ABCB1 Amplicon Contains Cyclic AMP Response Element-Driven TRIP6 Gene in Taxane-Resistant MCF-7 Breast Cancer Sublines

. 2023 Jan 23 ; 14 (2) : . [epub] 20230123

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36833223

A limited number of studies are devoted to regulating TRIP6 expression in cancer. Hence, we aimed to unveil the regulation of TRIP6 expression in MCF-7 breast cancer cells (with high TRIP6 expression) and taxane-resistant MCF-7 sublines (manifesting even higher TRIP6 expression). We found that TRIP6 transcription is regulated primarily by the cyclic AMP response element (CRE) in hypomethylated proximal promoters in both taxane-sensitive and taxane-resistant MCF-7 cells. Furthermore, in taxane-resistant MCF-7 sublines, TRIP6 co-amplification with the neighboring ABCB1 gene, as witnessed by fluorescence in situ hybridization (FISH), led to TRIP6 overexpression. Ultimately, we found high TRIP6 mRNA levels in progesterone receptor-positive breast cancer and samples resected from premenopausal women.

Zobrazit více v PubMed

Yi J., Beckerle M.C. The human TRIP6 gene encodes a LIM domain protein and maps to chromosome 7q22, a region associated with tumorigenesis. Genomics. 1998;49:314–316. doi: 10.1006/geno.1998.5248. PubMed DOI

Wang Y., Gilmore T.D. LIM domain protein Trip6 has a conserved nuclear export signal, nuclear targeting sequences, and multiple transactivation domains. Biochim. Biophys. Acta. 2001;1538:260–272. doi: 10.1016/S0167-4889(01)00077-5. PubMed DOI

Siddiqui M.Q., Badmalia M.D., Patel T.R. Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins. Int. J. Mol. Sci. 2021;22:2647. doi: 10.3390/ijms22052647. PubMed DOI PMC

Lin V.T., Lin F.T. TRIP6: An adaptor protein that regulates cell motility, antiapoptotic signaling and transcriptional activity. Cell Signal. 2011;23:1691–1697. doi: 10.1016/j.cellsig.2011.06.004. PubMed DOI PMC

Xu J., Lai Y.J., Lin W.C., Lin F.T. TRIP6 enhances lysophosphatidic acid-induced cell migration by interacting with the lysophosphatidic acid 2 receptor. J. Biol. Chem. 2004;279:10459–10468. doi: 10.1074/jbc.M311891200. PubMed DOI PMC

Chastre E., Abdessamad M., Kruglov A., Bruyneel E., Bracke M., Di Gioia Y., Beckerle M.C., van Roy F., Kotelevets L. TRIP6, a novel molecular partner of the MAGI-1 scaffolding molecule, promotes invasiveness. FASEB J. 2009;23:916–928. doi: 10.1096/fj.08-106344. PubMed DOI

Dutta S., Mana-Capelli S., Paramasivam M., Dasgupta I., Cirka H., Billiar K., McCollum D. TRIP6 inhibits Hippo signaling in response to tension at adherens junctions. EMBO Rep. 2018;19:337–350. doi: 10.15252/embr.201744777. PubMed DOI PMC

Venkatramanan S., Ibar C., Irvine K.D. TRIP6 is required for tension at adherens junctions. J. Cell Sci. 2021;134:jcs247866. doi: 10.1242/jcs.247866. PubMed DOI PMC

Kassel O., Schneider S., Heilbock C., Litfin M., Göttlicher M., Herrlich P. A nuclear isoform of the focal adhesion LIM-domain protein Trip6 integrates activating and repressing signals at AP-1- and NF-kappaB-regulated promoters. Genes Dev. 2004;18:2518–2528. doi: 10.1101/gad.322404. PubMed DOI PMC

Kemler D., Dahley O., Roßwag S., Litfin M., Kassel O. The LIM domain protein nTRIP6 acts as a co-repressor for the transcription factor MEF2C in myoblasts. Sci. Rep. 2016;6:27746. doi: 10.1038/srep27746. PubMed DOI PMC

Abbariki T.N., Gonda Z., Kemler D., Urbanek P., Wagner T., Litfin M., Wang Z.Q., Herrlich P., Kassel O. The LIM domain protein nTRIP6 modulates the dynamics of myogenic differentiation. Sci. Rep. 2021;11:12904. doi: 10.1038/s41598-021-92331-8. PubMed DOI PMC

