SARS-CoV-2 spike glycoprotein-reactive T cells can be readily expanded from COVID-19 vaccinated donors
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
AZV 16-28135A
Ministerstvo Zdravotnictví České Republiky
PRIMUS/MED/12
Univerzita Karlova v Praze
PubMed
34314576
PubMed Central
PMC8427053
DOI
10.1002/iid3.496
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19 vaccination, SARS-CoV-2, cellular immunity, ex vivo expansion, humoral immunity, spike glycoprotein-reactive,
- MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- COVID-19 * imunologie MeSH
- glykoprotein S, koronavirus imunologie MeSH
- glykoproteiny MeSH
- leukocyty mononukleární MeSH
- lidé MeSH
- protilátky virové MeSH
- SARS-CoV-2 MeSH
- vakcína BNT162 MeSH
- vakcíny proti COVID-19 * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykoprotein S, koronavirus MeSH
- glykoproteiny MeSH
- protilátky virové MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
- vakcína BNT162 MeSH
- vakcíny proti COVID-19 * MeSH
INTRODUCTION: The COVID-19 vaccine was designed to provide protection against infection by the severe respiratory coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19). However, the vaccine's efficacy can be compromised in patients with immunodeficiencies or the vaccine-induced immunoprotection suppressed by other comorbidity treatments, such as chemotherapy or immunotherapy. To enhance the protective role of the COVID-19 vaccine, we have investigated a combination of the COVID-19 vaccination with ex vivo enrichment and large-scale expansion of SARS-CoV-2 spike glycoprotein-reactive CD4+ and CD8+ T cells. METHODS: SARS-CoV-2-unexposed donors were vaccinated with two doses of the BNT162b2 SARS-CoV-2 vaccine. The peripheral blood mononuclear cells of the vaccinated donors were cell culture-enriched with T cells reactive to peptides derived from SARS-CoV-2 spike glycoprotein. The enriched cell cultures were large-scale expanded using the rapid expansion protocol (REP) and the peptide-reactive T cells were evaluated. RESULTS: We show that vaccination with the SARS-CoV-2 spike glycoprotein-based mRNA COVID-19 vaccine-induced humoral response against SARS-CoV-2 spike glycoprotein in all tested healthy SARS-CoV-2-unexposed donors. This humoral response was found to correlate with the ability of the donors' PBMCs to become enriched with SARS-CoV-2 spike glycoprotein-reactive CD4+ and CD8+ T cells. Using an 11-day REP, the enriched cell cultures were expanded nearly 1000-fold, and the proportions of the SARS-CoV-2 spike glycoprotein-reactive T cells increased. CONCLUSION: These findings show for the first time that the combination of the COVID-19 vaccination and ex vivo T cell large-scale expansion of SARS-CoV-2-reactive T cells could be a powerful tool for developing T cell-based adoptive cellular immunotherapy of COVID-19.
Zobrazit více v PubMed
Fontanet A, Autran B, Lina B, Kieny MP, Karim SSA, Sridhar D. SARS‐CoV‐2 variants and ending the COVID‐19 pandemic. Lancet. 2021;397:952‐954. PubMed PMC
Karim SSA. Vaccines and SARS‐CoV‐2 variants: the urgent need for a correlate of protection. Lancet. 2021;397:1263‐1264. PubMed PMC
Rees‐Spear C, Muir L, Griffith SA, et al. The effect of spike mutations on SARS‐CoV‐2 neutralization. Cell Rep. 2021;34:108890. PubMed PMC
Kwarteng A, Asiedu E, Sylverken AA, Larbi A, Sakyi SA, Asiedu SO. Molecular characterization of interactions between the D614G variant of SARS‐CoV‐2 S‐protein and neutralizing antibodies: a computational approach. Infect Genet Evol. 2021;91:104815. PubMed PMC
Li Q, Wu J, Nie J, et al. The impact of mutations in SARS‐CoV‐2 spike on viral infectivity and antigenicity. Cell. 2020;182:1284‐1294. PubMed PMC
Rosendahl Huber S, van Beek J, de Jonge J, Luytjes W, van Baarle D. T cell responses to viral infections – opportunities for Peptide vaccination. Front Immunol. 2014;5:171. PubMed PMC
Tarke A, Sidney J, Methot N, et al. Negligible impact of SARS‐CoV‐2 variants on CD4 (+) and CD8 (+) T cell reactivity in COVID‐19 exposed donors and vaccinees. bioRxiv. 2021. https://www.biorxiv.org/content/10.1101/2021.02.27.433180v1 DOI
Huang A, Bange E, Han N, et al. CD8 T cells compensate for impaired humoral immunity in COVID‐19 patients with hematologic cancer. Res Sq. 2021. https://www.researchsquare.com/article/rs-162289/v1
Cooper RS, Fraser AR, Smith L, et al. Rapid GMP‐compliant expansion of SARS‐CoV‐2‐specific T cells from convalescent donors for use as an allogeneic cell therapy for COVID‐19. Front Immunol. 2020;11:598402. PubMed PMC
Keller MD, Harris KM, Jensen‐Wachspress MA, et al. SARS‐CoV‐2‐specific T cells are rapidly expanded for therapeutic use and target conserved regions of the membrane protein. Blood. 2020;136:2905‐2917. PubMed PMC
Taborska P, Bartunkova J, Smrz D. Simultaneous in vitro generation of human CD34(+)‐derived dendritic cells and mast cells from non‐mobilized peripheral blood mononuclear cells. J Immunol Methods. 2018;458:63‐73. PubMed
Arya R, Kumari S, Pandey B, et al. Structural insights into SARS‐CoV‐2 proteins. J Mol Biol. 2021;433:166725. PubMed PMC
Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS‐CoV‐2 on virus entry and its immune cross‐reactivity with SARS‐CoV. Nat Commun. 2020;11:1620. PubMed PMC
Stakheev D, Taborska P, Strizova Z, Podrazil M, Bartunkova J, Smrz D. The WNT/beta‐catenin signaling inhibitor XAV939 enhances the elimination of LNCaP and PC‐3 prostate cancer cells by prostate cancer patient lymphocytes in vitro. Sci Rep. 2019;9:4761. PubMed PMC
Dudley ME, Rosenberg SA. Adoptive‐cell‐transfer therapy for the treatment of patients with cancer. Nat Rev Cancer. 2003;3:666‐675. PubMed PMC
Taborska P, Stakheev D, Svobodova H, Strizova Z, Bartunkova J, Smrz D. Acute conditioning of antigen‐expanded CD8(+) T cells via the GSK3beta‐mTORC axis differentially dictates their immediate and distal responses after antigen rechallenge. Cancers. 2020;12. PubMed PMC
Samavati L, Uhal BD. ACE2, much more than just a receptor for SARS‐COV‐2. Front Cell Infect Microbiol. 2020;10:317. PubMed PMC
Du L, Yang Y, Zhou Y, Lu L, Li F, Jiang S. MERS‐CoV spike protein: a key target for antivirals. Expert Opin Ther Targets. 2017;21:131‐143. PubMed PMC
Szelazek B, Kabala W, Kus K, et al. Structural characterization of human coronavirus NL63 N protein. J Virol. 2017;91:91. PubMed PMC
Li Z, Tomlinson AC, Wong AH, et al. The human coronavirus HCoV‐229E S‐protein structure and receptor binding. eLife. 2019;8:8. PubMed PMC
Guruprasad L. Human coronavirus spike protein‐host receptor recognition. Prog Biophys Mol Biol. 2021;161:39‐53. PubMed PMC
Altmann DM, Boyton RJ. SARS‐CoV‐2 T cell immunity: specificity, function, durability, and role in protection. Sci Immunol. 2020;5:5. PubMed
Taborska P, Stakheev D, Strizova Z, et al. Personalized ex vivo multiple peptide enrichment and detection of T cells reactive to multiple tumor‐associated antigens in prostate cancer patients. Med Oncol. 2017;34(10):173. 10.1007/s12032-017-1035-x PubMed DOI
Smits VAJ, Hernandez‐Carralero E, Paz‐Cabrera MC, et al. The nucleocapsid protein triggers the main humoral immune response in COVID‐19 patients. Biochem Biophys Res Commun. 2021;543:45‐49. PubMed PMC
Sattler A, Angermair S, Stockmann H, et al. SARS‐CoV‐2‐specific T cell responses and correlations with COVID‐19 patient predisposition. J Clin Invest. 2020;130:6477‐6489. PubMed PMC
Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR‐T immunotherapy. Cancers. 2016;8. PubMed PMC
Tauzin A, Nayrac M, Benlarbi M, et al. A single BNT162b2 mRNA dose elicits antibodies with Fc‐mediated effector functions and boost pre‐existing humoral and T cell responses. bioRxiv. 2021.
Reynolds CJ, Pade C, Gibbons JM, et al. Prior SARS‐CoV‐2 infection rescues B and T cell responses to variants after first vaccine dose. Science. 2021;372:1418‐1423. PubMed PMC
Deeks SG, Martin JN, Sinclair E, et al. Strong cell‐mediated immune responses are associated with the maintenance of low‐level viremia in antiretroviral‐treated individuals with drug‐resistant human immunodeficiency virus type 1. J Infect Dis. 2004;189:312‐321. PubMed
Mudd PA, Martins MA, Ericsen AJ, et al. Vaccine‐induced CD8+ T cells control AIDS virus replication. Nature. 2012;491:129‐133. PubMed PMC
Taborska P, Strizova Z, Stakheev D, Sojka L, Bartunkova J, Smrz D. CD4(+) T cells of prostate cancer patients have decreased immune responses to antigens derived from SARS‐CoV‐2 spike glycoprotein. Front Immunol. 2021;12:629102. PubMed PMC
Fucikova J, Podrazil M, Jarolim L, et al. Phase I/II trial of dendritic cell‐based active cellular immunotherapy with DCVAC/PCa in patients with rising PSA after primary prostatectomy or salvage radiotherapy for the treatment of prostate cancer. Cancer Immunol Immunother. 2018;67:89‐100. PubMed PMC
Podrazil M, Horvath R, Becht E, et al. Phase I/II clinical trial of dendritic‐cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration‐resistant prostate cancer. Oncotarget. 2015;6:18192‐18205. PubMed PMC
Gupta S, Su H, Narsai T, Agrawal S. SARS‐CoV‐2‐associated T‐cell responses in the presence of humoral immunodeficiency. Int Arch Allergy Immunol. 2021;182:195‐209. PubMed PMC
Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348:62‐68. PubMed PMC
Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science. 1992;257:238‐241. PubMed
Kaeuferle T, Krauss R, Blaeschke F, Willier S, Feuchtinger T. Strategies of adoptive T‐cell transfer to treat refractory viral infections post allogeneic stem cell transplantation. J Hematol Oncol. 2019;12:13. PubMed PMC
Antigen-Specific T Cells and SARS-CoV-2 Infection: Current Approaches and Future Possibilities