The Role of TRIP6, ABCC3 and CPS1 Expression in Resistance of Ovarian Cancer to Taxanes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-03063S
Czech Science Foundation
NU20-09-00174
Czech Health Research Council
PROGRES Q28
Charles University
INTER-COST, LTC19020
Czech Ministry of Education, Youth and Sports
R01 CA103314
NIH HHS - United States
PubMed
35008510
PubMed Central
PMC8744980
DOI
10.3390/ijms23010073
PII: ijms23010073
Knihovny.cz E-zdroje
- Klíčová slova
- ABCC3, CPS1, Stony Brook taxanes, TRIP6, multidrug resistance, ovarian carcinoma, taxanes,
- MeSH
- adaptorové proteiny signální transdukční genetika MeSH
- chemorezistence genetika MeSH
- down regulace účinky léků genetika MeSH
- epiteliální ovariální karcinom farmakoterapie genetika MeSH
- karbamoylfosfátsynthasa (amoniak) genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- myši nahé MeSH
- myši MeSH
- nádorové biomarkery genetika MeSH
- nádorové buněčné linie MeSH
- nádory vaječníků farmakoterapie genetika MeSH
- paclitaxel terapeutické užití MeSH
- proteiny s doménou LIM genetika MeSH
- proteiny spojené s mnohočetnou rezistencí k lékům genetika MeSH
- taxoidy terapeutické užití MeSH
- transkripční faktory genetika MeSH
- viabilita buněk účinky léků genetika MeSH
- zvířata MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- CPS1 protein, human MeSH Prohlížeč
- karbamoylfosfátsynthasa (amoniak) MeSH
- multidrug resistance-associated protein 3 MeSH Prohlížeč
- nádorové biomarkery MeSH
- paclitaxel MeSH
- proteiny s doménou LIM MeSH
- proteiny spojené s mnohočetnou rezistencí k lékům MeSH
- taxoidy MeSH
- transkripční faktory MeSH
- TRIP6 protein, human MeSH Prohlížeč
The main problem precluding successful therapy with conventional taxanes is de novo or acquired resistance to taxanes. Therefore, novel experimental taxane derivatives (Stony Brook taxanes; SB-Ts) are synthesized and tested as potential drugs against resistant solid tumors. Recently, we reported alterations in ABCC3, CPS1, and TRIP6 gene expression in a breast cancer cell line resistant to paclitaxel. The present study aimed to investigate gene expression changes of these three candidate molecules in the highly resistant ovarian carcinoma cells in vitro and corresponding in vivo models treated with paclitaxel and new experimental Stony Brook taxanes of the third generation (SB-T-121605 and SB-T-121606). We also addressed their prognostic meaning in ovarian carcinoma patients treated with taxanes. We estimated and observed changes in mRNA and protein profiles of ABCC3, CPS1, and TRIP6 in resistant and sensitive ovarian cancer cells and after the treatment of resistant ovarian cancer models with paclitaxel and Stony Brook taxanes in vitro and in vivo. Combining Stony Brook taxanes with paclitaxel caused downregulation of CPS1 in the paclitaxel-resistant mouse xenograft tumor model in vivo. Moreover, CPS1 overexpression seems to play a role of a prognostic biomarker of epithelial ovarian carcinoma patients' poor survival. ABCC3 was overexpressed in EOC tumors, but after the treatment with taxanes, its up-regulation disappeared. Based on our results, we can suggest ABCC3 and CPS1 for further investigations as potential therapeutic targets in human cancers.
3rd Faculty of Medicine Charles University 100 00 Prague Czech Republic
Toxicogenomics Unit National Institute of Public Health 100 00 Prague Czech Republic
Zobrazit více v PubMed
Cancer of the Ovary—Cancer Stat Facts. [(accessed on 25 April 2021)]; Available online: https://seer.cancer.gov/statfacts/html/ovary.html.