Shukla S., Haenold R., Urbánek P., Frappart L., Monajembashi S., Grigaravicius P., Nagel S., Min W.K., Tapias A., Kassel O., et al. TRIP6 functions in brain ciliogenesis. Nat. Commun. 2021;12:5887. doi: 10.1038/s41467-021-26057-6. PubMed DOI PMC

Yi J., Kloeker S., Jensen C.C., Bockholt S., Honda H., Hirai H., Beckerle M.C. Members of the Zyxin family of LIM proteins interact with members of the p130Cas family of signal transducers. J. Biol. Chem. 2002;277:9580–9589. doi: 10.1074/jbc.M106922200. PubMed DOI

Takizawa N., Smith T.C., Nebl T., Crowley J.L., Palmieri S.J., Lifshitz L.M., Ehrhardt A.G., Hoffman L.M., Beckerle M.C., Luna E.J. Supervillin modulation of focal adhesions involving TRIP6/ZRP-1. J. Cell Biol. 2006;174:447–458. doi: 10.1083/jcb.200512051. PubMed DOI PMC

Lai Y.J., Lin V.T., Zheng Y., Benveniste E.N., Lin F.T. The adaptor protein TRIP6 antagonizes Fas-induced apoptosis but promotes its effect on cell migration. Mol. Cell. Biol. 2010;30:5582–5596. doi: 10.1128/MCB.00134-10. PubMed DOI PMC

Yang Y., Li X.M., Wang J.R., Li Y., Ye W.L., Wang Y., Liu Y.X., Deng Z.Y., Gan W.J., Wu H. TRIP6 promotes inflammatory damage via the activation of TRAF6 signaling in a murine model of DSS-induced colitis. J. Inflamm. 2022;19:1. doi: 10.1186/s12950-021-00298-0. PubMed DOI PMC

Sheppard S.A., Loayza D. LIM-domain proteins TRIP6 and LPP associate with shelterin to mediate telomere protection. Aging. 2010;2:432–444. doi: 10.18632/aging.100170. PubMed DOI PMC

Thul P.J., Åkesson L., Wiking M., Mahdessian D., Geladaki A., Blal H.A., Alm T., Asplund A., Björk L., Breckels L.M., et al. A subcellular map of the human proteome. Science. 2017;356:eaal3321. doi: 10.1126/science.aal3321. PubMed DOI

Gambardella G., Viscido G., Tumaini B., Isacchi A., Bosotti R., di Bernardo D. A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response. Nat. Commun. 2022;13:1714. doi: 10.1038/s41467-022-29358-6. PubMed DOI PMC

Zhao X., Jiang C., Xu R., Liu Q., Liu G., Zhang Y. TRIP6 enhances stemness property of breast cancer cells through activation of Wnt/β-catenin. Cancer Cell Int. 2020;20:51. doi: 10.1186/s12935-020-1136-z. PubMed DOI PMC

Wang J., Li J., Yang J., Zhang L., Gao S., Jiao F., Yi M., Xu J. MicroRNA-138-5p regulates neural stem cell proliferation and differentiation in vitro by targeting TRIP6 expression. Mol. Med. Rep. 2017;16:7261–7266. doi: 10.3892/mmr.2017.7504. PubMed DOI PMC

Gu J., Shao R., Li M., Yan Q., Hu H. MiR-485-3p modulates neural stem cell differentiation and proliferation via regulating TRIP6 expression. J. Cell. Mol. Med. 2020;24:398–404. doi: 10.1111/jcmm.14743. PubMed DOI PMC

Ling Y., Cao C., Li S., Qiu M., Shen G., Chen Z., Yao F., Chen W. TRIP6, as a target of miR-7, regulates the proliferation and metastasis of colorectal cancer cells. Biochem. Biophys. Res. Commun. 2019;514:231–238. doi: 10.1016/j.bbrc.2019.04.092. PubMed DOI

Gou H., Liang J.Q., Zhang L., Chen H., Zhang Y., Li R., Wang X., Ji J., Tong J.H., To K.F., et al. TTPAL Promotes Colorectal Tumorigenesis by Stabilizing TRIP6 to Activate Wnt/β-Catenin Signaling. Cancer Res. 2019;13:3332–3346. doi: 10.1158/0008-5472.CAN-18-2986. PubMed DOI

