Novel PD-L1- and collagen-expressing patient-derived cell line of undifferentiated pleomorphic sarcoma (JBT19) as a model for cancer immunotherapy
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37925511
PubMed Central
PMC10625569
DOI
10.1038/s41598-023-46305-7
PII: 10.1038/s41598-023-46305-7
Knihovny.cz E-zdroje
- MeSH
- antigeny CD274 metabolismus MeSH
- buněčné linie MeSH
- imunoterapie MeSH
- lidé MeSH
- ligandy MeSH
- maligní fibrózní histiocytom * MeSH
- myši nahé MeSH
- myši MeSH
- sarkom * patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD274 MeSH
- ligandy MeSH
Soft tissue sarcomas are aggressive mesenchymal-origin malignancies. Undifferentiated pleomorphic sarcoma (UPS) belongs to the aggressive, high-grade, and least characterized sarcoma subtype, affecting multiple tissues and metastasizing to many organs. The treatment of localized UPS includes surgery in combination with radiation therapy. Metastatic forms are treated with chemotherapy. Immunotherapy is a promising treatment modality for many cancers. However, the development of immunotherapy for UPS is limited due to its heterogeneity, antigenic landscape variation, lower infiltration with immune cells, and a limited number of established patient-derived UPS cell lines for preclinical research. In this study, we established and characterized a novel patient-derived UPS cell line, JBT19. The JBT19 cells express PD-L1 and collagen, a ligand of the immune checkpoint molecule LAIR-1. JBT19 cells can form spheroids in vitro and solid tumors in immunodeficient nude mice. We found JBT19 cells induce expansion of JBT19-reactive autologous and allogeneic NK, T, and NKT-like cells, and the reactivity of the expanded cells was associated with cytotoxic impact on JBT19 cells. The PD-1 and LAIR-1 ligand-expressing JBT19 cells show ex vivo immunogenicity and effective in vivo xenoengraftment properties that can offer a unique resource in the preclinical research developing novel immunotherapeutic interventions in the treatment of UPS.
1st Faculty of Medicine BIOCEV Charles University Vestec Czech Republic
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Department of Cytogenetics Institute of Hematology and Blood Transfusion Prague Czech Republic
HLA Department Institute of Hematology and Blood Transfusion Prague Czech Republic
Institute of Anatomy 1st Faculty of Medicine Charles University Prague Czech Republic
Zobrazit více v PubMed
Gamboa AC, Gronchi A, Cardona K. Soft-tissue sarcoma in adults: An update on the current state of histiotype-specific management in an era of personalized medicine. CA Cancer J. Clin. 2020;70:200–229. doi: 10.3322/caac.21605. PubMed DOI
Jo VY, Fletcher CD. WHO classification of soft tissue tumours: An update based on the 2013 (4th) edition. Pathology. 2014;46:95–104. doi: 10.1097/PAT.0000000000000050. PubMed DOI
O'Brien JE, Stout AP. Malignant fibrous xanthomas. Cancer. 1964;17:1445–1455. doi: 10.1002/1097-0142(196411)17:11<1445::aid-cncr2820171112>3.0.co;2-g. PubMed DOI
Choi JH, Ro JY. The 2020 WHO classification of tumors of soft tissue: Selected changes and new entities. Adv. Anatom. Pathol. 2021;28:44–58. doi: 10.1097/PAP.0000000000000284. PubMed DOI
Widemann BC, Italiano A. Biology and management of undifferentiated pleomorphic sarcoma, myxofibrosarcoma, and malignant peripheral nerve sheath tumors: State of the art and perspectives. J. Clin. Oncol. 2018;36:160–167. doi: 10.1200/JCO.2017.75.3467. PubMed DOI PMC
Canter RJ, et al. Interaction of histologic subtype and histologic grade in predicting survival for soft-tissue sarcomas. J. Am. Coll. Surg. 2010;210:191–198 e192. doi: 10.1016/j.jamcollsurg.2009.10.007. PubMed DOI
Le Doussal V, et al. Prognostic factors for patients with localized primary malignant fibrous histiocytoma: A multicenter study of 216 patients with multivariate analysis. Cancer. 1996;77:1823–1830. doi: 10.1002/(SICI)1097-0142(19960501)77:9<1823::AID-CNCR10>3.0.CO;2-1. PubMed DOI
Reichardt P. Soft tissue sarcomas, a look into the future: Different treatments for different subtypes. Fut. Oncol. 2014;10:s19–27. doi: 10.2217/fon.14.116. PubMed DOI
WHO Classification of Tumours Editorial Board, Soft Tissue and Bone Tumours, WHO Classification of Tumours, 5th Edition, Volume 3. Lyon (France): International Agency for Research on Cancer (2020).
Nixon NA, et al. Current landscape of immunotherapy in the treatment of solid tumours, with future opportunities and challenges. Curr. Oncol. 2018;25:e373–e384. doi: 10.3747/co.25.3840. PubMed DOI PMC
Shiravand Y, et al. Immune checkpoint inhibitors in cancer therapy. Curr. Oncol. 2022;29:3044–3060. doi: 10.3390/curroncol29050247. PubMed DOI PMC
Lee JB, Kim HR, Ha SJ. Immune checkpoint inhibitors in 10 years: Contribution of basic research and clinical application in cancer immunotherapy. Immune Netw. 2022;22:e2. doi: 10.4110/in.2022.22.e2. PubMed DOI PMC
Cannon MJ, Block MS, Morehead LC, Knutson KL. The evolving clinical landscape for dendritic cell vaccines and cancer immunotherapy. Immunotherapy. 2019;11:75–79. doi: 10.2217/imt-2018-0129. PubMed DOI
Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348:62–68. doi: 10.1126/science.aaa4967. PubMed DOI PMC
Florou V, Wilky BA. Emerging mechanisms of immunotherapy resistance in sarcomas. Cancer Drug Resist. 2022;5:199–213. doi: 10.20517/cdr.2021.111. PubMed DOI PMC
Clemente O, et al. Is immunotherapy in the future of therapeutic management of sarcomas? J. Transl. Med. 2021;19:173. doi: 10.1186/s12967-021-02829-y. PubMed DOI PMC
Hattori E, Oyama R, Kondo T. Systematic review of the current status of human sarcoma cell lines. Cells. 2019;8:157. doi: 10.3390/cells8020157. PubMed DOI PMC
Horn, L. A. et al. Remodeling the tumor microenvironment via blockade of LAIR-1 and TGF-beta signaling enables PD-L1-mediated tumor eradication. J. Clin. Investing. doi:10.1172/JCI155148 (2022). PubMed PMC
Vijver SV, et al. Collagen fragments produced in cancer mediate T cell suppression through leukocyte-associated immunoglobulin-like receptor 1. Front. Immunol. 2021;12:733561. doi: 10.3389/fimmu.2021.733561. PubMed DOI PMC
Joseph C, et al. The ITIM-containing receptor: Leukocyte-Associated immunoglobulin-like receptor-1 (LAIR-1) modulates immune response and confers poor prognosis in invasive breast carcinoma. Cancers. 2020;13:80. doi: 10.3390/cancers13010080. PubMed DOI PMC
Peng DH, et al. Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8(+) T cell exhaustion. Nat. Commun. 2020;11:4520. doi: 10.1038/s41467-020-18298-8. PubMed DOI PMC
Lovgren T, et al. Complete and long-lasting clinical responses in immune checkpoint inhibitor-resistant, metastasized melanoma treated with adoptive T cell transfer combined with DC vaccination. Oncoimmunology. 2020;9:1792058. doi: 10.1080/2162402X.2020.1792058. PubMed DOI PMC
Wickstrom S, Lovgren T. Expansion of tumor-infiltrating lymphocytes from melanoma tumors. Methods mol. Biol. 1913;105–118:2019. doi: 10.1007/978-1-4939-8979-9_7. PubMed DOI
Strizova Z, et al. NK and T cells with a cytotoxic/migratory phenotype accumulate in peritumoral tissue of patients with clear cell renal carcinoma. Urol. Oncol. 2019;37:503–509. doi: 10.1016/j.urolonc.2019.03.014. PubMed DOI
Strizova Z, Bartunkova J, Smrz D. The challenges of adoptive cell transfer in the treatment of human renal cell carcinoma. Cancer Immunol. Immunother. CII. 2019;68:1831–1838. doi: 10.1007/s00262-019-02359-z. PubMed DOI PMC
Steele CD, et al. Undifferentiated sarcomas develop through distinct evolutionary pathways. Cancer Cell. 2019;35:441–456 e448. doi: 10.1016/j.ccell.2019.02.002. PubMed DOI PMC
McGowan-Jordan J, Hastings RJ, Moore S. ISCN 2020: An International System for Human Cytogenomic Nomenclature (2020) Karger; 2020. PubMed
Gribble SM, et al. Cytogenetics of the chronic myeloid leukemia-derived cell line K562: Karyotype clarification by multicolor fluorescence in situ hybridization, comparative genomic hybridization, and locus-specific fluorescence in situ hybridization. Cancer Genet. Cytogenet. 2000;118:1–8. doi: 10.1016/s0165-4608(99)00169-7. PubMed DOI
Daniel P, et al. ABCB1 amplicon contains cyclic AMP response element-driven TRIP6 gene in taxane-resistant MCF-7 breast cancer sublines. Genes. 2023;14:296. doi: 10.3390/genes14020296. PubMed DOI PMC
Bui NQ, et al. A clinico-genomic analysis of soft tissue sarcoma patients reveals CDKN2A deletion as a biomarker for poor prognosis. Clin. Sarcoma Res. 2019;9:12. doi: 10.1186/s13569-019-0122-5. PubMed DOI PMC
Libbrecht S, Van Dorpe J, Creytens D. The rapidly expanding group of RB1-deleted soft tissue tumors: An updated review. Diagnostics. 2021;11:430. doi: 10.3390/diagnostics11030430. PubMed DOI PMC
Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194:23–28. doi: 10.1126/science.959840. PubMed DOI
Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501:338–345. doi: 10.1038/nature12625. PubMed DOI
Mabbott NA, Baillie JK, Brown H, Freeman TC, Hume DA. An expression atlas of human primary cells: Inference of gene function from coexpression networks. BMC Genom. 2013;14:632. doi: 10.1186/1471-2164-14-632. PubMed DOI PMC
Cancer Genome Atlas Research Network. Electronic address, e. d. s. c. & Cancer Genome Atlas Research, N. Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell171, 950–965 e928, doi:10.1016/j.cell.2017.10.014 (2017). PubMed PMC
Caja F, et al. Local immune changes in early stages of inflammation and carcinogenesis correlate with the collagen scaffold changes of the colon mucosa. Cancers. 2021;13:2463. doi: 10.3390/cancers13102463. PubMed DOI PMC
Roulleaux Dugage M, Nassif EF, Italiano A, Bahleda R. Improving immunotherapy efficacy in soft-tissue sarcomas: A biomarker driven and histotype tailored review. Front. Immunol. 2021;12:775761. doi: 10.3389/fimmu.2021.775761. PubMed DOI PMC
Panagi M, Pilavaki P, Constantinidou A, Stylianopoulos T. Immunotherapy in soft tissue and bone sarcoma: Unraveling the barriers to effectiveness. Theranostics. 2022;12:6106–6129. doi: 10.7150/thno.72800. PubMed DOI PMC
Monga V, et al. A retrospective analysis of the efficacy of immunotherapy in metastatic soft-tissue sarcomas. Cancers. 2020;12:1873. doi: 10.3390/cancers12071873. PubMed DOI PMC
Lazcano R, et al. The immune landscape of undifferentiated pleomorphic sarcoma. Front. Oncol. 2022;12:1008484. doi: 10.3389/fonc.2022.1008484. PubMed DOI PMC
Toulmonde M, et al. High throughput profiling of undifferentiated pleomorphic sarcomas identifies two main subgroups with distinct immune profile, clinical outcome and sensitivity to targeted therapies. EBioMedicine. 2020;62:103131. doi: 10.1016/j.ebiom.2020.103131. PubMed DOI PMC
Taborska P, et al. Acute conditioning of antigen-expanded CD8(+) T cells via the GSK3beta-mTORC axis differentially dictates their immediate and distal responses after antigen rechallenge. Cancers. 2020;12:3766. doi: 10.3390/cancers12123766. PubMed DOI PMC
Lozzio CB, Lozzio BB. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975;45:321–334. doi: 10.1182/blood.V45.3.321.321. PubMed DOI
Kabelitz D. Human cytotoxic lymphocytes. IV. Frequency and clonal specificity of CD8+CD16-(Leu2+Leu11-) and CD16+CD3-(Leu11+Leu4-) cytotoxic lymphocyte precursors activated by alloantigen or K562 stimulator cells. Cell. Immunol. 1989;121:298–305. doi: 10.1016/0008-8749(89)90028-2. PubMed DOI
Bae DS, Lee JK. Development of NK cell expansion methods using feeder cells from human myelogenous leukemia cell line. Blood Res. 2014;49:154–161. doi: 10.5045/br.2014.49.3.154. PubMed DOI PMC
Romero-Olmedo AJ, et al. Deep phenotypical characterization of human CD3(+) CD56(+) T cells by mass cytometry. Eur. J. Immunol. 2021;51:672–681. doi: 10.1002/eji.202048941. PubMed DOI
Stakheev D, et al. The WNT/beta-catenin signaling inhibitor XAV939 enhances the elimination of LNCaP and PC-3 prostate cancer cells by prostate cancer patient lymphocytes in vitro. Sci. Rep. 2019;9:4761. doi: 10.1038/s41598-019-41182-5. PubMed DOI PMC
Lebbink RJ, et al. Collagens are functional, high affinity ligands for the inhibitory immune receptor LAIR-1. J. Experim. Med. 2006;203:1419–1425. doi: 10.1084/jem.20052554. PubMed DOI PMC
Hakozaki M, et al. Establishment and characterization of a new cell line, FPS-1, derived from human undifferentiated pleomorphic sarcoma, overexpressing epidermal growth factor receptor and cyclooxygenase-2. Anticancer Res. 2006;26:3393–3401. PubMed
Salawu A, et al. Establishment and molecular characterisation of seven novel soft-tissue sarcoma cell lines. Br. J. Cancer. 2016;115:1058–1068. doi: 10.1038/bjc.2016.259. PubMed DOI PMC
Bhalla AD, et al. Experimental models of undifferentiated pleomorphic sarcoma and malignant peripheral nerve sheath tumor. Lab. Investing. 2022;102:658–666. doi: 10.1038/s41374-022-00734-6. PubMed DOI
Lee EY, et al. New established cell lines from undifferentiated pleomorphic sarcoma for in vivo study. BMB Rep. 2023;56:258–264. doi: 10.5483/BMBRep.2022-0209. PubMed DOI PMC
Laharanne E, et al. CDKN2A-CDKN2B deletion defines an aggressive subset of cutaneous T-cell lymphoma. Modern Pathol. 2010;23:547–558. doi: 10.1038/modpathol.2009.196. PubMed DOI
Huang LE. Impact of CDKN2A/B homozygous deletion on the prognosis and biology of IDH-mutant glioma. Biomedicines. 2022;10:246. doi: 10.3390/biomedicines10020246. PubMed DOI PMC
Zhang W, Kuang P, Liu T. Prognostic significance of CDKN2A/B deletions in acute lymphoblastic leukaemia: A meta-analysis. Ann. Med. 2019;51:28–40. doi: 10.1080/07853890.2018.1564359. PubMed DOI PMC
Henderson T, et al. Alterations in cancer stem-cell marker CD44 expression predict oncologic outcome in soft-tissue sarcomas. J Surg. Res. 2018;223:207–214. doi: 10.1016/j.jss.2017.11.016. PubMed DOI PMC
Lei Q, Wang D, Sun K, Wang L, Zhang Y. Resistance mechanisms of Anti-PD1/PDL1 therapy in solid tumors. Front. Cell Dev. Biol. 2020;8:672. doi: 10.3389/fcell.2020.00672. PubMed DOI PMC
Wang Z, Wu X. Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker. Cancer Med. 2020;9:8086–8121. doi: 10.1002/cam4.3410. PubMed DOI PMC
Romer AMA, Thorseth ML, Madsen DH. Immune modulatory properties of collagen in cancer. Front. Immunol. 2021;12:791453. doi: 10.3389/fimmu.2021.791453. PubMed DOI PMC
Meyaard L. The inhibitory collagen receptor LAIR-1 (CD305) J. Leukocyte Biol. 2008;83:799–803. doi: 10.1189/jlb.0907609. PubMed DOI
Park JE, et al. Leukocyte-associated immunoglobulin-like receptor 1 inhibits T-cell signaling by decreasing protein phosphorylation in the T-cell signaling pathway. J. Biol. Chem. 2020;295:2239–2247. doi: 10.1074/jbc.RA119.011150. PubMed DOI PMC
Feola S, Chiaro J, Martins B, Cerullo V. Uncovering the tumor antigen landscape: What to know about the discovery process. Cancers. 2020;12:1660. doi: 10.3390/cancers12061660. PubMed DOI PMC
Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: At the core of cancer immunotherapy. Nat. Rev. Cancer. 2014;14:135–146. doi: 10.1038/nrc3670. PubMed DOI
