Functional Characterization of Rare Variants in OAT1/SLC22A6 and OAT3/SLC22A8 Urate Transporters Identified in a Gout and Hyperuricemia Cohort
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35406626
PubMed Central
PMC8997829
DOI
10.3390/cells11071063
PII: cells11071063
Knihovny.cz E-zdroje
- Klíčová slova
- OAT1, OAT3, gout, hyperuricemia, urate transport,
- MeSH
- biologický transport MeSH
- dna (nemoc) * genetika metabolismus MeSH
- HEK293 buňky MeSH
- hyperurikemie * genetika MeSH
- kyselina močová metabolismus MeSH
- lidé MeSH
- přenašeče organických aniontů nezávislé na sodíku * genetika MeSH
- protein 1 přenášející organické anionty * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina močová MeSH
- organic anion transport protein 3 MeSH Prohlížeč
- přenašeče organických aniontů nezávislé na sodíku * MeSH
- protein 1 přenášející organické anionty * MeSH
The OAT1 (SLC22A6) and OAT3 (SLC22A8) urate transporters are located on the basolateral membrane of the proximal renal tubules, where they ensure the uptake of uric acid from the urine back into the body. In a cohort of 150 Czech patients with primary hyperuricemia and gout, we examined the coding regions of both genes using PCR amplification and Sanger sequencing. Variants p.P104L (rs11568627) and p.A190T (rs146282438) were identified in the gene for solute carrier family 22 member 6 (SLC22A6) and variants p.R149C (rs45566039), p.V448I (rs11568486) and p.R513Q (rs145474422) in the gene solute carrier family 22 member 8 (SLC22A8). We performed a functional study of these rare non-synonymous variants using the HEK293T cell line. We found that only p.R149C significantly reduced uric acid transport in vitro. Our results could deepen the understanding of uric acid handling in the kidneys and the molecular mechanism of uric acid transport by the OAT family of organic ion transporters.
Zobrazit více v PubMed
Enomoto A., Kimura H., Chairoungdua A., Shigeta Y., Jutabha P., Ho Cha S., Endou H. Molecular identification of a renal urate–anion exchanger that regulates blood urate levels. Nature. 2002;417:447–452. doi: 10.1038/nature742. PubMed DOI
Vitart V., Rudan I., Hayward C., Gray N.K., Floyd J., Palmer C.N., Wright A.F. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat. Genet. 2008;40:437. doi: 10.1038/ng.106. PubMed DOI
Woodward O.M., Köttgen A., Coresh J., Boerwinkle E., Guggino W.B., Köttgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc. Natl. Acad. Sci. USA. 2009;106:10338–10342. doi: 10.1073/pnas.0901249106. PubMed DOI PMC
Mancikova A., Krylov V., Hurba O., Sebesta I., Nakamura M., Ichida K., Stiburkova B. Functional analysis of novel allelic variants in URAT1 and GLUT9 causing renal hypouricemia type 1 and 2. Clin. Exp. Nephrol. 2016;20:578–584. doi: 10.1007/s10157-015-1186-z. PubMed DOI
Ichida K., Hosoyamada M., Kamatani N., Kamitsuji S., Hisatome I., Shibasaki T., Hosoya T. Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese. Clin. Genet. 2008;74:243–251. doi: 10.1111/j.1399-0004.2008.01021.x. PubMed DOI
Claverie-Martin F., Trujillo-Suarez J., Gonzalez-Acosta H., Aparicio C., Roldan ML J., Stiburkova B., Garcia-Nieto V.M. URAT1 and GLUT9 mutations in Spanish patients with renal hypouricemia. Clin. Chim. Acta. 2018;481:83–89. doi: 10.1016/j.cca.2018.02.030. PubMed DOI
Stiburkova B., Bohatá J., Pavelcová K., Tasic V., Plaseska-Karanfilska D., Cho S.K., Šaligová J. Renal hypouricemia 1: Rare disorder as common disease in Eastern Slovakia roma population. Biomedicines. 2021;9:1607. doi: 10.3390/biomedicines9111607. PubMed DOI PMC
Toyoda Y., Mančíková A., Krylov V., Morimoto K., Pavelcová K., Bohatá J., Stiburkova B. Functional Characterization of Clinically-Relevant Rare Variants in ABCG2 Identified in a Gout and Hyperuricemia Cohort. Cells. 2019;8:363. doi: 10.3390/cells8040363. PubMed DOI PMC
Wang Z., Cui T., Ci X., Zhao F., Sun Y., Li Y., Liu C. The effect of polymorphism of uric acid transporters on uric acid transport. J. Nephrol. 2019;32:177–187. doi: 10.1007/s40620-018-0546-7. PubMed DOI
Eraly S.A., Vallon V., Rieg T., Gangoiti A.J. Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol. Genom. 2008;128:180–191. doi: 10.1152/physiolgenomics.00207.2007. PubMed DOI PMC
Cha S.H., Sekine T., Fukushima J.I., Kanai Y., Kobayashi Y., Goya T., Endou H. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol. Pharmacol. 2001;59:1277–1286. doi: 10.1124/mol.59.5.1277. PubMed DOI
Lopez-nieto C.E., You G., Bush K.T., Barros E.J.G., Beier D.R., Nigam S.K. Molecular Cloning and Characterization of NKT, a Gene Product Related to the Organic Cation Transporter Family That Is Almost Exclusively Expressed in the Kidney. J. Biol. Chem. 1997;272:6471–6478. doi: 10.1074/jbc.272.10.6471. PubMed DOI
Sweet D.H., Wolff N.A., Pritchard J.B. Expression cloning and characterization of ROAT1. The basolateral organic anion transporter in rat kidney. J. Biol. Chem. 1997;272:30088–30095. doi: 10.1074/jbc.272.48.30088. PubMed DOI
Hosoyamada M., Sekine T., Kanai Y., Endou H. Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am. J. Physiol. Physiol. 1999;276:F122–F128. doi: 10.1152/ajprenal.1999.276.1.F122. PubMed DOI
Eraly S.A., Vallon V., Vaughn D.A., Gangoiti J.A., Richter K., Nagle M., Nigam S.K. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice. J. Biol. Chem. 2006;281:5072–5083. doi: 10.1074/jbc.M508050200. PubMed DOI
Kaler G., Truong D.M., Khandelwal A., Nagle M., Eraly S.A., Swaan P.W., Nigam S.K. Structural Variation Governs Substrate Specificity for Organic Anion Transporter (OAT) Homologs. J. Biol. Chem. 2007;282:23841–23853. doi: 10.1074/jbc.M703467200. PubMed DOI PMC
Ichida K., Hosoyamada M., Kimura H., Takeda M., Utsunomiya Y., Hosoya T., Endou H. Urate transport via human PAH transporter hOAT1 and its gene structure. Kidney Int. 2003;63:143–155. doi: 10.1046/j.1523-1755.2003.00710.x. PubMed DOI
Hong M., Xu W., Yoshida T., Tanaka K., Wolff D.J., Zhou F., You G. Human organic anion transporter hOAT1 forms homooligomers. J. Biol. Chem. 2005;280:32285–32290. doi: 10.1074/jbc.M501447200. PubMed DOI
Omasits U., Ahrens C., Müller S., Wollscheid B. Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics. 2014;30:884–886. doi: 10.1093/bioinformatics/btt607. PubMed DOI
Tanaka K., Xu W., Zhou F., You G. Role of Glycosylation in the Organic Anion Transporter OAT1. J. Biol. Chem. 2004;279:14961–14966. doi: 10.1074/jbc.M400197200. PubMed DOI
You G., Kuze K., Kohanski R.A., Amsler K., Henderson S. Regulation of mOAT-mediated organic anion transport by okadaic acid and protein kinase C in LLC-PK1 cells. J. Biol. Chem. 2000;275:10278–10284. doi: 10.1074/jbc.275.14.10278. PubMed DOI
Brady K.P., Dushkin H., Förnzler D., Koike T., Magner F., Her H., Beier D.R. A novel putative transporter maps to the osteosclerosis (oc) mutation and is not expressed in the oc mutant mouse. Genomics. 1999;56:254–261. doi: 10.1006/geno.1998.5722. PubMed DOI
Sweet D.H., Miller D.S., Pritchard J.B., Fujiwara Y., Beier D.R., Nigam S.K. Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J. Biol. Chem. 2002;277:26934–26943. doi: 10.1074/jbc.M203803200. PubMed DOI
Hosoya K.I., Makihara A., Tsujikawa Y., Yoneyama D., Mori S., Terasaki T., Tachikawa M. Roles of inner blood-retinal barrier organic anion transporter 3 in the vitreous/retina-to-blood efflux transport of p-aminohippuric acid, benzylpenicillin, and 6-mercaptopurine. J. Pharmacol. Exp. Ther. 2009;329:87–93. doi: 10.1124/jpet.108.146381. PubMed DOI
Truong D.M., Kaler G., Khandelwal A., Swaan P.W., Nigam S.K. Multi-level analysis of organic anion transporters 1, 3, and 6 reveals major differences in structural determinants of antiviral discrimination. J. Biol. Chem. 2008;283:8654–8663. doi: 10.1074/jbc.M708615200. PubMed DOI PMC
Sweet D.H., Chan L.M.S., Walden R., Yang X.P., Miller D.S., Pritchard J.B. Organic anion transporter 3 (Slc22a8) is a dicarboxylate exchanger indirectly coupled to the Na+ gradient. Am. J. Physiol.-Ren. Physiol. 2003;284:763–769. doi: 10.1152/ajprenal.00405.2002. PubMed DOI
Bakhiya N., Bahn A., Burckhardt G., Wolff N.A. Human organic anion transporter 3 (hOAT3) can operate as an exchanger and mediate secretory urate flux. Cell. Physiol. Biochem. 2003;13:249–256. doi: 10.1159/000074539. PubMed DOI
Kojima R., Sekine T., Kawachi M., Cha S.H.O., Suzuki Y., Endou H. Immunolocalization of Multispecific Organic Anion Transporters, OAT1, OAT2, and OAT3, in Rat Kidney. J. Am. Soc. Nephrol. 2002;13:848–857. doi: 10.1681/ASN.V134848. PubMed DOI
Srimaroeng C., Cecile J.P., Walden R., Pritchard J.B. Regulation of Renal Organic Anion Transporter 3 (SLC22A8) Expression and Function by the Integrity of Lipid Raft Domains and their Associated Cytoskeleton. Cell Physiol. Biochem. 2013;31:565–578. doi: 10.1159/000350077. PubMed DOI PMC
Stiburkova B., Pavelcova K., Pavlikova M., Ješina P., Pavelka K. The impact of dysfunctional variants of ABCG2 on hyperuricemia and gout in pediatric-onset patients. Arthritis Res. Ther. 2019;21:77. doi: 10.1186/s13075-019-1860-8. PubMed DOI PMC
Wallace S.L., Robinson H., Masi A.T., Decker J.L., Mccarty D.J., Yü T.F. Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis Rheum. 1977;20:895–900. doi: 10.1002/art.1780200320. PubMed DOI
Stiburkova B., Krijt J., Vyletal P., Bartl J., Gerhatova E., Korinek M., Sebesta I. Novel mutations in xanthine dehydrogenase/oxidase cause severe hypouricemia: Biochemical and molecular genetic analysis in two Czech families with xanthinuria type I. Clin. Chim. Acta. 2012;413:93–99. doi: 10.1016/j.cca.2011.08.038. PubMed DOI
Pavelcova K., Bohata J., Pavlikova M., Bubenikova E., Pavelka K., Stiburkova B. Evaluation of the influence of genetic variants of slc2a9 (Glut9) and slc22a12 (urat1) on the development of hyperuricemia and gout. J. Clin. Med. 2020;9:2510. doi: 10.3390/jcm9082510. PubMed DOI PMC
Howe K.L., Achuthan P., Allen J., Allen J., Alvarez-Jarreta J., Amode M.R., Flicek P. Ensembl 2021. Nucleic Acids Res. 2021;49:D884–D891. doi: 10.1093/nar/gkaa942. PubMed DOI PMC
The UniProt Consortium UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480–D489. doi: 10.1093/nar/gkaa1100. PubMed DOI PMC
Bleasby K., Hall L.A., Perry J.L., Mohrenweiser H.W., Pritchard J.B. Functional consequences of single nucleotide polymorphisms in the human organic anion transporter hOAT1 (SLC22A6) J. Pharmacol. Exp. Ther. 2005;314:923–931. doi: 10.1124/jpet.105.084301. PubMed DOI
Wright S.H., Dantzler W.H. Molecular and cellular physiology of organic cation transporter. Physiol. Rev. 2004;84:987–1049. doi: 10.1152/physrev.00040.2003. PubMed DOI
Fujita T., Brown C., Carlson E.J., Taylor T., de la Cruz M., Johns S.J., Giacomini K.M. Functional analysis of polymorphisms in the organic anion transporter, SLC22A6 (OAT1) Pharmacogenet. Genom. 2005;15:201–209. doi: 10.1097/01213011-200504000-00003. PubMed DOI
Erdman A.R., Mangravite L.M., Urban T.J., Lagpacan L.L., Castro R.A., de la Cruz M., Giacomini K.M. The human organic anion transporter 3 (OAT3; SLC22A8): Genetic variation and functional genomics. Am. J. Physiol.-Ren. Physiol. 2006;290:905–912. doi: 10.1152/ajprenal.00272.2005. PubMed DOI
Horváthová V., Bohatá J., Pavlíková M., Pavelcová K., Pavelka K., Šenolt L., Stibůrková B. Interaction of the p.Q141K variant of the ABCG2 gene with clinical data and cytokine levels in primary hyperuricemia and gout. J. Clin. Med. 2019;8:1965. doi: 10.3390/jcm8111965. PubMed DOI PMC
Stiburkova B., Pavelcova K., Zavada J., Petru L., Simek P., Cepek P., Pavelka K. Functional non-synonymous variants of ABCG2 and gout risk. Rheumatology. 2017;56:1982–1992. doi: 10.1093/rheumatology/kex295. PubMed DOI
Toyoda Y., Pavelcová K., Klein M., Suzuki H., Takada T., Stiburkova B. Familial early-onset hyperuricemia and gout associated with a newly identified dysfunctional variant in urate transporter ABCG2. Arthritis Res. Ther. 2019;21:19–21. doi: 10.1186/s13075-019-2007-7. PubMed DOI PMC
Hurba O., Mancikova A., Krylov V., Pavlikova M., Pavelka K., Stiburková B. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: No evidence of effect on hyperuricemia and gout. PLoS ONE. 2014;9:e107902. doi: 10.1371/journal.pone.0107902. PubMed DOI PMC
Chiba T., Matsuo H., Kawamura Y., Nagamori S., Nishiyama T., Wei L., Shinomiya N. NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout. Arthritis Rheumatol. 2015;67:281–287. doi: 10.1002/art.38884. PubMed DOI
Jutabha P., Anzai N., Kimura T., Taniguchi A., Urano W., Yamanaka H., Sakurai H. Functional analysis of human sodium-phosphate transporter 4 (NPT4/SLC17A3) polymorphisms. J. Pharmacol. Sci. 2011;115:249–253. doi: 10.1254/jphs.10228SC. PubMed DOI
Stiburkova B., Bleyer A.J. Changes in Serum Urate and Urate Excretion with Age. Adv. Chronic Kidney Dis. 2012;19:372–376. doi: 10.1053/j.ackd.2012.07.010. PubMed DOI