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI

Turner K.M., Yeo S.K., Holm T.M., Shaughnessy E., Guan J.L. Heterogeneity within molecular subtypes of breast cancer. Am. J. Physiol. Cell Physiol. 2021;321:C343–C354. doi: 10.1152/ajpcell.00109.2021. PubMed DOI PMC

Burstein H.J., Curigliano G., Thürlimann B., Weber W.P., Poortmans P., Regan M.M., Senn H.J., Winer E.P., Gnant M., Panelists of the St Gallen Consensus Conference Customizing local and systemic therapies for women with early breast cancer: The St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Ann. Oncol. 2021;32:1216–1235. doi: 10.1016/j.annonc.2021.06.023. PubMed DOI PMC

Lashen A., Toss M.S., Fadhil W., Oni G., Madhusudan S., Rakha E. Evaluation Oncotype DX® 21-Gene Recurrence Score and Clinicopathological Parameters: A single institutional experience. Histopathology. 2023. accepted . PubMed DOI

Cancer Genome Atlas Network Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70. doi: 10.1038/nature11412. PubMed DOI PMC

Pereira B., Chin S.F., Rueda O.M., Vollan H.K., Provenzano E., Bardwell H.A., Pugh M., Jones L., Russell R., Sammut S.J., et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat. Commun. 2016;7:11479. doi: 10.1038/ncomms11479. PubMed DOI PMC

Ojima I., Fumero-Oderda C.L., Kuduk S.D., Ma Z., Kirikae F., Kirikae T. Structure-activity relationship study of taxoids for their ability to activate murine macrophages as well as inhibit the growth of macrophage-like cells. Bioorg. Med. Chem. 2003;11:2867–2888. doi: 10.1016/S0968-0896(03)00181-0. PubMed DOI

Calcagno A.M., Ambudkar S.V. Molecular mechanisms of drug resistance in single-step and multi-step drug-selected cancer cells. Methods Mol. Biol. 2010;596:77–93. doi: 10.1007/978-1-60761-416-6_5. PubMed DOI PMC

Němcová-Fürstová V., Kopperová D., Balušíková K., Ehrlichová M., Brynychová V., Václavíková R., Daniel P., Souček P., Kovář J. Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters. Toxicol. Appl. Pharmacol. 2016;310:215–228. doi: 10.1016/j.taap.2016.09.020. PubMed DOI

Jelínek M., Balušíková K., Daniel P., Němcová-Fürstová V., Kirubakaran P., Jaček M., Wei L., Wang X., Vondrášek J., Ojima I., et al. Substituents at the C3′ and C3′N positions are critical for taxanes to overcome acquired resistance of cancer cells to paclitaxel. Toxicol. Appl. Pharmacol. 2018;347:79–91. doi: 10.1016/j.taap.2018.04.002. PubMed DOI PMC

Brynychová V., Hlaváč V., Ehrlichová M., Václavíková R., Pecha V., Trnková M., Wald M., Mrhalová M., Kubáčková K., Pikus T., et al. Importance of transcript levels of caspase-2 isoforms S and L for breast carcinoma progression. Future Oncol. 2013;9:427–438. doi: 10.2217/fon.12.200. PubMed DOI

Hubackova M., Vaclavikova R., Ehrlichova M., Mrhalova M., Kodet R., Kubackova K., Vrána D., Gut I., Soucek P. Association of superoxide dismutases and NAD(P)H quinone oxidoreductases with prognosis of patients with breast carcinomas. Int. J. Cancer. 2012;130:338–348. doi: 10.1002/ijc.26006. PubMed DOI

Tavassoli F.A., Devilee P. Pathology and Genetics of Tumours of the Breast and Female Genital Organs. IARC Press; Lyon, France: 2003. International Agency for Research on Cancer; World Health Organization.432p

Cheang M.C., Chia S.K., Voduc D., Gao D., Leung S., Snider J., Watson M., Davies S., Bernard P.S., Parker J.S., et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J. Natl. Cancer Inst. 2009;101:736–750. doi: 10.1093/jnci/djp082. PubMed DOI PMC

