Alterations in lipidome profiles distinguish early-onset hyperuricemia, gout, and the effect of urate-lowering treatment
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
DRO (FNOL 00098892)
Ministerstvo Zdravotnictví Ceské Republiky
DRO (FNOL 00098892)
Ministerstvo Zdravotnictví Ceské Republiky
DRO (FNOL 00098892)
Ministerstvo Zdravotnictví Ceské Republiky
NU22-01-00465
Ministerstvo Zdravotnictví Ceské Republiky
NU22-01-00465
Ministerstvo Zdravotnictví Ceské Republiky
NU22-01-00465
Ministerstvo Zdravotnictví Ceské Republiky
NU22-01-00465
Ministerstvo Zdravotnictví Ceské Republiky
NU22-01-00465
Ministerstvo Zdravotnictví Ceské Republiky
NU22-01-00465
Ministerstvo Zdravotnictví Ceské Republiky
NU22-01-00465
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
38042879
PubMed Central
PMC10693150
DOI
10.1186/s13075-023-03204-6
PII: 10.1186/s13075-023-03204-6
Knihovny.cz E-zdroje
- Klíčová slova
- Glycerophospholipids, Gout, Hyperuricemia, LC–MS, Lipidomics, Urate-lowering treatment,
- MeSH
- antiuratika terapeutické užití MeSH
- dna (nemoc) * diagnóza farmakoterapie MeSH
- hyperurikemie * diagnóza farmakoterapie MeSH
- kyselina močová MeSH
- lidé MeSH
- lipidomika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiuratika MeSH
- kyselina močová MeSH
BACKGROUND: Currently, it is not possible to predict whether patients with hyperuricemia (HUA) will develop gout and how this progression may be affected by urate-lowering treatment (ULT). Our study aimed to evaluate differences in plasma lipidome between patients with asymptomatic HUA detected ≤ 40 years (HUA ≤ 40) and > 40 years, gout patients with disease onset ≤ 40 years (Gout ≤ 40) and > 40 years, and normouricemic healthy controls (HC). METHODS: Plasma samples were collected from 94 asymptomatic HUA (77% HUA ≤ 40) subjects, 196 gout patients (59% Gout ≤ 40), and 53 HC. A comprehensive targeted lipidomic analysis was performed to semi-quantify 608 lipids in plasma. Univariate and multivariate statistics and advanced visualizations were applied. RESULTS: Both HUA and gout patients showed alterations in lipid profiles with the most significant upregulation of phosphatidylethanolamines and downregulation of lysophosphatidylcholine plasmalogens/plasmanyls. More profound changes were observed in HUA ≤ 40 and Gout ≤ 40 without ULT. Multivariate statistics differentiated HUA ≤ 40 and Gout ≤ 40 groups from HC with an overall accuracy of > 95%. CONCLUSION: Alterations in the lipidome of HUA and Gout patients show a significant impact on lipid metabolism. The most significant glycerophospholipid dysregulation was found in HUA ≤ 40 and Gout ≤ 40 patients, together with a correction of this imbalance with ULT.
Zobrazit více v PubMed
Russell MD, Yates M, Bechman K, Rutherford AI, Subesinghe S, Lanyon P, et al. Rising Incidence of Acute Hospital Admissions due to Gout. J Rheumatol. 2020;47:619–623. doi: 10.3899/jrheum.190257. PubMed DOI
Xia Y, Wu Q, Wang H, Zhang S, Jiang Y, Gong T, et al. Global, regional and national burden of gout, 1990–2017: a systematic analysis of the Global Burden of Disease Study. Rheumatology. 2020;59:1529–1538. doi: 10.1093/rheumatology/kez476. PubMed DOI
Dalbeth N, Stamp LK, Merriman TR. The genetics of gout: towards personalised medicine? BMC Med. 2017;15:108. doi: 10.1186/s12916-017-0878-5. PubMed DOI PMC
Punzi L, Scanu A, Galozzi P, Luisetto R, Spinella P, Scirè CA, et al. One year in review 2020: gout. Clin Exp Rheumatol. 2020;38:807–821. PubMed
Disveld IJM, Zoakman S, Jansen TLTA, Rongen GA, Kienhorst LBE, Janssens HJEM, et al. Crystal-proven gout patients have an increased mortality due to cardiovascular diseases, cancer, and infectious diseases especially when having tophi and/or high serum uric acid levels: a prospective cohort study. Clin Rheumatol. Springer Science and Business Media LLC; 2019;38:1385–91. PubMed
Vedder D, Gerritsen M, Duvvuri B, van Vollenhoven RF, Nurmohamed MT, Lood C. Neutrophil activation identifies patients with active polyarticular gout. Arthritis Res Ther. Springer Science and Business Media LLC; 2020;22:148. PubMed PMC
Stamp L, Dalbeth N. Urate-lowering therapy for asymptomatic hyperuricaemia: A need for caution. Semin Arthritis Rheum. 2017;46:457–464. doi: 10.1016/j.semarthrit.2016.07.015. PubMed DOI
Kuo C-F, Grainge MJ, See L-C, Yu K-H, Luo S-F, Zhang W, et al. Epidemiology and management of gout in Taiwan: a nationwide population study. Arthritis Res Ther. 2015;17:13. doi: 10.1186/s13075-015-0522-8. PubMed DOI PMC
Pascart T, Norberciak L, Ea H-K, Guggenbuhl P, Lioté F. Patients with early-onset gout and development of earlier severe joint involvement and metabolic comorbid conditions: Results from a cross-sectional epidemiologic survey. Arthritis Care Res. 2019;71:986–992. doi: 10.1002/acr.23706. PubMed DOI
Zhang B, Fang W, Zeng X, Zhang Y, Ma Y, Sheng F, et al. Clinical characteristics of early- and late-onset gout: A cross-sectional observational study from a Chinese gout clinic. Medicine. 2016;95:e5425. doi: 10.1097/MD.0000000000005425. PubMed DOI PMC
Major TJ, Dalbeth N, Stahl EA, Merriman TR. An update on the genetics of hyperuricaemia and gout. Nat Rev Rheumatol. 2018;14:341–353. doi: 10.1038/s41584-018-0004-x. PubMed DOI
Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Ho Cha S, et al. Molecular identification of a renal urate–anion exchanger that regulates blood urate levels. Nature. 2002;417:447–452. doi: 10.1038/nature742. PubMed DOI
Matsuo H, Chiba T, Nagamori S, Nakayama A, Domoto H, Phetdee K, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet. 2008;83:744–751. doi: 10.1016/j.ajhg.2008.11.001. PubMed DOI PMC
Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CNA, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008;40:437–442. doi: 10.1038/ng.106. PubMed DOI
Woodward OM, Köttgen A, Coresh J, Boerwinkle E, Guggino WB, Köttgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A. Proceedings of the National Academy of Sciences; 2009;106:10338–42. PubMed PMC
Abhishek A, Courtney P, Jenkins W, Sandoval-Plata G, Jones AC, Zhang W, et al. Brief report: Monosodium urate monohydrate crystal deposits are common in asymptomatic sons of patients with gout: The sons of gout study. Arthritis rheumatol Wiley. 2018;70:1847–1852. doi: 10.1002/art.40572. PubMed DOI PMC
Dalbeth N, House ME, Aati O, Tan P, Franklin C, Horne A, et al. Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study. Ann Rheum Dis BMJ. 2015;74:908–911. doi: 10.1136/annrheumdis-2014-206397. PubMed DOI
Son M, Seo J, Yang S. Association between dyslipidemia and serum uric acid levels in Korean adults: Korea National Health and Nutrition Examination Survey 2016–2017. PLoS ONE. 2020;15:e0228684. doi: 10.1371/journal.pone.0228684. PubMed DOI PMC
Liang J, Jiang Y, Huang Y, Song W, Li X, Huang Y, et al. The comparison of dyslipidemia and serum uric acid in patients with gout and asymptomatic hyperuricemia: a cross-sectional study. Lipids Health Dis. 2020;19:31. doi: 10.1186/s12944-020-1197-y. PubMed DOI PMC
Choi HG, Kwon B-C, Kwon MJ, Kim JH, Kim J-H, Park B, et al. Association between Gout and Dyslipidemia: A Nested Case-Control Study Using a National Health Screening Cohort. J Pers Med. 2022;12. PubMed PMC
Yang F, Liu M, Qin N, Li S, Yu M, Wang C, et al. Lipidomics coupled with pathway analysis characterizes serum metabolic changes in response to potassium oxonate induced hyperuricemic rats. Lipids Health Dis. 2019;18:112. doi: 10.1186/s12944-019-1054-z. PubMed DOI PMC
Liu S, Wang Y, Liu H, Xu T, Wang M-J, Lu J, et al. Serum lipidomics reveals distinct metabolic profiles for asymptomatic hyperuricemic and gout patients. Rheumatology (Oxford) 2022;61:2644–2651. doi: 10.1093/rheumatology/keab743. PubMed DOI
Wang C, Lu J, Sun W, Merriman TR, Dalbeth N, Wang Z, et al. Profiling of serum oxylipins identifies distinct spectrums and potential biomarkers in young people with very early onset gout. Rheumatology. Oxford University Press (OUP); 2022. PubMed PMC
Choi Y-J, Shin H-S, Choi HS, Park J-W, Jo I, Oh E-S, et al. Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. Lab Invest. 2014;94:1114–1125. doi: 10.1038/labinvest.2014.98. PubMed DOI
Liu N, Sun Q, Xu H, Yu X, Chen W, Wei H, et al. Hyperuricemia induces lipid disturbances mediated by LPCAT3 upregulation in the liver. FASEB J. 2020;34:13474–13493. doi: 10.1096/fj.202000950R. PubMed DOI
Neogi T, Jansen TLTA, Dalbeth N, Fransen J, Schumacher HR, Berendsen D, et al. 2015 Gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis. 2015;74:1789–1798. doi: 10.1136/annrheumdis-2015-208237. PubMed DOI PMC
Sarafian MH, Gaudin M, Lewis MR, Martin F-P, Holmes E, Nicholson JK, et al. Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry. Anal Chem. 2014;86:5766–5774. doi: 10.1021/ac500317c. PubMed DOI
Xuan Q, Hu C, Yu D, Wang L, Zhou Y, Zhao X, et al. Development of a High Coverage Pseudotargeted Lipidomics Method Based on Ultra-High Performance Liquid Chromatography-Mass Spectrometry. Anal Chem. 2018;90:7608–7616. doi: 10.1021/acs.analchem.8b01331. PubMed DOI PMC
AlzbetaG. AlzbetaG/Metabol: First version. 2019 [cited 2022 Dec 13]; Available from: https://zenodo.org/record/3235775
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome--a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med. 2006;23:469–80. PubMed
Toyoda Y, Pavelcová K, Bohatá J, Ješina P, Kubota Y, Suzuki H, et al. Identification of Two Dysfunctional Variants in the ABCG2 Urate Transporter Associated with Pediatric-Onset of Familial Hyperuricemia and Early-Onset Gout. Int J Mol Sci [Internet]. 2021;22. Available from: 10.3390/ijms22041935 PubMed PMC
Toyoda Y, Pavelcová K, Klein M, Suzuki H, Takada T, Stiburkova B. Familial early-onset hyperuricemia and gout associated with a newly identified dysfunctional variant in urate transporter ABCG2. Arthritis Res Ther. 2019;21:219. doi: 10.1186/s13075-019-2007-7. PubMed DOI PMC
Toyoda Y, Mančíková A, Krylov V, Morimoto K, Pavelcová K, Bohatá J, et al. Functional Characterization of Clinically-Relevant Rare Variants in Identified in a Gout and Hyperuricemia Cohort. Cells. 2019;8. PubMed PMC
Pavelcova K, Bohata J, Pavlikova M, Bubenikova E, Pavelka K, Stiburkova B. Evaluation of the Influence of Genetic Variants of SLC2A9 (GLUT9) and SLC22A12 (URAT1) on the Development of Hyperuricemia and Gout. J Clin Med Res. Multidisciplinary Digital Publishing Institute; 2020;9:2510. PubMed PMC
Talaat KM, el-Sheikh AR. The effect of mild hyperuricemia on urinary transforming growth factor beta and the progression of chronic kidney disease. Am J Nephrol. 2007;27:435–40. PubMed
Kazachkov M, Chen Q, Wang L, Zou J. Substrate preferences of a lysophosphatidylcholine acyltransferase highlight its role in phospholipid remodeling. Lipids. 2008;43:895–902. doi: 10.1007/s11745-008-3233-y. PubMed DOI
Shao G, Qian Y, Lu L, Liu Y, Wu T, Ji G, et al. Research progress in the role and mechanism of LPCAT3 in metabolic related diseases and cancer. J Cancer. 2022;13:2430–2439. doi: 10.7150/jca.71619. PubMed DOI PMC
Shi SY, Luk CT, Brunt JJ, Sivasubramaniyam T, Lu S-Y, Schroer SA, et al. Adipocyte-specific deficiency of Janus kinase (JAK) 2 in mice impairs lipolysis and increases body weight, and leads to insulin resistance with ageing. Diabetologia. 2014;57:1016–1026. doi: 10.1007/s00125-014-3185-0. PubMed DOI
Dodington DW, Desai HR, Woo M. JAK/STAT - Emerging Players in Metabolism. Trends Endocrinol Metab. 2018;29:55–65. doi: 10.1016/j.tem.2017.11.001. PubMed DOI
Shimano H. SREBPs: physiology and pathophysiology of the SREBP family. FEBS J. 2009;276:616–621. doi: 10.1111/j.1742-4658.2008.06806.x. PubMed DOI
Okazaki H, Goldstein JL, Brown MS, Liang G. LXR-SREBP-1c-phospholipid transfer protein axis controls very low density lipoprotein (VLDL) particle size. J Biol Chem Elsevier BV. 2010;285:6801–6810. doi: 10.1074/jbc.M109.079459. PubMed DOI PMC
Rong X, Wang B, Dunham MM, Hedde PN, Wong JS, Gratton E, et al. Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion. Elife. 2015;4. PubMed PMC
Jensen PN, Fretts AM, Yu C, Hoofnagle AN, Umans JG, Howard BV, et al. Circulating sphingolipids, fasting glucose, and impaired fasting glucose: The Strong Heart Family Study. EBioMedicine. 2019;41:44–49. doi: 10.1016/j.ebiom.2018.12.046. PubMed DOI PMC
Laaksonen R, Ekroos K, Sysi-Aho M, Hilvo M, Vihervaara T, Kauhanen D, et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur Heart J. 2016;37:1967–1976. doi: 10.1093/eurheartj/ehw148. PubMed DOI PMC
Hammerschmidt P, Brüning JC. Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci. 2022;79:395. doi: 10.1007/s00018-022-04401-3. PubMed DOI PMC
Berkowitz L, Salazar C, Ryff CD, Coe CL, Rigotti A. Serum sphingolipid profiling as a novel biomarker for metabolic syndrome characterization. Front Cardiovasc Med. 2022;9:1092331. doi: 10.3389/fcvm.2022.1092331. PubMed DOI PMC
Chaurasia B, Summers SA. Ceramides in Metabolism: Key Lipotoxic Players. Annu Rev Physiol. 2021;83:303–330. doi: 10.1146/annurev-physiol-031620-093815. PubMed DOI PMC
Gaggini M, Ndreu R, Michelucci E, Rocchiccioli S, Vassalle C. Ceramides as Mediators of Oxidative Stress and Inflammation in Cardiometabolic Disease. Int J Mol Sci. 2022;23. Available from: 10.3390/ijms23052719 PubMed PMC
Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature. 2014;510:58–67. doi: 10.1038/nature13475. PubMed DOI PMC
Pettus BJ, Chalfant CE, Hannun YA. Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta. 2002;1585:114–125. doi: 10.1016/S1388-1981(02)00331-1. PubMed DOI
Gil-de-Gómez L, Astudillo AM, Meana C, Rubio JM, Guijas C, Balboa MA, et al. A phosphatidylinositol species acutely generated by activated macrophages regulates innate immune responses. J Immunol. 2013;190:5169–5177. doi: 10.4049/jimmunol.1203494. PubMed DOI
Galvão I, Queiroz-Junior CM, de Oliveira VLS, Pinho V, Hirsch E, Teixeira MM. The Inhibition of Phosphoinositide-3 Kinases Induce Resolution of Inflammation in a Gout Model. Front Pharmacol. 2018;9:1505. doi: 10.3389/fphar.2018.01505. PubMed DOI PMC
Tavares LD, Galvão I, Costa VV, Batista NV, Rossi LCR, Brito CB, et al. Phosphoinositide-3 kinase gamma regulates caspase-1 activation and leukocyte recruitment in acute murine gout. J Leukoc Biol. 2019;106:619–629. doi: 10.1002/JLB.MA1118-470RR. PubMed DOI
Heyes N, Kapoor P, Kerr ID. Polymorphisms of the Multidrug Pump ABCG2: A Systematic Review of Their Effect on Protein Expression, Function, and Drug Pharmacokinetics. Drug Metab Dispos. 2018;46:1886–1899. doi: 10.1124/dmd.118.083030. PubMed DOI
Horváthová V, Bohatá J, Pavlíková M, Pavelcová K, Pavelka K, Šenolt L, et al. Interaction of the p.Q141K Variant of the Gene with Clinical Data and Cytokine Levels in Primary Hyperuricemia and Gout. J Clin Med Res. 2019;8. Available from: 10.3390/jcm8111965 PubMed PMC
Liu S-C, Xia L, Zhang J, Lu X-H, Hu D-K, Zhang H-T, et al. Gout and Risk of Myocardial Infarction: A Systematic Review and Meta-Analysis of Cohort Studies. PLoS ONE. 2015;10:e0134088. doi: 10.1371/journal.pone.0134088. PubMed DOI PMC
Thukkani AK, McHowat J, Hsu F-F, Brennan M-L, Hazen SL, Ford DA. Identification of alpha-chloro fatty aldehydes and unsaturated lysophosphatidylcholine molecular species in human atherosclerotic lesions. Circulation. 2003;108:3128–3133. doi: 10.1161/01.CIR.0000104564.01539.6A. PubMed DOI
Liu-Wu Y, Hurt-Camejo E, Wiklund O. Lysophosphatidylcholine induces the production of IL-1beta by human monocytes. Atherosclerosis. 1998;137:351–357. doi: 10.1016/S0021-9150(97)00295-5. PubMed DOI
Lu C-C, Wu S-K, Chen H-Y, Chung W-S, Lee M-C, Yeh C-J. Clinical characteristics of and relationship between metabolic components and renal function among patients with early-onset juvenile tophaceous gout. J Rheumatol. 2014;41:1878–1883. doi: 10.3899/jrheum.131240. PubMed DOI