalgo-Barquero M., et al. URAT1 and GLUT9 mutations in Spanish patients with renal hypouricemia. Clin. Chim. Acta. 2018;481:83–89. doi: 10.1016/j.cca.2018.02.030. PubMed DOI

Windpessl M., Ritelli M., Wallner M., Colombi M. A novel homozygous SLC2A9 mutation associated with renal-induced hypouricemia. Am. J. Nephrol. 2016 doi: 10.1159/000445845. PubMed DOI

Tasic V., Hynes A.M., Kitamura K., Cheong H., Il, Lozanovski V.J., Gucev Z., Jutabha P., Anzai N., Sayer J.A. Clinical and functional characterization of URAT1 variants. PLoS ONE. 2011 doi: 10.1371/journal.pone.0028641. PubMed DOI PMC

Taniguchi A., Urano W., Yamanaka M., Yamanaka H., Hosoyamada M., Endou H., Kamatani N. A common mutation in an organic anion transporter gene, SLC22A12, is a suppressing factor for the development of gout. Arthritis Rheum. 2005;52:2576–2577. doi: 10.1002/art.21242. PubMed DOI

Sakiyama M., Matsuo H., Shimizu S., Nakashima H., Nakamura T., Nakayama A., Higashino T., Naito M., Suma S., Hishida A., et al. The effects of URAT1/SLC22A12 nonfunctional variants, R90H and W258X, on serum uric acid levels and gout/hyperuricemia progression. Sci. Rep. 2016;6:1–6. doi: 10.1038/srep20148. PubMed DOI PMC

Vázquez-Mellado J., Jiménez-Vaca A.L., Cuevas-Covarrubias S., Alvarado-Romano V., Pozo-Molina G., Burgos-Vargas R. Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout. Rheumatology. 2007;46:215–219. doi: 10.1093/rheumatology/kel205. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...