Interaction of the p.Q141K Variant of the ABCG2 Gene with Clinical Data and Cytokine Levels in Primary Hyperuricemia and Gout

. 2019 Nov 14 ; 8 (11) : . [epub] 20191114

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31739430

Grantová podpora
AZV 15-26693 A; 00023728 (Institute of Rheumatology); RVO VFN64165; SVV 260367; SVV 260373 Ministerstvo Zdravotnictví Ceské Republiky

Gout is an inflammatory arthritis influenced by environmental risk factors and genetic variants. The common dysfunctional p.Q141K allele of the ABCG2 gene affects gout development. We sought after the possible association between the p.Q141K variant and gout risk factors, biochemical, and clinical determinants in hyperuricemic, gouty, and acute gouty arthritis cohorts. Further, we studied the correlation of p.Q141K allele and levels of pro-/anti-inflammatory cytokines. Coding regions of the ABCG2 gene were analyzed in 70 primary hyperuricemic, 182 gout patients, and 132 normouricemic individuals. Their genotypes were compared with demographic and clinical parameters. Plasma levels of 27 cytokines were determined using a human multiplex cytokine assay. The p.Q141K variant was observed in younger hyperuricemic/gout individuals (p = 0.0003), which was associated with earlier disease onset (p = 0.004), trend toward lower BMI (p = 0.056), and C-reactive protein (CRP, p = 0.007) but a higher glomerular filtration rate (GFR, p = 0.035). Levels of 19 cytokines were higher, mainly in patients with acute gouty arthritis (p < 0.001), irrespective of the presence of the p.Q141K variant. The p.Q141K variant influences the age of onset of primary hyperuricemia or gout and other disease-linked risk factors and symptoms. There was no association with cytokine levels in the circulation.

Zobrazit více v PubMed

Major T.J., Dalbeth N., Stahl E.A., Merriman T.R. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 2018;14:351–353. doi: 10.1038/s41584-018-0004-x. PubMed DOI

Cadzow M., Merriman T.R., Dalbeth N. Performance of gout definitions for genetic epidemiological studies: Analysis of UK Biobank. Arthritis Res. Ther. 2017;19:181. doi: 10.1186/s13075-017-1390-1. PubMed DOI PMC

So A.K., Martinon F. Inflammation in gout: Mechanisms and therapeutic targets. Nat. Rev. Rheumatol. 2017;13:639–647. doi: 10.1038/nrrheum.2017.155. PubMed DOI

El Ridi R., Tallima H. Physiological functions and pathogenic potential of uric acid: A review. J. Adv. Res. 2017;8:487–493. doi: 10.1016/j.jare.2017.03.003. PubMed DOI PMC

Deuteraiou K., Kitas G., Garyfallos A., Dimitroulas T. Novel insights into the role of inflammasomes in autoimmune and metabolic rheumatic diseases. Rheumatol. Int. 2018;38:1345–1354. doi: 10.1007/s00296-018-4074-5. PubMed DOI

Martinon F., Pétrilli V., Mayor A., Tardivel A., Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–241. doi: 10.1038/nature04516. PubMed DOI

Schlesinger N., Thiele R.G. The pathogenesis of bone erosions in gouty arthritis. Ann. Rheum. Dis. 2010;69:1907–1912. doi: 10.1136/ard.2010.128454. PubMed DOI

Cavalcanti N.G., Marques C.D.L., Lins e Lins T.U., Pereira M.C., Rêgo M.J.B.D.M., Duarte A.L.B.P., Pitta I.D.R., Pitta M.G.D.R. Cytokine profile in gout: Inflammation driven by IL-6 and IL-18? Immunol. Investig. 2016;45:383–395. doi: 10.3109/08820139.2016.1153651. PubMed DOI

Liu Y., Zhao Q., Yin Y., McNutt M.A., Zhang T., Cao Y. Serum levels of IL-17 are elevated in patients with acute gouty arthritis. Biochem. Biophys. Res. Commun. 2018;497:897–902. doi: 10.1016/j.bbrc.2018.02.166. PubMed DOI

Mills K.H.G., Dungan L.S., Jones S.A., Harris J. The role of inflammasome-derived IL-1 in driving IL-17 responses. J. Leukoc. Biol. 2013;93:489–497. doi: 10.1189/jlb.1012543. PubMed DOI

Matsuo H., Ichida K., Takada T., Nakayama A., Nakashima H., Nakamura T., Kawamura Y., Takada Y., Yamamoto K., Inoue H., et al. Common dysfunctional variants in ABCG2 are a major cause of early-onset gout. Sci. Rep. 2013;3:8–11. doi: 10.1038/srep02014. PubMed DOI PMC

Stiburkova B., Miyata H., Závada J., Tomčík M., Pavelka K., Storkanova G., Toyoda Y., Takada T., Suzuki H. Novel dysfunctional variant in ABCG2 as a cause of severe tophaceous gout: Biochemical, molecular genetics and functional analysis. Rheumatology. 2016;55:191–194. doi: 10.1093/rheumatology/kev350. PubMed DOI

Stiburkova B., Pavelcova K., Zavada J., Petru L., Simek P., Cepek P., Pavlikova M., Matsuo H., Merriman T.R., Pavelka K. Functional non-synonymous variants of ABCG2 and gout risk. Rheumatology. 2017;56:1982–1992. doi: 10.1093/rheumatology/kex295. PubMed DOI

Higashino T., Takada T., Nakaoka H., Toyoda Y., Stiburkova B., Miyata H., Ikebuchi Y., Nakashima H., Shimizu S., Kawaguchi M., et al. Multiple common and rare variants of ABCG2 cause gout. RMD Open. 2017;3:e000464. doi: 10.1136/rmdopen-2017-000464. PubMed DOI PMC

Woodward O.M., Tukaye D.N., Cui J., Greenwell P., Constantoulakis L.M., Parker B.S., Rao A., Kottgen M., Maloney P.C., Guggino W.B. Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules. Proc. Natl. Acad. Sci. USA. 2013;110:5223–5228. doi: 10.1073/pnas.1214530110. PubMed DOI PMC

Mizuarai S., Aozasa N., Kotani H. Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Int. J. Cancer. 2004;109:238–246. doi: 10.1002/ijc.11669. PubMed DOI

Cleophas M.C., Joosten L.A., Stamp L.K., Dalbeth N., Woodward O.M., Merriman T.R. ABCG2 polymorphisms in gout: Insights into disease susceptibility and treatment approaches. Pharmgenom. Pers. Med. 2017;10:129–142. doi: 10.2147/PGPM.S105854. PubMed DOI PMC

Dehghan A., Köttgen A., Yang Q., Hwang S.J., Kao W.L., Rivadeneira F., Boerwinkle E., Levy D., Hofman A., Astor B.C., et al. Association of three genetic loci with uric acid concentration and risk of gout: A genome-wide association study. Lancet. 2008;372:1953–1961. doi: 10.1016/S0140-6736(08)61343-4. PubMed DOI PMC

Li R., Miao L., Qin L., Xiang Y., Zhang X., Peng H., Mailamuguli, Sun Y., Yao H. A meta-analysis of the associations between the Q141K and Q126X ABCG2 gene variants and gout risk. Int. J. Clin. Exp. Pathol. 2015;8:9812–9823. PubMed PMC

Roberts R.L., Wallace M.C., Phipps-Green A.J., Topless R., Drake J.M., Tan P., Dalbeth N., Merriman T.R., Stamp L.K. ABCG2 loss-of-function polymorphism predicts poor response to allopurinol in patients with gout. Pharm. J. 2017;17:201–203. doi: 10.1038/tpj.2015.101. PubMed DOI

Mosaffa F., Lage H., Afshari J.T., Behravan J. Interleukin-1 beta and tumor necrosis factor-alpha increase ABCG2 expression in MCF-7 breast carcinoma cell line and its mitoxantrone-resistant derivative, MCF-7/MX. Inflamm. Res. 2009;58:669–676. doi: 10.1007/s00011-009-0034-6. PubMed DOI

Evseenko D.A., Paxton J.W., Keelan J.A. Independent regulation of apical and basolateral drug transporter expression and function in placental trophoblasts by cytokines, steroids, and growth factors. Drug Metab. Dispos. 2007;35:595–601. doi: 10.1124/dmd.106.011478. PubMed DOI

Pradhan M., Bembinster L.A., Baumgarten S.C., Frasor J. Proinflammatory cytokines enhance estrogen-dependent expression of the multidrug transporter gene ABCG2 through estrogen receptor and NFκB cooperativity at adjacent response elements. J. Biol. Chem. 2010;285:31100–31106. doi: 10.1074/jbc.M110.155309. PubMed DOI PMC

Stiburkova B., Pavelcova K., Pavlikova M., Ješina P., Pavelka K. The impact of dysfunctional variants of ABCG2 on hyperuricemia and gout in pediatric-onset patients. Arthritis Res. Ther. 2019;21:77. doi: 10.1186/s13075-019-1860-8. PubMed DOI PMC

Toyoda Y., Mančíková A., Krylov V., Morimoto K., Pavelcová K., Bohatá J., Pavelka K., Pavlíková M., Suzuki H., Matsuo H., et al. Functional characterization of clinically-relevant rare variants in ABCG2 identified in a gout and hyperuricemia cohort. Cells. 2019;8:363. doi: 10.3390/cells8040363. PubMed DOI PMC

Wallace S.L., Robinson H., Masi A.T., Decker J.L., McCarty D.J., Yü T.F. Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis Rheum. 1977;20:895–900. doi: 10.1002/art.1780200320. PubMed DOI

Takada T., Ichida K., Matsuo H., Nakayama A., Murakami K., Yamanashi Y., Kasuga H., Shinomiya N., Suzuki H. ABCG2 dysfunction increases serum uric acid by decreased intestinal urate excretion. Nucleosides Nucleotides Nucleic Acids. 2014;33:275–281. doi: 10.1080/15257770.2013.854902. PubMed DOI

Woodward O.M., Köttgen A., Coresh J., Boerwinkle E., Guggino W.B., Köttgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc. Natl. Acad. Sci. USA. 2009;106:10338–10342. doi: 10.1073/pnas.0901249106. PubMed DOI PMC

Nakayama A., Matsuo H., Nakaoka H., Nakamura T., Nakashima H., Takada Y., Oikawa Y., Takada T., Sakiyama M., Shimizu S., et al. Common dysfunctional variants of ABCG2 have stronger impact on hyperuricemia progression than typical environmental risk factors. Sci. Rep. 2014;4:5227. doi: 10.1038/srep05227. PubMed DOI PMC

Aune D., Norat T., Vatten L.J. Body mass index and the risk of gout: A systematic review and dose–response meta-analysis of prospective studies. Eur. J. Nutr. 2014;53:1591–1601. doi: 10.1007/s00394-014-0766-0. PubMed DOI

Evrin P.-E., Nilsson S.E., Öberg T., Malmberg B. Serum C-reactive protein in elderly men and women: Association with mortality, morbidity and various biochemical values. Scand. J. Clin. Lab. Investig. 2005;65:23–31. doi: 10.1080/00365510510013505. PubMed DOI

Michaud M., Balardy L., Moulis G., Gaudin C., Peyrot C., Vellas B., Cesari M., Nourhashemi F. Proinflammatory cytokines, aging, and age-related diseases. J. Am. Med. Dir. Assoc. 2013;14:877–882. doi: 10.1016/j.jamda.2013.05.009. PubMed DOI

Wyczalkowska-Tomasik A., Czarkowska-Paczek B., Zielenkiewicz M., Paczek L. Inflammatory markers change with age, but do not fall beyond reported normal ranges. Arch. Immunol. Ther. Exp. 2016;64:249–254. doi: 10.1007/s00005-015-0357-7. PubMed DOI PMC

Krishnan E. Reduced glomerular function and prevalence of gout: NHANES 2009–10. PLoS ONE. 2012;7:e50046. doi: 10.1371/journal.pone.0050046. PubMed DOI PMC

Rothenbacher D., Primatesta P., Ferreira A., Cea-Soriano L., Rodriguez L.A.G. Frequency and risk factors of gout flares in a large population-based cohort of incident gout. Rheumatology. 2011;50:973–981. doi: 10.1093/rheumatology/keq363. PubMed DOI

Wang X., Wu X., Wang C., Zhang W., Ouyang Y., Yu Y., He Z. Transcriptional suppression of breast cancer resistance protein (BCRP) by wild-type p53 through the NF-κB pathway in MCF-7 cells. FEBS Lett. 2010;584:3392–3397. doi: 10.1016/j.febslet.2010.06.033. PubMed DOI

