Examining the Association of Rare Allelic Variants in Urate Transporters SLC22A11, SLC22A13, and SLC17A1 with Hyperuricemia and Gout

. 2024 ; 2024 () : 5930566. [epub] 20240106

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38222853

Genetic variations in urate transporters play a significant role in determining human urate levels and have been implicated in developing hyperuricemia or gout. Polymorphism in the key urate transporters, such as ABCG2, URAT1, or GLUT9 was well-documented in the literature. Therefore in this study, our objective was to determine the frequency and effect of rare nonsynonymous allelic variants of SLC22A11, SLC22A13, and SLC17A1 on urate transport. In a cohort of 150 Czech patients with primary hyperuricemia and gout, we examined all coding regions and exon-intron boundaries of SLC22A11, SLC22A13, and SLC17A1 using PCR amplification and Sanger sequencing. For comparison, we used a control group consisting of 115 normouricemic subjects. To examine the effects of the rare allelic nonsynonymous variants on the expression, intracellular processing, and urate transporter protein function, we performed a functional characterization using the HEK293A cell line, immunoblotting, fluorescent microscopy, and site directed mutagenesis for preparing variants in vitro. Variants p.V202M (rs201209258), p.R343L (rs75933978), and p.P519L (rs144573306) were identified in the SLC22A11 gene (OAT4 transporter); variants p.R16H (rs72542450), and p.R102H (rs113229654) in the SLC22A13 gene (OAT10 transporter); and the p.W75C variant in the SLC17A1 gene (NPT1 transporter). All variants minimally affected protein levels and cytoplasmic/plasma membrane localization. The functional in vitro assay revealed that contrary to the native proteins, variants p.P519L in OAT4 (p ≤ 0.05), p.R16H in OAT10 (p ≤ 0.05), and p.W75C in the NPT1 transporter (p ≤ 0.01) significantly limited urate transport activity. Our findings contribute to a better understanding of (1) the risk of urate transporter-related hyperuricemia/gout and (2) uric acid handling in the kidneys.

Zobrazit více v PubMed

Wu X., Muzny D. M., Chi Lee C., Thomas Caskey C. Two independent mutational events in the loss of urate oxidase during hominoid evolution. Journal of Molecular Evolution . 1992;34:78–84. doi: 10.1007/BF00163854. PubMed DOI

Logan D. C., Wilson D. E., Flowers C. M., Sparks P. J., Tyler F. H. Uric acid catabolism in the woolly monkey. Metabolism—Clinical and Experimental . 1976;25(5):517–522. doi: 10.1016/0026-0495(76)90005-6. PubMed DOI

Ames B. N., Cathcart R., Schwiers E., Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant-and radical-caused aging and cancer: a hypothesis. Proceedings of the National Academy of Sciences . 1981;78(11):6858–6862. doi: 10.1073/pnas.78.11.6858. PubMed DOI PMC

Orowan E. The origin of man. Nature . 1955;175:683–684. doi: 10.1038/175683a0. PubMed DOI

Shi Y., Evans J. E., Rock K. L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature . 2003;425:516–521. doi: 10.1038/nature01991. PubMed DOI

Feig D. I., Kang D.-H., Johnson R. J. Uric acid and cardiovasclar risk. New England Journal of Medicine . 2008;359(17):1811–1821. doi: 10.1056/NEJMra0800885. PubMed DOI PMC

Mazzali M., Hughes J., Kim Y.-G., et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension . 2001;38(5):1101–1106. doi: 10.1161/hy1101.092839. PubMed DOI

Ejaz A. A., Nakagawa T., Kanbay M., et al. Hyperuricemia in kidney disease: a major risk factor for cardiovascular events, vascular calcification, and renal damage. Seminars in Nephrology . 2020;40(6):574–585. doi: 10.1016/j.semnephrol.2020.12.004. PubMed DOI PMC

Kvasnička A., Friedecký D., Brumarová R., et al. Alterations in lipidome profiles distinguish early-onset hyperuricemia, gout, and the effect of urate-lowering treatment. Arthritis Research & Therapy . 2023;25 doi: 10.1186/s13075-023-03204-6.234 PubMed DOI PMC

Butler F., Alghubayshi A., Roman Y. The epidemiology and genetics of hyperuricemia and gout across major racial groups: a literature review and population genetics secondary database analysis. Journal of Personalized Medicine . 2021;11(3):1–15. doi: 10.3390/jpm11030231. PubMed DOI PMC

Sun H.-L., Wu Y.-W., Bian H.-G., et al. Function of uric acid transporters and their inhibitors in hyperuricaemia. Frontiers in Pharmacology . 2021;12 doi: 10.3389/fphar.2021.667753. PubMed DOI PMC

Dehghan A., Köttgen A., Yang Q., et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. The Lancet . 2008;372(9654):1953–1961. doi: 10.1016/S0140-6736(08)61343-4. PubMed DOI PMC

Huls M., Brown C. D. A., Windass A. S., et al. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney International . 2008;73(2):220–225. doi: 10.1038/sj.ki.5002645. PubMed DOI

Yamagishi K., Tanigawa T., Kitamura A., et al. The rs2231142 variant of the ABCG2 gene is associated with uric acid levels and gout among Japanese people. Rheumatology . 2010;49(8):1461–1465. doi: 10.1093/rheumatology/keq096. PubMed DOI

Woodward O. M., Köttgen A., Coresh J., Boerwinkle E., Guggino W. B., Köttgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proceedings of the National Academy of Sciences . 2009;106(25):10338–10342. doi: 10.1073/pnas.0901249106. PubMed DOI PMC

Matsuo H., Takada T., Ichida K., et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Science Translational Medicine . 2009;1(5) doi: 10.1126/scitranslmed.3000237. PubMed DOI

Toyoda Y., Mančíková A., Krylov V., et al. Functional characterization of clinically-relevant rare variants in ABCG2 identified in a gout and hyperuricemia cohort. Cells . 2019;8(4) doi: 10.3390/cells8040363.363 PubMed DOI PMC

Mancikova A., Krylov V., Hurba O., et al. Functional analysis of novel allelic variants in URAT1 and GLUT9 causing renal hypouricemia type 1 and 2. Clinical and Experimental Nephrology . 2016;20:578–584. doi: 10.1007/s10157-015-1186-z. PubMed DOI

Vitart V., Rudan I., Hayward C., et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nature Genetics . 2008;40:437–442. doi: 10.1038/ng.106. PubMed DOI

Döring A., Gieger C., Mehta D., et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nature Genetics . 2008;40(4):430–436. doi: 10.1038/ng.107. PubMed DOI

Li S., Sanna S., Maschio A., et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and chianti cohorts. PLoS Genetics . 2007;3(11) doi: 10.1371/journal.pgen.0030194.e194 PubMed DOI PMC

Matsuo H., Chiba T., Nagamori S., et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. American Journal of Human Genetics . 2008;83(6):744–751. doi: 10.1016/j.ajhg.2008.11.001. PubMed DOI PMC

Dinour D., Gray N. K., Campbell S., et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia. Journal of the American Society of Nephrology . 2010;21(1):64–72. doi: 10.1681/ASN.2009040406. PubMed DOI PMC

Enomoto A., Kimura H., Chairoungdua A., et al. Molecular identification of a renal urate–anion exchanger that regulates blood urate levels. Nature . 2002;417:447–452. doi: 10.1038/nature742. PubMed DOI

Vázquez-Mellado J., Jiménez-Vaca A. L., Cuevas-Covarrubias S., Alvarado-Romano V., Pozo-Molina G., Burgos-Vargas R. Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout. Rheumatology . 2007;46(2):215–219. doi: 10.1093/rheumatology/kel205. PubMed DOI

Li Z., Ding H., Chen C., Chen Y., Wang D. W., Lv Y. Novel URAT1 mutations caused acute renal failure after exercise in two Chinese families with renal hypouricemia. Gene . 2013;512(1):97–101. doi: 10.1016/j.gene.2012.09.115. PubMed DOI

Stiburkova B., Bohatá J., Pavelcová K., et al. Renal hypouricemia 1: rare disorder as common disease in Eastern Slovakia roma population. Biomedicines . 2021;9(11):1–10. doi: 10.3390/biomedicines9111607. PubMed DOI PMC

Vávra J., Mančíková A., Pavelcová K., Hasíková L., Bohatá J., Stibůrková B. Functional characterization of rare variants in OAT1/SLC22A6 and OAT3/SLC22A8 urate transporters identified in a gout and hyperuricemia cohort. Cells . 2022;11(7):1–19. doi: 10.3390/cells11071063. PubMed DOI PMC

Toyoda Y., Pavelcová K., Klein M., Suzuki H., Takada T., Stiburkova B. Familial early-onset hyperuricemia and gout associated with a newly identified dysfunctional variant in urate transporter ABCG2. Arthritis Research & Therapy . 2019;21(1):19–21. doi: 10.1186/s13075-019-2007-7. PubMed DOI PMC

Stiburkova B., Bohata J., Minarikova I., et al. Clinical and functional characterization of a novel URAT1 dysfunctional variant in a pediatric patient with renal hypouricemia. Applied Sciences . 2019;9(17):10–17. doi: 10.3390/app9173479.3479 DOI

Hurba O., Mancikova A., Krylov V., et al. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: no evidence of effect on hyperuricemia and gout. PLoS ONE . 2014;9(9) doi: 10.1371/journal.pone.0107902.e107902 PubMed DOI PMC

Cha S. H., Sekine T., Kusuhara H., et al. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. Journal of Biological Chemistry . 2000;275(6):4507–4512. doi: 10.1074/jbc.275.6.4507. PubMed DOI

Fagerberg L., Hallstrom B. M., Oksvold P., et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular & Cellular Proteomics . 2014;13(2):397–406. doi: 10.1074/mcp.M113.035600. PubMed DOI PMC

Ekaratanawong S., Anzai N., Jutabha P., et al. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. Journal of Pharmacological Sciences . 2004;94(3):297–304. doi: 10.1254/jphs.94.297. PubMed DOI

Hagos Y., Stein D., Ugele B., Burckhardt G., Bahn A. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. Journal of the American Society of Nephrology . 2007;18(2):430–439. doi: 10.1681/ASN.2006040415. PubMed DOI

Flynn T. J., Phipps-Green A., Hollis-Moffatt J. E., et al. Association analysis of the SLC22A11 (organic anion transporter 4) and SLC22A12 (urate transporter 1) urate transporter locus with gout in New Zealand case–control sample sets reveals multiple ancestral-specific effects. Arthritis Research & Therapy . 2013;15(6) doi: 10.1186/ar4417. PubMed DOI PMC

Köttgen A., Albrecht E., Teumer A., et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nature Genetics . 2013;45:145–154. doi: 10.1038/ng.2500. PubMed DOI PMC

Sakiyama M., Matsuo H., Shimizu S., et al. A common variant of organic anion transporter 4 (OAT4/SLC22A11) gene is associated with renal underexcretion type gout. Drug Metabolism and Pharmacokinetics . 2014;29(2):208–210. doi: 10.2133/dmpk.DMPK-13-NT-070. PubMed DOI

Sandoval-Plata G., Morgan K., Abhishek A. Variants in urate transporters, ADH1B, GCKR and MEPE genes associate with transition from asymptomatic hyperuricaemia to gout: results of the first gout versus asymptomatic hyperuricaemia GWAS in caucasians using data from the UK biobank. Annals of the Rheumatic Diseases . 2021;80(9):1220–1226. doi: 10.1136/annrheumdis-2020-219796. PubMed DOI

Shima J. E., Komori T., Taylor T. R., et al. Genetic variants of human organic anion transporter 4 demonstrate altered transport of endogenous substrates. American Journal of Physiology-Renal Physiology . 2010;299(4):F767–F775. doi: 10.1152/ajprenal.00312.2010. PubMed DOI PMC

Nishiwaki T., Daigo Y., Tamari M., Fujii Y., Nakamura Y. Molecular cloning, mapping, and characterization of two novel human genes, ORCTL3 and ORCTL4, bearing homology to organic-cation transporters. Cytogenetic and Genome Research . 1998;83(3-4):251–255. doi: 10.1159/000015197. PubMed DOI

Bahn A., Hagos Y., Reuter S., et al. Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13) Journal of Biological Chemistry . 2008;283(24):16332–16341. doi: 10.1074/jbc.M800737200. PubMed DOI

Toyoda Y., Kawamura Y., Nakayama A., et al. OAT10/SLC22A13 acts as a renal urate re-absorber: clinico-genetic and functional analyses with pharmacological impacts. Frontiers in Pharmacology . 2022;13:1–13. doi: 10.3389/fphar.2022.842717. PubMed DOI PMC

Shinoda Y., Yamashiro T., Hosooka A., Yasujima T., Yuasa H. Functional characterization of human organic anion transporter 10 (OAT10/SLC22A13) as an orotate transporter. Drug Metabolism and Pharmacokinetics . 2022;43 doi: 10.1016/j.dmpk.2021.100443.100443 PubMed DOI

Higashino T., Morimoto K., Nakaoka H., et al. Dysfunctional missense variant of OAT10/SLC22A13 decreases gout risk and serum uric acid levels. Annals of the Rheumatic Diseases . 2019;79(1):164–166. doi: 10.1136/annrheumdis-2019-216044. PubMed DOI PMC

Miyamoto K., Tatsumi S., Sonoda T., et al. Cloning and functional expression of a Na+-dependent phosphate co-transporter from human kidney: cDNA cloning and functional expression. Biochemical Journal . 1995;305(1):81–85. doi: 10.1042/bj3050081. PubMed DOI PMC

Uchino H., Tamai I., Yamashita K., et al. p-Aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPT1. Biochemical and Biophysical Research Communications . 2000;270(1):254–259. doi: 10.1006/bbrc.2000.2407. PubMed DOI

Chiba T., Matsuo H., Kawamura Y., et al. NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout. Arthritis & Rheumatology . 2015;67(1):281–287. doi: 10.1002/art.38884. PubMed DOI

Iharada M., Miyaji T., Fujimoto T., et al. Type 1 sodium-dependent phosphate transporter (SLC17A1 protein) is a Cl−-dependent urate exporter. Journal of Biological Chemistry . 2010;285(34):26107–26113. doi: 10.1074/jbc.M110.122721. PubMed DOI PMC

Sakiyama M., Matsuo H., Nagamori S., et al. Expression of a human NPT1/SLC17A1 missense variant which increases urate export. Nucleosides, Nucleotides & Nucleic Acids . 2016;35(10–12):536–542. doi: 10.1080/15257770.2016.1149192. PubMed DOI

Zhou Z.-W., Cui L.-L., Han L., et al. Polymorphisms in GCKR, SLC17A1 and SLC22A12 were associated with phenotype gout in Han Chinese males: a case–control study. BMC Medical Genetics . 2015;16(1):1–9. doi: 10.1186/s12881-015-0208-8.66 PubMed DOI PMC

Stiburkova B., Pavelcova K., Pavlikova M., Ješina P., Pavelka K. The impact of dysfunctional variants of ABCG2 on hyperuricemia and gout in pediatric-onset patients. Arthritis Research & Therapy . 2019;21(1):1–10. doi: 10.1186/s13075-019-1860-8. PubMed DOI PMC

Wallace S. L., Robinson H., Masi A. T., Decker J. L., Mccarty D. J., Yü T. Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis and Rheumatism . 1977;20(3):895–900. doi: 10.1002/art.1780200320. PubMed DOI

Tanaka K., Xu W., Zhou F., You G. Role of glycosylation in the organic anion transporter OAT1. Journal of Biological Chemistry . 2004;279(15):14961–14966. doi: 10.1074/jbc.M400197200. PubMed DOI

Zhang Q., Hong M., Duan P., Pan Z., Ma J., You G. Organic anion transporter OAT1 undergoes constitutive and protein kinase C-regulated trafficking through a dynamin-and clathrin-dependent pathway. Journal of Biological Chemistry . 2008;283(47):32570–32579. doi: 10.1074/jbc.M800298200. PubMed DOI PMC

The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research . 2021;49(D1):D480–D489. doi: 10.1093/nar/gkaa1100. PubMed DOI PMC

Martin F. J., Amode M. R., Aneja A., et al. Ensembl 2023. Nucleic Acids Research . 2023;51(D1):D933–D941. doi: 10.1093/nar/gkac958. PubMed DOI PMC

Omasits U., Ahrens C., Müller S., Wollscheid B. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics . 2014;30(6):884–886. doi: 10.1093/bioinformatics/btt607. PubMed DOI

Zhou D., Liu Y., Zhang X., et al. Functional polymorphisms of the ABCG2 gene are associated with gout disease in the Chinese Han male population. International Journal of Molecular Sciences . 2014;15(5):9149–9159. doi: 10.3390/ijms15059149. PubMed DOI PMC

Li R., Miao L., Qin L., et al. A meta-analysis of the associations between the Q141K and Q126X ABCG2 gene variants and gout risk. International Journal of Clinical and Experimental Pathology . 2015;8(9):9812–9823. PubMed PMC

Stiburkova B., Pavelcova K., Zavada J., et al. Functional non-synonymous variants of ABCG2 and gout risk. Rheumatology . 2017;56(11):1982–1992. doi: 10.1093/rheumatology/kex295. PubMed DOI

Pavelcova K., Bohata J., Pavlikova M., Bubenikova E., Pavelka K., Stiburkova B. Evaluation of the influence of genetic variants of SLC2A9 (GLUT9) and SLC22A12 (URAT1) on the development of hyperuricemia and gout. Journal of Clinical Medicine . 2020;9(8):1–21. doi: 10.3390/jcm9082510.2510 PubMed DOI PMC

Anzai N., Miyazaki H., Noshiro R., et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. Journal of Biological Chemistry . 2004;279(44):45942–45950. doi: 10.1074/jbc.M406724200. PubMed DOI

Miyazaki H., Anzai N., Ekaratanawong S., et al. Modulation of renal apical organic anion transporter 4 function by two PDZ domain-containing proteins. Journal of the American Society of Nephrology . 2005;16(12):3498–3506. doi: 10.1681/ASN.2005030306. PubMed DOI

Togawa N., Miyaji T., Izawa S., Omote H., Moriyama Y. A Na+-phosphate cotransporter homologue (SLC17A4 protein) is an intestinal organic anion exporter. American Journal of Physiology—Cell Physiology . 2012;302(11):C1652–C1660. doi: 10.1152/ajpcell.00015.2012. PubMed DOI

Prime-Chapman H. M., Fearn R. A., Cooper A. E., Moore V., Hirst B. H. Differential multidrug resistance-associated protein 1 through 6 isoform expression and function in human intestinal epithelial Caco-2 cells. Journal of Pharmacology and Experimental Therapeutics . 2004;311(2):476–484. doi: 10.1124/jpet.104.068775. PubMed DOI

Xu W., Tanaka K., Sun A.-Q., You G. Functional role of the C terminus of human organic anion transporter hOAT1. Journal of Biological Chemistry . 2006;281(42):31178–31183. doi: 10.1016/s0021-9258(19)84030-9. PubMed DOI

Popp C., Gorboulev V., Müller T. D., Gorbunov D., Shatskaya N., Koepsell H. Amino acids critical for substrate affinity of rat organic cation transporter 1 line the substrate binding region in a model derived from the tertiary structure of lactose permease. Molecular Pharmacology . 2005;67(5):1600–1611. doi: 10.1124/mol.104.008839. PubMed DOI

Fujita T., Brown C., Carlson E. J., et al. Functional analysis of polymorphisms in the organic anion transporter, SLC22A6 (OAT1) Pharmacogenetics and Genomics . 2005;15(4):201–209. doi: 10.1097/01213011-200504000-00003. PubMed DOI

Hong M., Zhou F., You G. Critical amino acid residues in transmembrane domain 1 of the human organic anion transporter hOAT1. Journal of Biological Chemistry . 2004;279(30):31478–31482. doi: 10.1074/jbc.M404686200. PubMed DOI

Zhou F., Zhu L., Cui P. H., Church W. B., Murray M. Functional characterization of nonsynonymous single nucleotide polymorphisms in the human organic anion transporter 4 (hOAT4) British Journal of Pharmacology . 2010;159(2):419–427. doi: 10.1111/j.1476-5381.2009.00545.x. PubMed DOI PMC

Long W., Panwar P., Witkowska K., et al. Critical roles of two hydrophobic residues within human glucose transporter 9 (hSLC2A9) in substrate selectivity and urate transport. Journal of Biological Chemistry . 2015;290(24):15292–15303. doi: 10.1074/jbc.M114.611178. PubMed DOI PMC

Saint Pierre A., Genin E. How important are rare variants in common disease? Briefings in Functional Genomics . 2014;13(5):353–361. doi: 10.1093/bfgp/elu025. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace