Identification of pathogenic variants in the ABCG2 gene in patients with severe familial hyperuricemia and gout
Language English Country Netherlands Media print-electronic
Document type Journal Article, Case Reports
Grant support
21H03350, 23K21618, 22KK0152 and 24H00672 ,
JSPS KAKENHI
NU22-01-00465
Ministerstvo Zdravotnictví Ceské Republiky
RVO 00023728
Institute of Rheumatology, Prague
BBMRICZ LM2023033
BBMRI
RVO VFN64165
General University Hospital in Prague
PubMed
40082324
DOI
10.1007/s11010-025-05252-9
PII: 10.1007/s11010-025-05252-9
Knihovny.cz E-resources
- Keywords
- ABCG2, Gout, Hyperuricemia, Urate transport,
- MeSH
- ATP Binding Cassette Transporter, Subfamily G, Member 2 * genetics metabolism MeSH
- Gout * genetics metabolism pathology MeSH
- Hyperuricemia * genetics metabolism pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Mutation * MeSH
- Neoplasm Proteins * genetics metabolism MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
- Names of Substances
- ATP Binding Cassette Transporter, Subfamily G, Member 2 * MeSH
- ABCG2 protein, human MeSH Browser
- Neoplasm Proteins * MeSH
We report the identification of two pathogenic variants in the ABCG2 gene, encoding a urate exporter, in two probands (male and female) with severe familial gouty phenotypes and hyperuricemia. Clinico-genetic analyses identified p.I63YfsTer54 (rs565722112) and p.G74D (rs199976573) as potentially causal mutations; functional analyses demonstrated that these two variants are deficient in plasma membrane localization and functionally null. Our data show that dysfunctional variants in the ABCG2 gene are strong risk factors for hyperuricemia and gout in both males and females.
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Department of Pharmacy The University of Tokyo Hospital Tokyo Japan
Department of Rheumatology 1st Faculty of Medicine Charles University Prague Czech Republic
Institute of Rheumatology Na Slupi 4 128 50 Prague 2 Czech Republic
See more in PubMed
Leask MP et al (2024) The pathogenesis of gout: molecular insights from genetic, epigenomic and transcriptomic studies. Nat Rev Rheumatol 20:510–523. https://doi.org/10.1038/s41584-024-01137-1 PubMed DOI
Takada T et al (2024) Regulation of urate homeostasis by membrane transporters. Gout Urate Cryst Depos Dis 2:206–219. https://doi.org/10.3390/gucdd2020016 DOI
Ichida K et al (2012) Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun 3:764. https://doi.org/10.1038/ncomms1756 PubMed DOI
Matsuo H, et al (2009) Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med 1:5ra11. https://doi.org/10.1126/scitranslmed.3000237
Toyoda Y et al (2021) Identification of two dysfunctional variants in the ABCG2 urate transporter associated with pediatric-onset of familial hyperuricemia and early-onset gout. Int J Mol Sci 22:1935. https://doi.org/10.3390/ijms22041935 PubMed DOI PMC
Toyoda Y et al (2019) Familial early-onset hyperuricemia and gout associated with a newly identified dysfunctional variant in urate transporter ABCG2. Arthritis Res Ther 21:219. https://doi.org/10.1186/s13075-019-2007-7 PubMed DOI PMC
Toyoda Y et al (2019) Functional characterization of clinically-relevant rare variants in ABCG2 identified in a gout and hyperuricemia cohort. Cells 8:363. https://doi.org/10.3390/cells8040363 PubMed DOI PMC
Higashino T et al (2017) Multiple common and rare variants of ABCG2 cause gout. RMD Open 3:e000464. https://doi.org/10.1136/rmdopen-2017-000464 PubMed DOI PMC
Stiburkova B et al (2016) Novel dysfunctional variant in ABCG2 as a cause of severe tophaceous gout: biochemical, molecular genetics and functional analysis. Rheumatology (Oxford) 55:191–194. https://doi.org/10.1093/rheumatology/kev350 PubMed DOI
Halperin Kuhns VL, Woodward OM (2021) Urate transport in health and disease. Best Pract Res Clin Rheumatol 35:101717. https://doi.org/10.1016/j.berh.2021.101717 PubMed DOI PMC
Wallace SL et al (1977) Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis Rheum 20:895–900 PubMed
Hasikova L et al (2024) Urinary oxypurinol is a useful tool to assess adherence to allopurinol in clinical practice. Rheumatology (Oxford) 63:e174–e176. https://doi.org/10.1093/rheumatology/keae009 PubMed DOI
Mraz M et al (2015) Modern diagnostic approach to hereditary xanthinuria. Urolithiasis 43:61–67. https://doi.org/10.1007/s00240-014-0734-4 PubMed DOI
Stiburkova B et al (2017) Functional non-synonymous variants of ABCG2 and gout risk. Rheumatology (Oxford) 56:1982–1992. https://doi.org/10.1093/rheumatology/kex295 PubMed DOI
Toyoda Y et al (2023) SVCT2/SLC23A2 is a sodium-dependent urate transporter: functional properties and practical application. J Biol Chem 299:104976. https://doi.org/10.1016/j.jbc.2023.104976 PubMed DOI PMC
Imai Y et al (2002) C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther 1:611–616 PubMed
Saison C et al (2012) Null alleles of ABCG2 encoding the breast cancer resistance protein define the new blood group system Junior. Nat Genet 44:174–177. https://doi.org/10.1038/ng.1070 PubMed DOI PMC
Taylor NMI et al (2017) Structure of the human multidrug transporter ABCG2. Nature 546:504–509. https://doi.org/10.1038/nature22345 PubMed DOI
Major TJ et al (2024) A genome-wide association analysis reveals new pathogenic pathways in gout. Nat Genet 56:2392–2406. https://doi.org/10.1038/s41588-024-01921-5 PubMed DOI
Kvasnicka A et al (2023) Alterations in lipidome profiles distinguish early-onset hyperuricemia, gout, and the effect of urate-lowering treatment. Arthritis Res Ther 25:234. https://doi.org/10.1186/s13075-023-03204-6 PubMed DOI PMC