Bowtell D.D., Böhm S., Ahmed A.A., Aspuria P.-J., Bast R.C., Beral V., Berek J.S., Birrer M.J., Blagden S., Bookman M.A., et al. Rethinking Ovarian Cancer II: Reducing Mortality from High-Grade Serous Ovarian Cancer. Nat. Rev. Cancer. 2015;15:668–679. doi: 10.1038/nrc4019. PubMed DOI PMC
Rojas V., Hirshfield K.M., Ganesan S., Rodriguez-Rodriguez L. Molecular Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis and Treatment. Int. J. Mol. Sci. 2016;17:2113. doi: 10.3390/ijms17122113. PubMed DOI PMC
Matz M., Coleman M.P., Carreira H., Salmerón D., Chirlaque M.D., Allemani C. CONCORD Working Group Worldwide Comparison of Ovarian Cancer Survival: Histological Group and Stage at Diagnosis (CONCORD-2) Gynecol. Oncol. 2017;144:396–404. doi: 10.1016/j.ygyno.2016.11.019. PubMed DOI PMC
Stewart C., Ralyea C., Lockwood S. Ovarian Cancer: An Integrated Review. Semin. Oncol. Nurs. 2019;35:151–156. doi: 10.1016/j.soncn.2019.02.001. PubMed DOI
Ovarian Cancer Survival Rates | Ovarian Cancer Prognosis. [(accessed on 25 April 2021)]. Available online: https://www.cancer.org/cancer/ovarian-cancer/detection-diagnosis-staging/survival-rates.html.
Amoroso M.R., Matassa D.S., Agliarulo I., Avolio R., Maddalena F., Condelli V., Landriscina M., Esposito F. Stress-Adaptive Response in Ovarian Cancer Drug Resistance: Role of TRAP1 in Oxidative Metabolism-Driven Inflammation. Adv. Protein Chem. Struct. Biol. 2017;108:163–198. doi: 10.1016/bs.apcsb.2017.01.004. PubMed DOI
Das T., Anand U., Pandey S.K., Ashby C.R., Assaraf Y.G., Chen Z.-S., Dey A. Therapeutic Strategies to Overcome Taxane Resistance in Cancer. Drug Resist. Updates. 2021;55:100754. doi: 10.1016/j.drup.2021.100754. PubMed DOI
Boyd L.R., Muggia F.M. Carboplatin/Paclitaxel Induction in Ovarian Cancer: The Finer Points. Oncology (Williston Park) 2018;32 PubMed
Kim A., Ueda Y., Naka T., Enomoto T. Therapeutic Strategies in Epithelial Ovarian Cancer. J. Exp. Clin. Cancer Res. 2012;31:14. doi: 10.1186/1756-9966-31-14. PubMed DOI PMC
Cortez A.J., Tudrej P., Kujawa K.A., Lisowska K.M. Advances in Ovarian Cancer Therapy. Cancer Chemother. Pharmacol. 2018;81:17–38. doi: 10.1007/s00280-017-3501-8. PubMed DOI PMC
Lisio M.-A., Fu L., Goyeneche A., Gao Z.-H., Telleria C. High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. Int. J. Mol. Sci. 2019;20:952. doi: 10.3390/ijms20040952. PubMed DOI PMC
Ray-Coquard I., Pautier P., Pignata S., Pérol D., González-Martín A., Berger R., Fujiwara K., Vergote I., Colombo N., Mäenpää J., et al. Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer. N. Engl. J. Med. 2019;381:2416–2428. doi: 10.1056/NEJMoa1911361. PubMed DOI
Lheureux S., Braunstein M., Oza A.M. Epithelial Ovarian Cancer: Evolution of Management in the Era of Precision Medicine. CA Cancer J. Clin. 2019;69:280–304. doi: 10.3322/caac.21559. PubMed DOI
McMullen M., Karakasis K., Madariaga A., Oza A.M. Overcoming Platinum and PARP-Inhibitor Resistance in Ovarian Cancer. Cancers. 2020;12:1607. doi: 10.3390/cancers12061607. PubMed DOI PMC
Lheureux S., Cristea M.C., Bruce J.P., Garg S., Cabanero M., Mantia-Smaldone G., Olawaiye A.B., Ellard S.L., Weberpals J.I., Wahner Hendrickson A.E., et al. Adavosertib plus Gemcitabine for Platinum-Resistant or Platinum-Refractory Recurrent Ovarian Cancer: A Double-Blind, Randomised, Placebo-Controlled, Phase 2 Trial. Lancet. 2021;397:281–292. doi: 10.1016/S0140-6736(20)32554-X. PubMed DOI PMC
Ojima I., Das M. Recent Advances in the Chemistry and Biology of New Generation Taxoids. J. Nat. Prod. 2009;72:554–565. doi: 10.1021/np8006556. PubMed DOI PMC
Wang C., Wang X., Sun Y., Taouil A.K., Yan S., Botchkina G.I., Ojima I. Design, Synthesis and SAR Study of 3rd-Generation Taxoids Bearing 3-CH3, 3-CF3O and 3-CHF2O Groups at the C2-Benzoate Position. Bioorg. Chem. 2020;95:103523. doi: 10.1016/j.bioorg.2019.103523. PubMed DOI PMC
Ehrlichova M., Vaclavikova R., Ojima I., Pepe A., Kuznetsova L.V., Chen J., Truksa J., Kovar J., Gut I. Transport and Cytotoxicity of Paclitaxel, Docetaxel, and Novel Taxanes in Human Breast Cancer Cells. Naunyn Schmiedeberg’s Arch. Pharmacol. 2005;372:95–105. doi: 10.1007/s00210-005-1080-4. PubMed DOI
Ehrlichová M., Koc M., Truksa J., Naldová Z., Václavíková R., Kovárr J. Cell Death Induced by Taxanes in Breast Cancer Cells: Cytochrome C Is Released in Resistant but Not in Sensitive Cells. Anticancer Res. 2005;25:4215–4224. PubMed
Vobořilová J., Němcová-Fürstová V., Neubauerová J., Ojima I., Zanardi I., Gut I., Kovář J. Cell Death Induced by Novel Fluorinated Taxanes in Drug-Sensitive and Drug-Resistant Cancer Cells. Investig. New Drugs. 2011;29:411–423. doi: 10.1007/s10637-009-9368-8. PubMed DOI PMC
Němcová-Fürstová V., Kopperová D., Balušíková K., Ehrlichová M., Brynychová V., Václavíková R., Daniel P., Souček P., Kovář J. Characterization of Acquired Paclitaxel Resistance of Breast Cancer Cells and Involvement of ABC Transporters. Toxicol. Appl. Pharmacol. 2016;310:215–228. doi: 10.1016/j.taap.2016.09.020. PubMed DOI
Oliverius M., Flasarova D., Mohelnikova-Duchonova B., Ehrlichova M., Hlavac V., Kocik M., Strouhal O., Dvorak P., Ojima I., Soucek P. KRAS Pathway Expression Changes in Pancreatic Cancer Models by Conventional and Experimental Taxanes. Mutagenesis. 2019;34:403–411. doi: 10.1093/mutage/gez021. PubMed DOI PMC
Kovár J., Ehrlichová M., Smejkalová B., Zanardi I., Ojima I., Gut I. Comparison of Cell Death-Inducing Effect of Novel Taxane SB-T-1216 and Paclitaxel in Breast Cancer Cells. Anticancer Res. 2009;29:2951–2960. PubMed PMC
Zheng X., Wang C., Xing Y., Chen S., Meng T., You H., Ojima I., Dong Y. SB-T-121205, a next-Generation Taxane, Enhances Apoptosis and Inhibits Migration/Invasion in MCF-7/PTX Cells. Int. J. Oncol. 2017;50:893–902. doi: 10.3892/ijo.2017.3871. PubMed DOI PMC
Pavlikova N., Bartonova I., Dincakova L., Halada P., Kovar J. Differentially Expressed Proteins in Human Breast Cancer Cells Sensitive and Resistant to Paclitaxel. Int. J. Oncol. 2014;45:822–830. doi: 10.3892/ijo.2014.2484. PubMed DOI