Shen S., Callaghan D., Juzwik C., Xiong H., Huang P., Zhang W. ABCG2 reduces ROS-mediated toxicity and inflammation: A potential role in Alzheimer’s disease. J. Neurochem. 2010;114:1590–1604. doi: 10.1111/j.1471-4159.2010.06887.x. PubMed DOI

Von Wedel-Parlow M., Wölte P., Galla H.-J. Regulation of major efflux transporters under inflammatory conditions at the blood-brain barrier in vitro. J. Neurochem. 2009;111:111–118. doi: 10.1111/j.1471-4159.2009.06305.x. PubMed DOI

Mosaffa F., Kalalinia F., Lage H., Afshari J.T., Behravan J. Pro-inflammatory cytokines interleukin-1 beta, interleukin 6, and tumor necrosis factor-alpha alter the expression and function of ABCG2 in cervix and gastric cancer cells. Mol. Cell. Biochem. 2012;363:385–393. doi: 10.1007/s11010-011-1191-9. PubMed DOI

Deuring J.J., de Haar C., Koelewijn C.L., Kuipers E.J., Peppelenbosch M.P., van der Woude C.J. Absence of ABCG2-mediated mucosal detoxification in patients with active inflammatory bowel disease is due to impeded protein folding. Biochem. J. 2012;441:87–93. doi: 10.1042/BJ20111281. PubMed DOI

Wen T., Rothenberg M.E. The regulatory function of eosinophils. Microbiol. Spectr. 2016;4 doi: 10.1128/microbiolspec.MCHD-0020-2015. PubMed DOI PMC

Kienhorst L.B.E., van Lochem E., Kievit W., Dalbeth N., Merriman M.E., Phipps-Green A., Loof A., van Heerde W., Vermeulen S., Stamp L.K., et al. Gout is a chronic inflammatory disease in which high levels of interleukin-8 (CXCL8), myeloid-related protein 8/myeloid-related protein 14 complex, and an altered proteome are associated with diabetes mellitus and cardiovascular disease. Arthritis Rheumatol. 2015;67:3303–3313. doi: 10.1002/art.39318. PubMed DOI

Estevez-Garcia I.O., Gallegos-Nava S., Vera-Pérez E., Silveira L.H., Ventura-Ríos L., Vancini G., Hernández-Díaz C., Sánchez-Muñoz F., Ballinas-Verdugo M.A., Gutierrez M., et al. Levels of cytokines and microRNAs in individuals with asymptomatic hyperuricemia and ultrasonographic findings of gout: A bench-to-bedside approach. Arthritis Care Res. 2018;70:1814–1821. doi: 10.1002/acr.23549. PubMed DOI

Rosenberg-Hasson Y., Hansmann L., Liedtke M., Herschmann I., Maecker H.T. Effects of serum and plasma matrices on multiplex immunoassays. Immunol. Res. 2014;58:224–233. doi: 10.1007/s12026-014-8491-6. PubMed DOI PMC

Vasudevan A.R., Wu H., Xydakis A.M., Jones P.H., Smith E.O., Sweeney J.F., Corry D.B., Ballantyne C.M. Eotaxin and obesity. J. Clin. Endocrinol. Metab. 2006;91:256–261. doi: 10.1210/jc.2005-1280. PubMed DOI

Grainger R., McLaughlin R.J., Harrison A.A., Harper J.L. Hyperuricaemia elevates circulating CCL2 levels and primes monocyte trafficking in subjects with inter-critical gout. Rheumatology. 2013;52:1018–1021. doi: 10.1093/rheumatology/kes326. PubMed DOI

Zhou Y., Fang L., Jiang L., Wen P., Cao H., He W., Dai C., Yang J. Uric acid induces renal inflammation via activating tubular NF-κB signaling pathway. PLoS ONE. 2012;7:e39738. doi: 10.1371/journal.pone.0039738. PubMed DOI PMC

Mcnearney T., Baethge B.A., Cao S., Alam R., Lisse J.R., Westlund K.N. Excitatory amino acids, TNF-alpha, and chemokine levels in synovial fluids of patients with active arthropathies. Clin. Exp. Immunol. 2004;137:621–627. doi: 10.1111/j.1365-2249.2004.02563.x. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace