IL17A critically shapes the transcriptional program of fibroblasts in pancreatic cancer and switches on their protumorigenic functions
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33526692
PubMed Central
PMC8017922
DOI
10.1073/pnas.2020395118
PII: 2020395118
Knihovny.cz E-zdroje
- Klíčová slova
- IL17A, cancer-associated fibroblast, extracellular matrix, fibrosis, pancreatic cancer,
- MeSH
- adenokarcinom genetika patologie MeSH
- CD8-pozitivní T-lymfocyty metabolismus patologie MeSH
- duktální karcinom slinivky břišní genetika patologie MeSH
- fibroblasty asociované s nádorem metabolismus patologie MeSH
- forkhead transkripční faktory genetika MeSH
- interleukin-17 genetika MeSH
- karcinogeneze genetika MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši knockoutované MeSH
- myši MeSH
- nádorové mikroprostředí genetika MeSH
- receptory interleukinů genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- forkhead transkripční faktory MeSH
- Foxp3 protein, mouse MeSH Prohlížeč
- Il17a protein, mouse MeSH Prohlížeč
- Il17rc protein, mouse MeSH Prohlížeč
- interleukin-17 MeSH
- receptory interleukinů MeSH
A hallmark of cancer, including pancreatic ductal adenocarcinoma (PDA), is a massive stromal and inflammatory reaction. Many efforts have been made to identify the anti- or protumoral role of cytokines and immune subpopulations within the stroma. Here, we investigated the role of interleukin-17A (IL17A) and its effect on tumor fibroblasts and the tumor microenvironment. We used a spontaneous PDA mouse model (KPC) crossed to IL17A knockout mice to show an extensive desmoplastic reaction, without impaired immune infiltration. Macrophages, especially CD80+ and T cells, were more abundant at the earlier time point. In T cells, a decrease in FoxP3+ cells and an increase in CD8+ T cells were observed in KPC/IL17A-/- mice. Fibroblasts isolated from IL17A+/+ and IL17A-/- KPC mice revealed very different messenger RNA (mRNA) and protein profiles. IL17A-/- fibroblasts displayed the ability to restrain tumor cell invasion by producing factors involved in extracellular matrix remodeling, increasing T cell recruitment, and producing higher levels of cytokines and chemokines favoring T helper 1 cell recruitment and activation and lower levels of those recruiting myeloid/granulocytic immune cells. Single-cell quantitative PCR on isolated fibroblasts confirmed a very divergent profile of IL17A-proficient and -deficient cells. All these features can be ascribed to increased levels of IL17F observed in the sera of IL17A-/- mice, and to the higher expression of its cognate receptor (IL17RC) specifically in IL17A-/- cancer-associated fibroblasts (CAFs). In addition to the known effects on neoplastic cell transformation, the IL17 cytokine family uniquely affects fibroblasts, representing a suitable candidate target for combinatorial immune-based therapies in PDA.
Applied Research Center University of Verona 37134 Verona Italy
Department of Diagnostics and Public Health University of Verona 37134 Verona Italy
Department of Immunology University of Toronto Toronto ON M5S 1A8 Canada
Department of Medical Biophysics University of Toronto Toronto ON M5G 1L7 Canada
Department of Medicine University of Hong Kong 999077 Hong Kong
Department of Molecular Biotechnology and Health Sciences University of Torino 10126 Torino Italy
Department of Pathology Boston Children's Hospital and Harvard Medical School Boston MA 02115
Faculty of Medicine Charles University Prague 12108 Czech Republic
Faculty of Science Charles University Prague 12800 Czech Republic
Molecular Biotechnology Center University of Torino 10126 Torino Italy
Zobrazit více v PubMed
Apte M. V., Wilson J. S., Lugea A., Pandol S. J., A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology 144, 1210–1219 (2013). PubMed PMC
Neesse A., Algül H., Tuveson D. A., Gress T. M., Stromal biology and therapy in pancreatic cancer: A changing paradigm. Gut 64, 1476–1484 (2015). PubMed
Beatty G. L., et al. ., Exclusion of T cells from pancreatic carcinomas in mice is regulated by Ly6C(low) F4/80(+) extratumoral macrophages. Gastroenterology 149, 201–210 (2015). PubMed PMC
Gajewski T. F., Schreiber H., Fu Y. X., Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013). PubMed PMC
Fukunaga A., et al. ., CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas 28, e26–e31 (2004). PubMed
Amedei A., et al. ., Ex vivo analysis of pancreatic cancer-infiltrating T lymphocytes reveals that ENO-specific Tregs accumulate in tumor tissue and inhibit Th1/Th17 effector cell functions. Cancer Immunol. Immunother. 62, 1249–1260 (2013). PubMed PMC
Borgoni S., et al. ., Depletion of tumor-associated macrophages switches the epigenetic profile of pancreatic cancer infiltrating T cells and restores their anti-tumor phenotype. Oncoimmunology 7, e1393596 (2018). PubMed PMC
Zhang Y., et al. ., Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J. Exp. Med. 217, e20190354 (2020). PubMed PMC
Vennin C., et al. ., Reshaping the tumor stroma for treatment of pancreatic cancer. Gastroenterology 154, 820–838 (2018). PubMed
McAllister F., et al. ., Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell 25, 621–637 (2014). PubMed PMC
Wu H. H., et al. ., Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines. J. Exp. Med. 212, 333–349 (2015). PubMed PMC
Zhang Y., et al. ., Immune cell production of interleukin 17 induces stem cell features of pancreatic intraepithelial neoplasia cells. Gastroenterology 155, 210–223.e3 (2018). PubMed PMC
Hegde S., et al. ., Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell 37, 289–307.e9 (2020). PubMed PMC
Cappello P., et al. ., Vaccination with ENO1 DNA prolongs survival of genetically engineered mice with pancreatic cancer. Gastroenterology 144, 1098–1106 (2013). PubMed
Nakae S., et al. ., Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17, 375–387 (2002). PubMed
Öhlund D., et al. ., Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017). PubMed PMC
Bach L. A., IGFBP-6 five years on; not so ‘forgotten’? Growth Horm. IGF Res. 15, 185–192 (2005). PubMed
Özdemir B. C., et al. ., Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014). PubMed PMC
Rhim A. D., et al. ., Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014). PubMed PMC
Leca J., et al. ., Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness. J. Clin. Invest. 126, 4140–4156 (2016). PubMed PMC
Elyada E., et al. ., Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019). PubMed PMC
Bever K. M., et al. ., The prognostic value of stroma in pancreatic cancer in patients receiving adjuvant therapy. HPB (Oxford) 17, 292–298 (2015). PubMed PMC
Sinn M., et al. ., α-Smooth muscle actin expression and desmoplastic stromal reaction in pancreatic cancer: Results from the CONKO-001 study. Br. J. Cancer 111, 1917–1923 (2014). PubMed PMC
Erkan M., et al. ., The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin. Gastroenterol. Hepatol. 6, 1155–1161 (2008). PubMed
Jiang H., et al. ., Pancreatic ductal adenocarcinoma progression is restrained by stromal matrix. J. Clin. Invest. 130, 4704–4709 (2020). PubMed PMC
Clark C. E., Beatty G. L., Vonderheide R. H., Immunosurveillance of pancreatic adenocarcinoma: Insights from genetically engineered mouse models of cancer. Cancer Lett. 279, 1–7 (2009). PubMed
Chan L. K., et al. ., Epithelial NEMO/IKKgamma limits fibrosis and promotes regeneration during pancreatitis. Gut 66, 1995–2007 (2017). PubMed
Kalluri R., The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016). PubMed
Petitprez F., et al. ., Transcriptomic analysis of the tumor microenvironment to guide prognosis and immunotherapies. Cancer Immunol. Immunother. 67, 981–988 (2018). PubMed PMC
Catteau X., Simon P., Noël J.-C., Myofibroblastic stromal reaction and lymph node status in invasive breast carcinoma: Possible role of the TGF-β1/TGF-βR1 pathway. BMC Cancer 14, 499 (2014). PubMed PMC
Schulze A. B., et al. ., Prognostic impact of CD34 and SMA in cancer-associated fibroblasts in stage I-III NSCLC. Thorac. Cancer 11, 120–129 (2020). PubMed PMC
Kubli S. P., et al. ., AhR controls redox homeostasis and shapes the tumor microenvironment in BRCA1-associated breast cancer. Proc. Natl. Acad. Sci. U.S.A. 116, 3604–3613 (2019). PubMed PMC
Roux C., et al. ., Reactive oxygen species modulate macrophage immunosuppressive phenotype through the up-regulation of PD-L1. Proc. Natl. Acad. Sci. U.S.A. 116, 4326–4335 (2019). PubMed PMC
Drifka C. R., et al. ., Highly aligned stromal collagen is a negative prognostic factor following pancreatic ductal adenocarcinoma resection. Oncotarget 7, 76197–76213 (2016). PubMed PMC
Vannucci L., Stroma as an active player in the development of the tumor microenvironment. Cancer Microenviron. 8, 159–166 (2015). PubMed PMC
Puls T. J., Tan X., Whittington C. F., Voytik-Harbin S. L., 3D collagen fibrillar microstructure guides pancreatic cancer cell phenotype and serves as a critical design parameter for phenotypic models of EMT. PLoS One 12, e0188870 (2017). PubMed PMC
Micutkova L., et al. ., Insulin-like growth factor binding protein-6 delays replicative senescence of human fibroblasts. Mech. Ageing Dev. 132, 468–479 (2011). PubMed PMC
Rowinsky E. K., et al. ., IMC-A12, a human IgG1 monoclonal antibody to the insulin-like growth factor I receptor. Clin. Cancer Res. 13, 5549s–5555s (2007). PubMed
Burtrum D., et al. ., A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res. 63, 8912–8921 (2003). PubMed
Chernyavskiy O., et al. ., Imaging of mouse experimental melanoma in vivo and ex vivo by combination of confocal and nonlinear microscopy. Microsc. Res. Tech. 72, 411–423 (2009). PubMed
Stuart T., et al. ., Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019). PubMed PMC
van der Maaten L., Hinton G., Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).