Pavlíková N., Bartoňová I., Balušíková K., Kopperova D., Halada P., Kovář J. Differentially Expressed Proteins in Human MCF-7 Breast Cancer Cells Sensitive and Resistant to Paclitaxel. Exp. Cell Res. 2015;333:1–10. doi: 10.1016/j.yexcr.2014.12.005. PubMed DOI
Elsnerova K., Mohelnikova-Duchonova B., Cerovska E., Ehrlichova M., Gut I., Rob L., Skapa P., Hruda M., Bartakova A., Bouda J., et al. Gene Expression of Membrane Transporters: Importance for Prognosis and Progression of Ovarian Carcinoma. Oncol. Rep. 2016;35:2159–2170. doi: 10.3892/or.2016.4599. PubMed DOI
Xu J., Wu J., Fu C., Teng F., Liu S., Dai C., Shen R., Jia X. Multidrug Resistant LncRNA Profile in Chemotherapeutic Sensitive and Resistant Ovarian Cancer Cells. J. Cell Physiol. 2018;233:5034–5043. doi: 10.1002/jcp.26369. PubMed DOI
Elsnerova K., Bartakova A., Tihlarik J., Bouda J., Rob L., Skapa P., Hruda M., Gut I., Mohelnikova-Duchonova B., Soucek P., et al. Gene Expression Profiling Reveals Novel Candidate Markers of Ovarian Carcinoma Intraperitoneal Metastasis. J. Cancer. 2017;8:3598–3606. doi: 10.7150/jca.20766. PubMed DOI PMC
Seborova K., Vaclavikova R., Soucek P., Elsnerova K., Bartakova A., Cernaj P., Bouda J., Rob L., Hruda M., Dvorak P. Association of ABC Gene Profiles with Time to Progression and Resistance in Ovarian Cancer Revealed by Bioinformatics Analyses. Cancer Med. 2019;8:606–616. doi: 10.1002/cam4.1964. PubMed DOI PMC
Balaji S.A., Udupa N., Chamallamudi M.R., Gupta V., Rangarajan A. Role of the Drug Transporter ABCC3 in Breast Cancer Chemoresistance. PLoS ONE. 2016;11:e0155013. doi: 10.1371/journal.pone.0155013. PubMed DOI PMC
O’Brien C., Cavet G., Pandita A., Hu X., Haydu L., Mohan S., Toy K., Rivers C.S., Modrusan Z., Amler L.C., et al. Functional Genomics Identifies ABCC3 as a Mediator of Taxane Resistance in HER2-Amplified Breast Cancer. Cancer Res. 2008;68:5380–5389. doi: 10.1158/0008-5472.CAN-08-0234. PubMed DOI
Zhao Y., Lu H., Yan A., Yang Y., Meng Q., Sun L., Pang H., Li C., Dong X., Cai L. ABCC3 as a Marker for Multidrug Resistance in Non-Small Cell Lung Cancer. Sci. Rep. 2013;3:3120. doi: 10.1038/srep03120. PubMed DOI PMC
Sissung T.M., Rajan A., Blumenthal G.M., Liewehr D.J., Steinberg S.M., Berman A., Giaccone G., Figg W.D. Reproducibility of Pharmacogenetics Findings for Paclitaxel in a Heterogeneous Population of Patients with Lung Cancer. PLoS ONE. 2019;14:e0212097. doi: 10.1371/journal.pone.0212097. PubMed DOI PMC
Ramírez-Cosmes A., Reyes-Jiménez E., Zertuche-Martínez C., Hernández-Hernández C.A., García-Román R., Romero-Díaz R.I., Manuel-Martínez A.E., Elizarrarás-Rivas J., Vásquez-Garzón V.R. The Implications of ABCC3 in Cancer Drug Resistance: Can We Use It as a Therapeutic Target. Am. J. Cancer Res. 2021;11:4127–4140. PubMed PMC
Fernie A.R., Carrari F., Sweetlove L.J. Respiratory Metabolism: Glycolysis, the TCA Cycle and Mitochondrial Electron Transport. Curr. Opin. Plant Biol. 2004;7:254–261. doi: 10.1016/j.pbi.2004.03.007. PubMed DOI
Tait S.W.G., Green D.R. Mitochondria and Cell Signalling. J. Cell Sci. 2012;125:807–815. doi: 10.1242/jcs.099234. PubMed DOI PMC
Tait S., Green D. Mitochondrial Regulation of Cell Death. Cold Spring Harb. Perspect. Biol. 2013;5:a008706. doi: 10.1101/cshperspect.a008706. PubMed DOI PMC
Palmfeldt J., Bross P. Proteomics of Human Mitochondria. Mitochondrion. 2017;33:2–14. doi: 10.1016/j.mito.2016.07.006. PubMed DOI
Daniel P., Halada P., Jelínek M., Balušíková K., Kovář J. Differentially Expressed Mitochondrial Proteins in Human MCF7 Breast Cancer Cells Resistant to Paclitaxel. Int. J. Mol. Sci. 2019;20:2986. doi: 10.3390/ijms20122986. PubMed DOI PMC
Lee L.L., Li C.F., Lin C.Y., Lee S.W., Sheu M.J., Lin L.C., Chen T.J., Wu T.F., Hsing C.H. Overexpression of CPS1 Is an Independent Negative Prognosticator in Rectal Cancers Receiving Concurrent Chemoradiotherapy. Tumour Biol. 2014;35:11097–11105. doi: 10.1007/s13277-014-2425-8. PubMed DOI
Xu J., Lai Y.-J., Lin W.-C., Lin F.-T. TRIP6 Enhances Lysophosphatidic Acid-Induced Cell Migration by Interacting with the Lysophosphatidic Acid 2 Receptor. J. Biol. Chem. 2004;279:10459–10468. doi: 10.1074/jbc.M311891200. PubMed DOI PMC
Lin F.-T., Lai Y.-J., Makarova N., Tigyi G., Lin W.-C. The Lysophosphatidic Acid 2 Receptor Mediates Down-Regulation of Siva-1 to Promote Cell Survival. J. Biol. Chem. 2007;282:37759–37769. doi: 10.1074/jbc.M705025200. PubMed DOI PMC
Shuyu E., Lai Y.-J., Tsukahara R., Chen C.-S., Fujiwara Y., Yue J., Yu J.-H., Guo H., Kihara A., Tigyi G., et al. Lysophosphatidic Acid 2 Receptor-Mediated Supramolecular Complex Formation Regulates Its Antiapoptotic Effect. J. Biol. Chem. 2009;284:14558–14571. doi: 10.1074/jbc.M900185200. PubMed DOI PMC
Ehrlichová M., Ojima I., Chen J., Václavíková R., Němcová-Fürstová V., Vobořilová J., Simek P., Horský S., Souček P., Kovář J., et al. Transport, Metabolism, Cytotoxicity and Effects of Novel Taxanes on the Cell Cycle in MDA-MB-435 and NCI/ADR-RES Cells. Naunyn Schmiedebergs Arch Pharm. 2012;385:1035–1048. doi: 10.1007/s00210-012-0785-4. PubMed DOI
Markman M., Rothman R., Hakes T., Reichman B., Hoskins W., Rubin S., Jones W., Almadrones L., Lewis J.L. Second-Line Platinum Therapy in Patients with Ovarian Cancer Previously Treated with Cisplatin. J. Clin. Oncol. 1991;9:389–393. doi: 10.1200/JCO.1991.9.3.389. PubMed DOI
Kaye S.B. Management of Partially Platinum-Sensitive Relapsed Ovarian Cancer. Eur. J. Cancer Suppl. 2008;6:16–21. doi: 10.1016/j.ejcsup.2007.12.003. DOI
Litviakov N.V., Cherdyntseva N.V., Tsyganov M.M., Denisov E.V., Garbukov E.Y., Merzliakova M.K., Volkomorov V.V., Vtorushin S.V., Zavyalova M.V., Slonimskaya E.M., et al. Changing the Expression Vector of Multidrug Resistance Genes Is Related to Neoadjuvant Chemotherapy Response. Cancer Chemother. Pharmacol. 2013;71:153–163. doi: 10.1007/s00280-012-1992-x. PubMed DOI
Hansen S.N., Westergaard D., Thomsen M.B.H., Vistesen M., Do K.N., Fogh L., Belling K.C., Wang J., Yang H., Gupta R., et al. Acquisition of Docetaxel Resistance in Breast Cancer Cells Reveals Upregulation of ABCB1 Expression as a Key Mediator of Resistance Accompanied by Discrete Upregulation of Other Specific Genes and Pathways. Tumour Biol. 2015;36:4327–4338. doi: 10.1007/s13277-015-3072-4. PubMed DOI
Jelínek M., Balušíková K., Daniel P., Němcová-Fürstová V., Kirubakaran P., Jaček M., Wei L., Wang X., Vondrášek J., Ojima I., et al. Substituents at the C3′ and C3′N Positions Are Critical for Taxanes to Overcome Acquired Resistance of Cancer Cells to Paclitaxel. Toxicol Appl. Pharmacol. 2018;347:79–91. doi: 10.1016/j.taap.2018.04.002. PubMed DOI PMC
van der Schoor L.W.E., Verkade H.J., Kuipers F., Jonker J.W. New Insights in the Biology of ABC Transporters ABCC2 and ABCC3: Impact on Drug Disposition. Expert Opin. Drug Metab. Toxicol. 2015;11:273–293. doi: 10.1517/17425255.2015.981152. PubMed DOI
Adamska A., Ferro R., Lattanzio R., Capone E., Domenichini A., Damiani V., Chiorino G., Akkaya B.G., Linton K.J., De Laurenzi V., et al. ABCC3 Is a Novel Target for the Treatment of Pancreatic Cancer. Adv. Biol. Regul. 2019;73:100634. doi: 10.1016/j.jbior.2019.04.004. PubMed DOI
Adamska A., Domenichini A., Capone E., Damiani V., Akkaya B.G., Linton K.J., Di Sebastiano P., Chen X., Keeton A.B., Ramirez-Alcantara V., et al. Pharmacological Inhibition of ABCC3 Slows Tumour Progression in Animal Models of Pancreatic Cancer. J. Exp. Clin. Cancer Res. 2019;38:312. doi: 10.1186/s13046-019-1308-7. PubMed DOI PMC
Auner V., Sehouli J., Oskay-Oezcelik G., Horvat R., Speiser P., Zeillinger R. ABC Transporter Gene Expression in Benign and Malignant Ovarian Tissue. Gynecol. Oncol. 2010;117:198–201. doi: 10.1016/j.ygyno.2009.10.077. PubMed DOI
Liu N., Zeng J., Zhang X., Yang Q., Liao D., Chen G., Wang Y. Involvement of miR-200a in chemosensitivity regulation of ovarian cancer. Zhonghua Yi Xue Za Zhi. 2014;94:2148–2151. PubMed
Shen Y., Yan Z. Systematic Prediction of Drug Resistance Caused by Transporter Genes in Cancer Cells. Sci. Rep. 2021;11:7400. doi: 10.1038/s41598-021-86921-9. PubMed DOI PMC
Xu Y., Yang W., Shi J., Zetter B.R. Prohibitin 1 Regulates Tumor Cell Apoptosis via the Interaction with X-Linked Inhibitor of Apoptosis Protein. J. Mol. Cell Biol. 2016;8:282–285. doi: 10.1093/jmcb/mjw018. PubMed DOI PMC
Ridder D.A., Schindeldecker M., Weinmann A., Berndt K., Urbansky L., Witzel H.R., Heinrich S., Roth W., Straub B.K. Key Enzymes in Pyrimidine Synthesis, CAD and CPS1, Predict Prognosis in Hepatocellular Carcinoma. Cancers. 2021;13:744. doi: 10.3390/cancers13040744. PubMed DOI PMC
Zhang H., Yang S., Wang J., Jiang Y. Blockade of AMPK-Mediated CAMP-PKA-CREB/ATF1 Signaling Synergizes with Aspirin to Inhibit Hepatocellular Carcinoma. Cancers. 2021;13:1738. doi: 10.3390/cancers13071738. PubMed DOI PMC
Pham-Danis C., Gehrke S., Danis E., Rozhok A.I., Daniels M.W., Gao D., Collins C., Paola J.T.D., D’Alessandro A., DeGregori J. Urea Cycle Sustains Cellular Energetics upon EGFR Inhibition in EGFR-Mutant NSCLC. Mol. Cancer Res. 2019;17:1351–1364. doi: 10.1158/1541-7786.MCR-18-1068. PubMed DOI PMC
de Cima S., Polo L.M., Díez-Fernández C., Martínez A.I., Cervera J., Fita I., Rubio V. Structure of Human Carbamoyl Phosphate Synthetase: Deciphering the on/off Switch of Human Ureagenesis. Sci. Rep. 2015;5:16950. doi: 10.1038/srep16950. PubMed DOI PMC
Kim J., Hu Z., Cai L., Li K., Choi E., Faubert B., Bezwada D., Rodriguez-Canales J., Villalobos P., Lin Y.-F., et al. CPS1 Maintains Pyrimidine Pools and DNA Synthesis in KRAS/LKB1-Mutant Lung Cancer Cells. Nature. 2017;546:168–172. doi: 10.1038/nature22359. PubMed DOI PMC
Çeliktas M., Tanaka I., Tripathi S.C., Fahrmann J.F., Aguilar-Bonavides C., Villalobos P., Delgado O., Dhillon D., Dennison J.B., Ostrin E.J., et al. Role of CPS1 in Cell Growth, Metabolism and Prognosis in LKB1-Inactivated Lung Adenocarcinoma. J. Natl. Cancer Inst. 2017;109:djw231. doi: 10.1093/jnci/djw231. PubMed DOI PMC
Willier S., Butt E., Richter G.H.S., Burdach S., Grunewald T.G.P. Defining the Role of TRIP6 in Cell Physiology and Cancer. Biol. Cell. 2011;103:573–591. doi: 10.1042/BC20110077. PubMed DOI
Miao X., Xu X., Wu Y., Zhu X., Chen X., Li C., Lu X., Chen Y., Liu Y., Huang J., et al. Overexpression of TRIP6 Promotes Tumor Proliferation and Reverses Cell Adhesion-Mediated Drug Resistance (CAM-DR) via Regulating Nuclear P27(Kip1) Expression in Non-Hodgkin’s Lymphoma. Tumour Biol. 2016;37:1369–1378. doi: 10.1007/s13277-015-3939-4. PubMed DOI
Gou H., Liang J.Q., Zhang L., Chen H., Zhang Y., Li R., Wang X., Ji J., Tong J.H., To K.-F., et al. TTPAL Promotes Colorectal Tumorigenesis by Stabilizing TRIP6 to Activate Wnt/β-Catenin Signaling. Cancer Res. 2019;79:3332–3346. doi: 10.1158/0008-5472.CAN-18-2986. PubMed DOI
Soucek P., Anzenbacher P., Skoumalová I., Dvorák M. Expression of Cytochrome P450 Genes in CD34+ Hematopoietic Stem and Progenitor Cells. Stem Cells. 2005;23:1417–1422. doi: 10.1634/stemcells.2005-0066. PubMed DOI
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Özcan Ö., Belli A.K., Sakallı Çetin E., Kara M., Çelik Ö.İ., Kaplan M., Kayılıoğlu S.I., Dönmez C., Polat M. Upregulation of SIRT1 Gene in Gastric Adenocarcinoma. Turk. J. Gastroenterol. 2019;30:326–330. doi: 10.5152/tjg.2019.18550. PubMed DOI PMC
Pfaffl M.W., Horgan G.W., Dempfle L. Relative Expression Software Tool (REST©) for Group-Wise Comparison and Statistical Analysis of Relative Expression Results in Real-Time PCR. Nucleic Acids Res. 2002;30:e36. doi: 10.1093/nar/30.9.e36. PubMed DOI PMC
Benjamini Y., Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Society. Ser. B (Methodol.) 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI