Phase I/II trial of dendritic cell-based active cellular immunotherapy with DCVAC/PCa in patients with rising PSA after primary prostatectomy or salvage radiotherapy for the treatment of prostate cancer
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu klinické zkoušky, fáze I, klinické zkoušky, fáze II, časopisecké články, práce podpořená grantem
PubMed
28948333
PubMed Central
PMC11028146
DOI
10.1007/s00262-017-2068-x
PII: 10.1007/s00262-017-2068-x
Knihovny.cz E-zdroje
- Klíčová slova
- Biochemically recurrent prostate cancer, Dendritic cell, Immunotherapy, PSA doubling time,
- MeSH
- dendritické buňky imunologie transplantace MeSH
- imunoterapie metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory prostaty imunologie terapie MeSH
- počet lymfocytů MeSH
- prostatektomie MeSH
- prostatický specifický antigen genetika imunologie metabolismus MeSH
- radioterapie MeSH
- regulace genové exprese u nádorů MeSH
- senioři MeSH
- T-lymfocyty imunologie MeSH
- tumor burden MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze I MeSH
- klinické zkoušky, fáze II MeSH
- práce podpořená grantem MeSH
- Názvy látek
- prostatický specifický antigen MeSH
OBJECTIVE: Immunotherapy of cancer has the potential to be effective mostly in patients with a low tumour burden. Rising PSA (prostate-specific antigen) levels in patients with prostate cancer represents such a situation. We performed the present clinical study with dendritic cell (DC)-based immunotherapy in this patient population. MATERIALS AND METHODS: The single-arm phase I/II trial registered as EudraCT 2009-017259-91 involved 27 patients with rising PSA levels. The study medication consisted of autologous DCs pulsed with the killed LNCaP cell line (DCVAC/PCa). Twelve patients with a favourable PSA response continued with the second cycle of immunotherapy. The primary and secondary objectives of the study were to assess the safety and determine the PSA doubling time (PSADT), respectively. RESULTS: No significant side effects were recorded. The median PSADT in all treated patients increased from 5.67 months prior to immunotherapy to 18.85 months after 12 doses (p < 0.0018). Twelve patients who continued immunotherapy with the second cycle had a median PSADT of 58 months that remained stable after the second cycle. In the peripheral blood, specific PSA-reacting T lymphocytes were increased significantly already after the fourth dose, and a stable frequency was detected throughout the remainder of DCVAC/PCa treatment. Long-term immunotherapy of prostate cancer patients experiencing early signs of PSA recurrence using DCVAC/PCa was safe, induced an immune response and led to the significant prolongation of PSADT. Long-term follow-up may show whether the changes in PSADT might improve the clinical outcome in patients with biochemical recurrence of the prostate cancer.
Department of Pediatric and Adult Rheumatology University Hospital Motol Prague Czech Republic
Institute of Hematology and Blood Transfusion Prague Czech Republic
Laboratory 'Cancer Immune Control and Escape' INSERM U1138 Cordeliers Research Centre Paris France
Zobrazit více v PubMed
Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29. doi: 10.3322/caac.21208. PubMed DOI
Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, Bray F. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012;61(6):1079–1092. doi: 10.1016/j.eururo.2012.02.054. PubMed DOI
Denmeade SR, Isaacs JT. A history of prostate cancer treatment. Nat Rev Cancer. 2002;2(5):389–396. doi: 10.1038/nrc801. PubMed DOI PMC
Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. Natural history of progression after PSA elevation following radical prostatectomy. JAMA. 1999;281(17):1591–1597. doi: 10.1001/jama.281.17.1591. PubMed DOI
Walsh PC, DeWeese TL, Eisenberger MA. Clinical practice. Localized prostate cancer. N Engl J Med. 2007;357(26):2696–2705. doi: 10.1056/NEJMcp0706784. PubMed DOI
D’Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, Tomaszewski JE, Renshaw AA, Kaplan I, Beard CJ, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998;280(11):969–974. doi: 10.1001/jama.280.11.969. PubMed DOI
Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol. 2006;90:51–81. doi: 10.1016/S0065-2776(06)90002-9. PubMed DOI
Abdollah F, Schmitges J, Sun M, Jeldres C, Tian Z, Briganti A, Shariat SF, Perrotte P, Montorsi F, Karakiewicz PI: comparison of mortality outcomes after radical prostatectomy versus radiotherapy in patients with localized prostate cancer: a population-based analysis. Int J Urol. 2012;19(9):836–844. doi: 10.1111/j.1442-2042.2012.03052.x. PubMed DOI
Freedland SJ, Humphreys EB, Mangold LA, Eisenberger M, Dorey FJ, Walsh PC, Partin AW. Death in patients with recurrent prostate cancer after radical prostatectomy: prostate-specific antigen doubling time subgroups and their associated contributions to all-cause mortality. J Clin Oncol. 2007;25(13):1765–1771. doi: 10.1200/JCO.2006.08.0572. PubMed DOI
Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol. 2006;6(10):715–727. doi: 10.1038/nri1936. PubMed DOI
Drake CG. Prostate cancer as a model for tumour immunotherapy. Nat Rev Immunol. 2010;10(8):580–593. doi: 10.1038/nri2817. PubMed DOI PMC
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–422. doi: 10.1056/NEJMoa1001294. PubMed DOI
Sheikh NA, Petrylak D, Kantoff PW, Dela Rosa C, Stewart FP, Kuan LY, Whitmore JB, Trager JB, Poehlein CH, Frohlich MW, et al. Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer Immunol Immunother. 2013;62(1):137–147. doi: 10.1007/s00262-012-1317-2. PubMed DOI PMC
Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fucikova J, Cremer I, Galon J, Tartour E, Zitvogel L, Kroemer G, et al. Trial watch: dendritic cell-based interventions for cancer therapy. Oncoimmunology. 2013;2(10):e25771. doi: 10.4161/onci.25771. PubMed DOI PMC
Draube A, Klein-Gonzalez N, Mattheus S, Brillant C, Hellmich M, Engert A, von Bergwelt-Baildon M. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS One. 2011;6(4):e18801. doi: 10.1371/journal.pone.0018801. PubMed DOI PMC
Geary SM, Salem AK. Prostate cancer vaccines: update on clinical development. Oncoimmunology. 2013;2(5):e24523. doi: 10.4161/onci.24523. PubMed DOI PMC
Lubaroff DM. Prostate cancer vaccines in clinical trials. Expert Rev Vaccines. 2012;11(7):857–868. doi: 10.1586/erv.12.54. PubMed DOI
Butterfield LH. Dendritic cells in cancer immunotherapy clinical trials: are we making progress? Front Immunol. 2013;4:454. doi: 10.3389/fimmu.2013.00454. PubMed DOI PMC
Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, et al. Classification of current anticancer immunotherapies. Oncotarget. 2014;5(24):12472–12508. doi: 10.18632/oncotarget.2998. PubMed DOI PMC
Podrazil M, Horvath R, Becht E, Rozkova D, Bilkova P, Sochorova K, Hromadkova H, Kayserova J, Vavrova K, Lastovicka J, et al. Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget. 2015;6(20):18192–18205. doi: 10.18632/oncotarget.4145. PubMed DOI PMC
Hermans IF, Chong TW, Palmowski MJ, Harris AL, Cerundolo V. Synergistic effect of metronomic dosing of cyclophosphamide combined with specific antitumor immunotherapy in a murine melanoma model. Cancer Res. 2003;63(23):8408–8413. PubMed
Fucikova J, Rozkova D, Ulcova H, Budinsky V, Sochorova K, Pokorna K, Bartunkova J, Spisek R. Poly I: c-activated dendritic cells that were generated in Cell Gro for use in cancer immunotherapy trials. J Transl Med. 2011;9:223. doi: 10.1186/1479-5876-9-223. PubMed DOI PMC
Rozkova D, Tiserova H, Fucikova J, Last’ovicka J, Podrazil M, Ulcova H, Budinsky V, Prausova J, Linke Z, Minarik I, et al. FOCUS on FOCIS: combined chemo-immunotherapy for the treatment of hormone-refractory metastatic prostate cancer. Clin Immunol. 2009;131(1):1–10. doi: 10.1016/j.clim.2009.01.001. PubMed DOI
Schweizer MT, Drake CG. Immunotherapy for prostate cancer: recent developments and future challenges. Cancer Metastasis Rev. 2014;33(2–3):641–655. doi: 10.1007/s10555-013-9479-8. PubMed DOI PMC
Dimonte G. A cell kinetics model for prostate cancer and its application to clinical data and individual patients. J Theor Biol. 2010;264(2):420–442. doi: 10.1016/j.jtbi.2010.02.023. PubMed DOI
Dimonte G, Bergstralh EJ, Bolander ME, Karnes RJ, Tindall DJ. Use of tumor dynamics to clarify the observed variability among biochemical recurrence nomograms for prostate cancer. Prostate. 2012;72(3):280–290. doi: 10.1002/pros.21429. PubMed DOI PMC
Anscher MS. Adjuvant radiotherapy following radical prostatectomy is more effective and less toxic than salvage radiotherapy for a rising prostate specific antigen. Int J Cancer. 2001;96(2):91–93. doi: 10.1002/ijc.1011. PubMed DOI
DiPaola RS, Chen YH, Bubley GJ, Stein MN, Hahn NM, Carducci MA, Lattime EC, Gulley JL, Arlen PM, Butterfield LH, et al. A National Multicenter Phase 2 Study of Prostate-specific Antigen (PSA) Pox Virus Vaccine with Sequential Androgen Ablation Therapy in Patients with PSA Progression: ECOG 9802. Eur Urol. 2015;3:365–371. doi: 10.1016/j.eururo.2014.12.010. PubMed DOI PMC
Mast Cells and Dendritic Cells as Cellular Immune Checkpoints in Immunotherapy of Solid Tumors
Induction of Tolerance and Immunity by Dendritic Cells: Mechanisms and Clinical Applications
The Head and Neck Squamous Cell Carcinoma Microenvironment as a Potential Target for Cancer Therapy