Li Z, Wu Y, Wang C, Zhang M. Mouse CD8(+)NKT-like cells exert dual cytotoxicity against mouse tumor cells and myeloid-derived suppressor cells. Cancer Immunol. Immunother. CII. 2019;68:1303–1315. doi: 10.1007/s00262-019-02363-3. PubMed DOI PMC
Lu L, et al. Clinically approved combination immunotherapy: Current status, limitations, and future perspective. Curr. Res. Immunol. 2022;3:118–127. doi: 10.1016/j.crimmu.2022.05.003. PubMed DOI PMC
Heumann T, et al. A platform trial of neoadjuvant and adjuvant antitumor vaccination alone or in combination with PD-1 antagonist and CD137 agonist antibodies in patients with resectable pancreatic adenocarcinoma. Nat. Commun. 2023;14:3650. doi: 10.1038/s41467-023-39196-9. PubMed DOI PMC
Xu L, Wang S, Li J, Li J, Li B. Cancer immunotherapy based on blocking immune suppression mediated by an immune modulator LAIR-1. Oncoimmunology. 2020;9:1740477. doi: 10.1080/2162402X.2020.1740477. PubMed DOI PMC
Stakheev D, Taborska P, Kalkusova K, Bartunkova J, Smrz D. LL-37 as a powerful molecular tool for boosting the performance of ex vivo-produced human dendritic cells for cancer immunotherapy. Pharmaceutics. 2022;14:2747. doi: 10.3390/pharmaceutics14122747. PubMed DOI PMC
Wang R, et al. Blockade of dual immune checkpoint inhibitory signals with a CD47/PD-L1 bispecific antibody for cancer treatment. Theranostics. 2023;13:148–160. doi: 10.7150/thno.79367. PubMed DOI PMC
Lian S, et al. Dual blockage of both PD-L1 and CD47 enhances immunotherapy against circulating tumor cells. Sci. Rep. 2019;9:4532. doi: 10.1038/s41598-019-40241-1. PubMed DOI PMC
Shahvali S, Rahiman N, Jaafari MR, Arabi L. Targeting fibroblast activation protein (FAP): Advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy. Drug Deliv. Transl. Res. 2023;13:2041–2056. doi: 10.1007/s13346-023-01308-9. PubMed DOI
Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis. 2022;13:248. doi: 10.1038/s41419-022-04688-x. PubMed DOI PMC
Mucciolo G, et al. IL17A critically shapes the transcriptional program of fibroblasts in pancreatic cancer and switches on their protumorigenic functions. Proc. Natl. Acad. Sci. U. S. A. 2021 doi: 10.1073/pnas.2020395118. PubMed DOI PMC
Novotny J, et al. Single-cell RNA sequencing unravels heterogeneity of the stromal niche in cutaneous melanoma heterogeneous spheroids. Cancers. 2020;12:3324. doi: 10.3390/cancers12113324. PubMed DOI PMC
Kubovciak J, Kolar M, Novotny J. Scdrake: A reproducible and scalable pipeline for scRNA-seq data analysis. Bioinform. Adv. 2023;3:vbad089. doi: 10.1093/bioadv/vbad089. PubMed DOI PMC
Lun ATL, et al. EmptyDrops: Distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 2019;20:63. doi: 10.1186/s13059-019-1662-y. PubMed DOI PMC
Hao Y, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–3587 e3529. doi: 10.1016/j.cell.2021.04.048. PubMed DOI PMC
Aran D, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 2019;20:163–172. doi: 10.1038/s41590-018-0276-y. PubMed DOI PMC
Goldman MJ, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 2020;38:675–678. doi: 10.1038/s41587-020-0546-8. PubMed DOI PMC
Taborska P, Bartunkova J, Smrz D. Simultaneous in vitro generation of human CD34(+)-derived dendritic cells and mast cells from non-mobilized peripheral blood mononuclear cells. J. Immun. Methods. 2018;458:63–73. doi: 10.1016/j.jim.2018.04.005. PubMed DOI
Taborska P, et al. SARS-CoV-2 spike glycoprotein-reactive T cells can be readily expanded from COVID-19 vaccinated donors. Immunity Inflamm. Dis. 2021;9:1452–1467. doi: 10.1002/iid3.496. PubMed DOI PMC