Goldhirsch A., Winer E.P., Coates A.S., Gelber R.D., Piccart-Gebhart M., Thürlimann B., Senn H.J., Panel members Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013;24:2206–2223. doi: 10.1093/annonc/mdt303. PubMed DOI PMC

Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Hlaváč V., Brynychová V., Václavíková R., Ehrlichová M., Vrána D., Pecha V., Koževnikovová R., Trnková M., Gatěk J., Kopperová D., et al. The expression profile of ATP-binding cassette transporter genes in breast carcinoma. Pharmacogenomics. 2013;14:515–529. doi: 10.2217/pgs.13.26. PubMed DOI

Elsnerova K., Mohelnikova-Duchonova B., Cerovska E., Ehrlichova M., Gut I., Rob L., Skapa P., Hruda M., Bartakova A., Bouda J., et al. Gene expression of membrane transporters: Importance for prognosis and progression of ovarian carcinoma. Oncol. Rep. 2016;35:2159–2170. doi: 10.3892/or.2016.4599. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Daniel P., Halada P., Jelínek M., Balušíková K., Kovář J. Differentially Expressed Mitochondrial Proteins in Human MCF7 Breast Cancer Cells Resistant to Paclitaxel. Int. J. Mol. Sci. 2019;20:2986. doi: 10.3390/ijms20122986. PubMed DOI PMC

McGowan-Jordan J., Hastings R.J., Moore S., International Standing Committee on Human Cytogenomic nomenclature . ISCN 2020: An International System for Human Cytogenomic Nomenclature. Karger; Basel, Switzerland: 2020. 170p

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020.

Touleimat N., Tost J. Complete pipeline for Infinium® Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics. 2012;4:325–341. doi: 10.2217/epi.12.21. PubMed DOI

Fleischer T., Frigessi A., Johnson K.C., Edvardsen H., Touleimat N., Klajic J., Riis M.L., Haakensen V.D., Wärnberg F., Naume B., et al. Genome-wide DNA methylation profiles in progression to in situ and invasive carcinoma of the breast with impact on gene transcription and prognosis. Genome Biol. 2014;15:435. doi: 10.1186/PREACCEPT-2333349012841587. PubMed DOI PMC

Fortin J.P., Triche T.J., Jr., Hansen K.D. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics. 2017;33:558–560. doi: 10.1093/bioinformatics/btw691. PubMed DOI PMC

Maksimovic J., Gordon L., Oshlack A. SWAN: Subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol. 2012;13:R44. doi: 10.1186/gb-2012-13-6-r44. PubMed DOI PMC

Pidsley R., Zotenko E., Peters T.J., Lawrence M.G., Risbridger G.P., Molloy P., Van Djik S., Muhlhausler B., Stirzaker C., Clark S.J. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 2016;17:208. doi: 10.1186/s13059-016-1066-1. PubMed DOI PMC

Kumaki Y., Oda M., Okano M. QUMA: Quantification tool for methylation analysis. Nucleic Acids Res. 2008;36:W170–W175. doi: 10.1093/nar/gkn294. PubMed DOI PMC

Weissgerber T.L., Milic N.M., Winham S.J., Garovic V.D. Beyond bar and line graphs: Time for a new data presentation paradigm. PLoS Biol. 2015;13:e1002128. doi: 10.1371/journal.pbio.1002128. PubMed DOI PMC

Comşa Ş., Cîmpean A.M., Raica M. The Story of MCF-7 Breast Cancer Cell Line: 40 years of Experience in Research. Anticancer Res. 2015;35:3147–3154. PubMed

Fornes O., Castro-Mondragon J.A., Khan A., van der Lee R., Zhang X., Richmond P.A., Modi B.P., Correard S., Gheorghe M., Baranašić D., et al. JASPAR 2020: Update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48:D87–D92. doi: 10.1093/nar/gkz1001. PubMed DOI PMC

Lutz W., Schwab M. In vivo regulation of single copy and amplified N-myc in human neuroblastoma cells. Oncogene. 1997;15:303–315. doi: 10.1038/sj.onc.1201195. PubMed DOI

Ji C., Casinghino S., McCarthy T.L., Centrella M. Multiple and essential Sp1 binding sites in the promoter for transforming growth factor-β type I receptor. J. Biol. Chem. 1997;272:21260–21267. doi: 10.1074/jbc.272.34.21260. PubMed DOI

Mar J.H., Ordahl C.P. M-CAT binding factor, a novel trans-acting factor governing muscle-specific transcription. Mol. Cell. Biol. 1990;10:4271–4283. doi: 10.1128/mcb.10.8.4271-4283.1990. PubMed DOI PMC

Iguchi-Ariga S.M., Schaffner W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 1989;3:612–619. doi: 10.1101/gad.3.5.612. PubMed DOI

Zhao M.K., Wang Y., Murphy K., Yi J., Beckerle M.C., Gilmore T.D. LIM domain-containing protein trip6 can act as a coactivator for the v-Rel transcription factor. Gene Expr. 1999;8:207–217. PubMed PMC

Zhu L., Xu X., Tang Y., Zhu X. TRIP6 functions as a potential oncogene and facilitated proliferation and metastasis of gastric cancer. Biologics. 2019;13:101–110. doi: 10.2147/BTT.S191863. PubMed DOI PMC

Pavlíková N., Bartoňová I., Balušíková K., Kopperová D., Halada P., Kovář J. Differentially expressed proteins in human MCF-7 breast cancer cells sensitive and resistant to paclitaxel. Exp. Cell Res. 2015;333:1–10. doi: 10.1016/j.yexcr.2014.12.005. PubMed DOI

Wang Y., Dong L., Liu Y. Targeting Thyroid Receptor Interacting Protein 6 by MicroRNA-589-5p Inhibits Cell Proliferation, Migration, and Invasion in Endometrial Carcinoma. Cancer Biother. Radiopharm. 2019;34:529–536. doi: 10.1089/cbr.2018.2766. PubMed DOI

Heim S., Lage H. Transcriptome analysis of different multidrug-resistant gastric carcinoma cells. In Vivo. 2005;19:583–590. PubMed

Genovese I., Ilari A., Assaraf Y.G., Fazi F., Colotti G. Not only P-glycoprotein: Amplification of the ABCB1-containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist. Updat. 2017;32:23–46. doi: 10.1016/j.drup.2017.10.003. PubMed DOI

Wang Y.C., Juric D., Francisco B., Yu R.X., Duran G.E., Chen K.G., Chen X., Sikic B.I. Regional activation of chromosomal arm 7q with and without gene amplification in taxane-selected human ovarian cancer cell lines. Genes Chromosom. Cancer. 2006;45:365–374. doi: 10.1002/gcc.20300. PubMed DOI

Lombard A.P., Lou W., Armstrong C.M., D’Abronzo L.S., Ning S., Evans C.P., Gao A.C. Activation of the ABCB1 Amplicon in Docetaxel- and Cabazitaxel-Resistant Prostate Cancer Cells. Mol. Cancer. Ther. 2021;20:2061–2070. doi: 10.1158/1535-7163.MCT-20-0983. PubMed DOI PMC

Kumar R., Nagpal G., Kumar V., Usmani S.S., Agrawal P., Raghava G.P.S. HumCFS: A database of fragile sites in human chromosomes. BMC Genom. 2019;19:985. doi: 10.1186/s12864-018-5330-5. PubMed DOI PMC

Zhang X., Odom D.T., Koo S.H., Conkright M.D., Canettieri G., Best J., Chen H., Jenner R., Herbolsheimer E., Jacobsen E., et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Natl. Acad. Sci. USA. 2005;102:4459–4464. doi: 10.1073/pnas.0501076102. PubMed DOI PMC

Tinti C., Yang C., Seo H., Conti B., Kim C., Joh T.M., Kim K.S. Structure/function relationship of the cAMP response element in tyrosine hydroxylase gene transcription. J. Biol. Chem. 1997;272:19158–19164. doi: 10.1074/jbc.272.31.19158. PubMed DOI

Seborova K., Kloudova-Spalenkova A., Koucka K., Holy P., Ehrlichova M., Wang C., Ojima I., Voleska I., Daniel P., Balusikova K., et al. The Role of TRIP6, ABCC3 and CPS1 Expression in Resistance of Ovarian Cancer to Taxanes. Int. J. Mol. Sci. 2021;23:73. doi: 10.3390/ijms23010073. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...