Mast Cells and Dendritic Cells as Cellular Immune Checkpoints in Immunotherapy of Solid Tumors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
NU22-03-0300
Ministry of Health
RVO 61388971
Institute of Microbiology
IPE2 funding
Charles University
PubMed
36232398
PubMed Central
PMC9569882
DOI
10.3390/ijms231911080
PII: ijms231911080
Knihovny.cz E-zdroje
- Klíčová slova
- cellular checkpoint, dendritic cells, immunotherapy, mast cells,
- MeSH
- dendritické buňky patologie MeSH
- imunoterapie MeSH
- inhibitory kontrolních bodů MeSH
- lidé MeSH
- mastocyty * patologie MeSH
- nádorové mikroprostředí MeSH
- nádory * patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- inhibitory kontrolních bodů MeSH
The immune checkpoint inhibitors have revolutionized cancer immunotherapy. These inhibitors are game changers in many cancers and for many patients, sometimes show unprecedented therapeutic efficacy. However, their therapeutic efficacy is largely limited in many solid tumors where the tumor-controlled immune microenvironment prevents the immune system from efficiently reaching, recognizing, and eliminating cancer cells. The tumor immune microenvironment is largely orchestrated by immune cells through which tumors gain resistance against the immune system. Among these cells are mast cells and dendritic cells. Both cell types possess enormous capabilities to shape the immune microenvironment. These capabilities stage these cells as cellular checkpoints in the immune microenvironment. Regaining control over these cells in the tumor microenvironment can open new avenues for breaking the resistance of solid tumors to immunotherapy. In this review, we will discuss mast cells and dendritic cells in the context of solid tumors and how these immune cells can, alone or in cooperation, modulate the solid tumor resistance to the immune system. We will also discuss how this modulation could be used in novel immunotherapeutic modalities to weaken the solid tumor resistance to the immune system. This weakening could then help other immunotherapeutic modalities engage against these tumors more efficiently.
Zobrazit více v PubMed
Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2020. CA Cancer J. Clin. 2020;70:7–30. doi: 10.3322/caac.21590. PubMed DOI
Schlueter M., Chan K., Lasry R., Price M. The cost of cancer—A comparative analysis of the direct medical costs of cancer and other major chronic diseases in Europe. PLoS ONE. 2020;15:e0241354. doi: 10.1371/journal.pone.0241354. PubMed DOI PMC
Waldman A.D., Fritz J.M., Lenardo M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020;20:651–668. doi: 10.1038/s41577-020-0306-5. PubMed DOI PMC
Ribas A., Wolchok J.D. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–1355. doi: 10.1126/science.aar4060. PubMed DOI PMC
Nixon N.A., Blais N., Ernst S., Kollmannsberger C., Bebb G., Butler M., Smylie M., Verma S. Current landscape of immunotherapy in the treatment of solid tumours, with future opportunities and challenges. Curr. Oncol. 2018;25:e373–e384. doi: 10.3747/co.25.3840. PubMed DOI PMC
Tang J., Yu J.X., Hubbard-Lucey V.M., Neftelinov S.T., Hodge J.P., Lin Y. Trial watch: The clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors. Nat. Rev. Drug. Discov. 2018;17:854–855. doi: 10.1038/nrd.2018.210. PubMed DOI
Upadhaya S., Neftelinov S.T., Hodge J., Campbell J. Challenges and opportunities in the PD1/PDL1 inhibitor clinical trial landscape. Nat. Rev. Drug. Discov. 2022;21:482–483. doi: 10.1038/d41573-022-00030-4. PubMed DOI
Upadhaya S., Neftelino S.T., Hodge J.P., Oliva C., Campbell J.R., Yu J.X. Combinations take centre stage in PD1/PDL1 inhibitor clinical trials. Nat. Rev. Drug. Discov. 2021;20:168–169. doi: 10.1038/d41573-020-00204-y. PubMed DOI
Tung I., Sahu A. Immune Checkpoint Inhibitor in First-Line Treatment of Metastatic Renal Cell Carcinoma: A Review of Current Evidence and Future Directions. Front. Oncol. 2021;11:707214. doi: 10.3389/fonc.2021.707214. PubMed DOI PMC
Huang Z., Su W., Lu T., Wang Y., Dong Y., Qin Y., Liu D., Sun L., Jiao W. First-Line Immune-Checkpoint Inhibitors in Non-Small Cell Lung Cancer: Current Landscape and Future Progress. Front. Pharmacol. 2020;11:578091. doi: 10.3389/fphar.2020.578091. PubMed DOI PMC
Borcoman E., Marret G., Le Tourneau C. Paradigm Change in First-Line Treatment of Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma. Cancers. 2021;13:2573. doi: 10.3390/cancers13112573. PubMed DOI PMC
Cannon M.J., Block M.S., Morehead L.C., Knutson K.L. The evolving clinical landscape for dendritic cell vaccines and cancer immunotherapy. Immunotherapy. 2019;11:75–79. doi: 10.2217/imt-2018-0129. PubMed DOI
Rosenberg S.A., Restifo N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348:62–68. doi: 10.1126/science.aaa4967. PubMed DOI PMC
Kantoff P.W., Higano C.S., Shore N.D., Berger E.R., Small E.J., Penson D.F., Redfern C.H., Ferrari A.C., Dreicer R., Sims R.B., et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 2010;363:411–422. doi: 10.1056/NEJMoa1001294. PubMed DOI
Sengsayadeth S., Savani B.N., Oluwole O., Dholaria B. Overview of approved CAR-T therapies, ongoing clinical trials, and its impact on clinical practice. EJHaem. 2022;3((Suppl. 1)):6–10. doi: 10.1002/jha2.338. PubMed DOI PMC
Mullard A. FDA approval of Immunocore’s first-in-class TCR therapeutic broadens depth of the T cell engager platform. Nat. Rev. Drug. Discov. 2022;21:170. doi: 10.1038/d41573-022-00031-3. PubMed DOI
Carretero-Gonzalez A., Lora D., Ghanem I., Zugazagoitia J., Castellano D., Sepulveda J.M., Lopez-Martin J.A., Paz-Ares L., de Velasco G. Analysis of response rate with ANTI PD1/PD-L1 monoclonal antibodies in advanced solid tumors: A meta-analysis of randomized clinical trials. Oncotarget. 2018;9:8706–8715. doi: 10.18632/oncotarget.24283. PubMed DOI PMC
Sharma P., Hu-Lieskovan S., Wargo J.A., Ribas A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell. 2017;168:707–723. doi: 10.1016/j.cell.2017.01.017. PubMed DOI PMC
Bai R., Chen N., Li L., Du N., Bai L., Lv Z., Tian H., Cui J. Mechanisms of Cancer Resistance to Immunotherapy. Front. Oncol. 2020;10:1290. doi: 10.3389/fonc.2020.01290. PubMed DOI PMC
Kamada T., Togashi Y., Tay C., Ha D., Sasaki A., Nakamura Y., Sato E., Fukuoka S., Tada Y., Tanaka A., et al. PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl. Acad. Sci. USA. 2019;116:9999–10008. doi: 10.1073/pnas.1822001116. PubMed DOI PMC
Bonaventura P., Shekarian T., Alcazer V., Valladeau-Guilemond J., Valsesia-Wittmann S., Amigorena S., Caux C., Depil S. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front. Immunol. 2019;10:168. doi: 10.3389/fimmu.2019.00168. PubMed DOI PMC
Brown M.A., Hatfield J.K. Mast Cells are Important Modifiers of Autoimmune Disease: With so Much Evidence, why is There Still Controversy? Front. Immunol. 2012;3:147. doi: 10.3389/fimmu.2012.00147. PubMed DOI PMC
Brown J.M., Wilson T.M., Metcalfe D.D. The mast cell and allergic diseases: Role in pathogenesis and implications for therapy. Clin. Exp. Allergy. 2008;38:4–18. doi: 10.1111/j.1365-2222.2007.02886.x. PubMed DOI
Dahlin J.S., Maurer M., Metcalfe D.D., Pejler G., Sagi-Eisenberg R., Nilsson G. The ingenious mast cell: Contemporary insights into mast cell behavior and function. Allergy. 2022;77:83–99. doi: 10.1111/all.14881. PubMed DOI
Wernersson S., Pejler G. Mast cell secretory granules: Armed for battle. Nat. Rev. Immunol. 2014;14:478–494. doi: 10.1038/nri3690. PubMed DOI
Peavy R.D., Metcalfe D.D. Understanding the mechanisms of anaphylaxis. Curr. Opin. Allergy Clin. Immunol. 2008;8:310–315. doi: 10.1097/ACI.0b013e3283036a90. PubMed DOI PMC
Reber L.L., Hernandez J.D., Galli S.J. The pathophysiology of anaphylaxis. J. Allergy Clin. Immunol. 2017;140:335–348. doi: 10.1016/j.jaci.2017.06.003. PubMed DOI PMC
Ito T., Smrž D., Jung M.Y., Bandara G., Desai A., Smržová S., Kuehn H.S., Beaven M.A., Metcalfe D.D., Gilfillan A.M. Stem Cell Factor Programs the Mast Cell Activation Phenotype. J. Immunol. 2012;188:5428–5437. doi: 10.4049/jimmunol.1103366. PubMed DOI PMC
Hundley T.R., Gilfillan A.M., Tkaczyk C., Andrade M.V., Metcalfe D.D., Beaven M.A. Kit and FcεRI mediate unique and convergent signals for release of inflammatory mediators from human mast cells. Blood. 2004;104:2410–2417. doi: 10.1182/blood-2004-02-0631. PubMed DOI
Smrž D., Bandara G., Beaven M.A., Metcalfe D.D., Gilfillan A.M. Prevention of F-actin assembly switches the response to SCF from chemotaxis to degranulation in human mast cells. Eur. J. Immunol. 2013;43:1873–1882. doi: 10.1002/eji.201243214. PubMed DOI PMC
Quan P.L., Sabate-Bresco M., Guo Y., Martin M., Gastaminza G. The Multifaceted Mas-Related G Protein-Coupled Receptor Member X2 in Allergic Diseases and Beyond. Int. J. Mol. Sci. 2021;22:4421. doi: 10.3390/ijms22094421. PubMed DOI PMC
Nakae S., Suto H., Kakurai M., Sedgwick J.D., Tsai M., Galli S.J. Mast cells enhance T cell activation: Importance of mast cell-derived TNF. Proc. Natl. Acad. Sci. USA. 2005;102:6467–6472. doi: 10.1073/pnas.0501912102. PubMed DOI PMC
Frossi B., Mion F., Pucillo C. Deciphering new mechanisms on T-cell co-stimulation by human mast cells. Eur. J. Immunol. 2016;46:1105–1108. doi: 10.1002/eji.201646390. PubMed DOI
Mantri C.K., John A.L.S. Immune synapses between mast cells and gamma delta T cells limit viral infection. J. Clin. Investig. 2019;129:1094–1108. doi: 10.1172/JCI122530. PubMed DOI PMC
Portales-Cervantes L., Dawod B., Marshall J.S. Mast Cells and Natural Killer Cells-A Potentially Critical Interaction. Viruses. 2019;11:514. doi: 10.3390/v11060514. PubMed DOI PMC
Lichterman J.N., Reddy S.M. Mast Cells: A New Frontier for Cancer Immunotherapy. Cells. 2021;10:1270. doi: 10.3390/cells10061270. PubMed DOI PMC
Metcalfe D.D., Baram D., Mekori Y.A. Mast cells. Physiol. Rev. 1997;77:1033–1079. doi: 10.1152/physrev.1997.77.4.1033. PubMed DOI
Komi D.E.A., Redegeld F.A. Role of Mast Cells in Shaping the Tumor Microenvironment. Clin. Rev. Allergy Immunol. 2020;58:313–325. doi: 10.1007/s12016-019-08753-w. PubMed DOI PMC
Segura-Villalobos D., Ramirez-Moreno I.G., Martinez-Aguilar M., Ibarra-Sanchez A., Munoz-Bello J.O., Anaya-Rubio I., Padilla A., Macias-Silva M., Lizano M., Gonzalez-Espinosa C. Mast Cell-Tumor Interactions: Molecular Mechanisms of Recruitment, Intratumoral Communication and Potential Therapeutic Targets for Tumor Growth. Cells. 2022;11:349. doi: 10.3390/cells11030349. PubMed DOI PMC
Mukai K., Tsai M., Saito H., Galli S.J. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol. Rev. 2018;282:121–150. doi: 10.1111/imr.12634. PubMed DOI PMC
Martner A., Wiktorin H.G., Lenox B., Ewald Sander F., Aydin E., Aurelius J., Thoren F.B., Stahlberg A., Hermodsson S., Hellstrand K. Histamine promotes the development of monocyte-derived dendritic cells and reduces tumor growth by targeting the myeloid NADPH oxidase. J. Immunol. 2015;194:5014–5021. doi: 10.4049/jimmunol.1402991. PubMed DOI PMC
Zhao J., Hou Y., Yin C., Hu J., Gao T., Huang X., Zhang X., Xing J., An J., Wan S., et al. Upregulation of histamine receptor H1 promotes tumor progression and contributes to poor prognosis in hepatocellular carcinoma. Oncogene. 2020;39:1724–1738. doi: 10.1038/s41388-019-1093-y. PubMed DOI PMC
Rabelo Melo F., Santosh Martin S., Sommerhoff C.P., Pejler G. Exosome-mediated uptake of mast cell tryptase into the nucleus of melanoma cells: A novel axis for regulating tumor cell proliferation and gene expression. Cell Death Dis. 2019;10:659. doi: 10.1038/s41419-019-1879-4. PubMed DOI PMC
Guo X., Zhai L., Xue R., Shi J., Zeng Q., Gao C. Mast Cell Tryptase Contributes to Pancreatic Cancer Growth through Promoting Angiogenesis via Activation of Angiopoietin-1. Int. J. Mol. Sci. 2016;17:834. doi: 10.3390/ijms17060834. PubMed DOI PMC
Oldford S.A., Haidl I.D., Howatt M.A., Leiva C.A., Johnston B., Marshall J.S. A critical role for mast cells and mast cell-derived IL-6 in TLR2-mediated inhibition of tumor growth. J. Immunol. 2010;185:7067–7076. doi: 10.4049/jimmunol.1001137. PubMed DOI
Abdul-Wahid A., Cydzik M., Prodeus A., Alwash M., Stanojcic M., Thompson M., Huang E.H., Shively J.E., Gray-Owen S.D., Gariepy J. Induction of antigen-specific TH 9 immunity accompanied by mast cell activation blocks tumor cell engraftment. Int. J. Cancer. 2016;139:841–853. doi: 10.1002/ijc.30121. PubMed DOI
Bodduluri S.R., Mathis S., Maturu P., Krishnan E., Satpathy S.R., Chilton P.M., Mitchell T.C., Lira S., Locati M., Mantovani A., et al. Mast Cell-Dependent CD8(+) T-cell Recruitment Mediates Immune Surveillance of Intestinal Tumors in Apc(Min/+) Mice. Cancer Immunol. Res. 2018;6:332–347. doi: 10.1158/2326-6066.CIR-17-0424. PubMed DOI PMC
Ahani E., Fereydouni M., Motaghed M., Kepley C.L. Identification and Characterization of Tunneling Nanotubes Involved in Human Mast Cell FcepsilonRI-Mediated Apoptosis of Cancer Cells. Cancers. 2022;14:2944. doi: 10.3390/cancers14122944. PubMed DOI PMC
Della Rovere F., Granata A., Monaco M., Basile G. Phagocytosis of cancer cells by mast cells in breast cancer. Anticancer Res. 2009;29:3157–3161. PubMed
Sawatsubashi M., Yamada T., Fukushima N., Mizokami H., Tokunaga O., Shin T. Association of vascular endothelial growth factor and mast cells with angiogenesis in laryngeal squamous cell carcinoma. Virchows Arch. Int. J. Pathol. 2000;436:243–248. doi: 10.1007/s004280050037. PubMed DOI
Gan P.Y., Summers S.A., Ooi J.D., O’Sullivan K.M., Tan D.S., Muljadi R.C., Odobasic D., Kitching A.R., Holdsworth S.R. Mast cells contribute to peripheral tolerance and attenuate autoimmune vasculitis. J. Am. Soc. Nephrol. JASN. 2012;23:1955–1966. doi: 10.1681/ASN.2012060572. PubMed DOI PMC
Leyva-Castillo J.M., Das M., Artru E., Yoon J., Galand C., Geha R.S. Mast cell-derived IL-13 downregulates IL-12 production by skin dendritic cells to inhibit the TH1 cell response to cutaneous antigen exposure. J. Allergy Clin. Immunol. 2021;147:2305–2315.e3. doi: 10.1016/j.jaci.2020.11.036. PubMed DOI PMC
Rodrigues C.P., Ferreira A.C., Pinho M.P., de Moraes C.J., Bergami-Santos P.C., Barbuto J.A. Tolerogenic IDO(+) Dendritic Cells Are Induced by PD-1-Expressing Mast Cells. Front. Immunol. 2016;7:9. doi: 10.3389/fimmu.2016.00009. PubMed DOI PMC
Visciano C., Liotti F., Prevete N., Cali G., Franco R., Collina F., de Paulis A., Marone G., Santoro M., Melillo R.M. Mast cells induce epithelial-to-mesenchymal transition and stem cell features in human thyroid cancer cells through an IL-8-Akt-Slug pathway. Oncogene. 2015;34:5175–5186. doi: 10.1038/onc.2014.441. PubMed DOI
Desai A., Jung M.Y., Olivera A., Gilfillan A.M., Prussin C., Kirshenbaum A.S., Beaven M.A., Metcalfe D.D. IL-6 promotes an increase in human mast cell numbers and reactivity through suppression of suppressor of cytokine signaling 3. J. Allergy Clin. Immunol. 2016;137:1863–1871.e6. doi: 10.1016/j.jaci.2015.09.059. PubMed DOI PMC
Jung M.Y., Smrž D., Desai A., Bandara G., Ito T., Iwaki S., Kang J.H., Andrade M.V., Hilderbrand S.C., Brown J.M., et al. IL-33 Induces a Hyporesponsive Phenotype in Human and Mouse Mast Cells. J. Immunol. 2013;190:531–538. doi: 10.4049/jimmunol.1201576. PubMed DOI PMC
De Souza D.A., Jr., Toso V.D., Campos M.R., Lara V.S., Oliver C., Jamur M.C. Expression of mast cell proteases correlates with mast cell maturation and angiogenesis during tumor progression. PLoS ONE. 2012;7:e40790. doi: 10.1371/journal.pone.0040790. PubMed DOI PMC
Leveque E., Rouch A., Syrykh C., Mazieres J., Brouchet L., Valitutti S., Espinosa E., Lafouresse F. Phenotypic and Histological Distribution Analysis Identify Mast Cell Heterogeneity in Non-Small Cell Lung Cancer. Cancers. 2022;14:1394. doi: 10.3390/cancers14061394. PubMed DOI PMC
Derakhshan T., Samuchiwal S.K., Hallen N., Bankova L.G., Boyce J.A., Barrett N.A., Austen K.F., Dwyer D.F. Lineage-specific regulation of inducible and constitutive mast cells in allergic airway inflammation. J. Exp. Med. 2021;218:e20200321. doi: 10.1084/jem.20200321. PubMed DOI PMC
Dwyer D.F., Barrett N.A., Austen K.F., Immunological Genome Project C. Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat. Immunol. 2016;17:878–887. doi: 10.1038/ni.3445. PubMed DOI PMC
Dwyer D.F., Ordovas-Montanes J., Allon S.J., Buchheit K.M., Vukovic M., Derakhshan T., Feng C., Lai J., Hughes T.K., Nyquist S.K., et al. Human airway mast cells proliferate and acquire distinct inflammation-driven phenotypes during type 2 inflammation. Sci. Immunol. 2021;6:eabb7221. doi: 10.1126/sciimmunol.abb7221. PubMed DOI PMC
Varricchi G., de Paulis A., Marone G., Galli S.J. Future Needs in Mast Cell Biology. Int. J. Mol. Sci. 2019;20:4397. doi: 10.3390/ijms20184397. PubMed DOI PMC
Cildir G., Yip K.H., Pant H., Tergaonkar V., Lopez A.F., Tumes D.J. Understanding mast cell heterogeneity at single cell resolution. Trends Immunol. 2021;42:523–535. doi: 10.1016/j.it.2021.04.004. PubMed DOI
Ferlazzo G., Morandi B. Cross-Talks between Natural Killer Cells and Distinct Subsets of Dendritic Cells. Front. Immunol. 2014;5:159. doi: 10.3389/fimmu.2014.00159. PubMed DOI PMC
Keller C.W., Freigang S., Lunemann J.D. Reciprocal Crosstalk between Dendritic Cells and Natural Killer T Cells: Mechanisms and Therapeutic Potential. Front. Immunol. 2017;8:570. doi: 10.3389/fimmu.2017.00570. PubMed DOI PMC
Bhattacharya P., Ismail N., Saxena A., Gannavaram S., Dey R., Oljuskin T., Akue A., Takeda K., Yu J., Karmakar S., et al. Neutrophil-dendritic cell interaction plays an important role in live attenuated Leishmania vaccine induced immunity. PLoS Negl. Trop. Dis. 2022;16:e0010224. doi: 10.1371/journal.pntd.0010224. PubMed DOI PMC
Carroll-Portillo A., Cannon J.L., te Riet J., Holmes A., Kawakami Y., Kawakami T., Cambi A., Lidke D.S. Mast cells and dendritic cells form synapses that facilitate antigen transfer for T cell activation. J. Cell Biol. 2015;210:851–864. doi: 10.1083/jcb.201412074. PubMed DOI PMC
Haniffa M., Collin M., Ginhoux F. Ontogeny and functional specialization of dendritic cells in human and mouse. Adv. Immunol. 2013;120:1–49. PubMed
Foti M., Granucci F., Ricciardi-Castagnoli P. A central role for tissue-resident dendritic cells in innate responses. Trends Immunol. 2004;25:650–654. doi: 10.1016/j.it.2004.10.007. PubMed DOI
Fucikova J., Palova-Jelinkova L., Bartunkova J., Spisek R. Induction of Tolerance and Immunity by Dendritic Cells: Mechanisms and Clinical Applications. Front. Immunol. 2019;10:2393. doi: 10.3389/fimmu.2019.02393. PubMed DOI PMC
Dalod M., Chelbi R., Malissen B., Lawrence T. Dendritic cell maturation: Functional specialization through signaling specificity and transcriptional programming. EMBO J. 2014;33:1104–1116. doi: 10.1002/embj.201488027. PubMed DOI PMC
Spisek R., Bougras G., Ebstein F., Masse D., Meflah K., McIlroy D., Gregoire M. Transient exposure of dendritic cells to maturation stimuli is sufficient to induce complete phenotypic maturation while preserving their capacity to respond to subsequent restimulation. Cancer Immunol. Immunother. CII. 2003;52:445–454. doi: 10.1007/s00262-002-0368-1. PubMed DOI PMC
Segura E. Human dendritic cell subsets: An updated view of their ontogeny and functional specialization. Eur. J. Immunol. 2022 doi: 10.1002/eji.202149632. PubMed DOI PMC
Ye Y., Gaugler B., Mohty M., Malard F. Plasmacytoid dendritic cell biology and its role in immune-mediated diseases. Clin. Transl. Immunol. 2020;9:e1139. doi: 10.1002/cti2.1139. PubMed DOI PMC
Zhang S., Chopin M., Nutt S.L. Type 1 conventional dendritic cells: Ontogeny, function, and emerging roles in cancer immunotherapy. Trends Immunol. 2021;42:1113–1127. doi: 10.1016/j.it.2021.10.004. PubMed DOI
Saito Y., Komori S., Kotani T., Murata Y., Matozaki T. The Role of Type-2 Conventional Dendritic Cells in the Regulation of Tumor Immunity. Cancers. 2022;14:1976. doi: 10.3390/cancers14081976. PubMed DOI PMC
Sichien D., Lambrecht B.N., Guilliams M., Scott C.L. Development of conventional dendritic cells: From common bone marrow progenitors to multiple subsets in peripheral tissues. Mucosal Immunol. 2017;10:831–844. doi: 10.1038/mi.2017.8. PubMed DOI
Villani A.C., Satija R., Reynolds G., Sarkizova S., Shekhar K., Fletcher J., Griesbeck M., Butler A., Zheng S., Lazo S., et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356:eaah4573. doi: 10.1126/science.aah4573. PubMed DOI PMC
Villar J., Segura E. The More, the Merrier: DC3s Join the Human Dendritic Cell Family. Immunity. 2020;53:233–235. doi: 10.1016/j.immuni.2020.07.014. PubMed DOI
Coillard A., Segura E. In vivo Differentiation of Human Monocytes. Front. Immunol. 2019;10:1907. doi: 10.3389/fimmu.2019.01907. PubMed DOI PMC
Tang-Huau T.L., Gueguen P., Goudot C., Durand M., Bohec M., Baulande S., Pasquier B., Amigorena S., Segura E. Human in vivo-generated monocyte-derived dendritic cells and macrophages cross-present antigens through a vacuolar pathway. Nat. Commun. 2018;9:2570. doi: 10.1038/s41467-018-04985-0. PubMed DOI PMC
Han P., Hanlon D., Sobolev O., Chaudhury R., Edelson R.L. Ex vivo dendritic cell generation—A critical comparison of current approaches. Int. Rev. Cell Mol. Biol. 2019;349:251–307. PubMed
Cechim G., Chies J.A.B. In vitro generation of human monocyte-derived dendritic cells methodological aspects in a comprehensive review. An. Da Acad. Bras. De Cienc. 2019;91 doi: 10.1590/0001-3765201920190310. DOI
Gardner A., Ruffell B. Dendritic Cells and Cancer Immunity. Trends Immunol. 2016;37:855–865. doi: 10.1016/j.it.2016.09.006. PubMed DOI PMC
Noubade R., Majri-Morrison S., Tarbell K.V. Beyond cDC1: Emerging Roles of DC Crosstalk in Cancer Immunity. Front. Immunol. 2019;10:1014. doi: 10.3389/fimmu.2019.01014. PubMed DOI PMC
Koucky V., Boucek J., Fialova A. Immunology of Plasmacytoid Dendritic Cells in Solid Tumors: A Brief Review. Cancers. 2019;11:470. doi: 10.3390/cancers11040470. PubMed DOI PMC
Plesca I., Muller L., Bottcher J.P., Medyouf H., Wehner R., Schmitz M. Tumor-associated human dendritic cell subsets: Phenotype, functional orientation, and clinical relevance. Eur. J. Immunol. 2022 doi: 10.1002/eji.202149487. PubMed DOI
Del Prete A., Sozio F., Barbazza I., Salvi V., Tiberio L., Laffranchi M., Gismondi A., Bosisio D., Schioppa T., Sozzani S. Functional Role of Dendritic Cell Subsets in Cancer Progression and Clinical Implications. Int. J. Mol. Sci. 2020;21:3930. doi: 10.3390/ijms21113930. PubMed DOI PMC
Brombacher E.C., Everts B. Shaping of Dendritic Cell Function by the Metabolic Micro-Environment. Front. Endocrinol. 2020;11:555. doi: 10.3389/fendo.2020.00555. PubMed DOI PMC
Raaijmakers T.K., Ansems M. Microenvironmental derived factors modulating dendritic cell function and vaccine efficacy: The effect of prostanoid receptor and nuclear receptor ligands. Cancer Immunol. Immunother. CII. 2018;67:1789–1796. doi: 10.1007/s00262-018-2205-1. PubMed DOI PMC
Di Blasio S., van Wigcheren G.F., Becker A., van Duffelen A., Gorris M., Verrijp K., Stefanini I., Bakker G.J., Bloemendal M., Halilovic A., et al. The tumour microenvironment shapes dendritic cell plasticity in a human organotypic melanoma culture. Nat. Commun. 2020;11:2749. doi: 10.1038/s41467-020-16583-0. PubMed DOI PMC
Peng X., He Y., Huang J., Tao Y., Liu S. Metabolism of Dendritic Cells in Tumor Microenvironment: For Immunotherapy. Front. Immunol. 2021;12:613492. doi: 10.3389/fimmu.2021.613492. PubMed DOI PMC
Ruffell B., Chang-Strachan D., Chan V., Rosenbusch A., Ho C.M., Pryer N., Daniel D., Hwang E.S., Rugo H.S., Coussens L.M. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 2014;26:623–637. doi: 10.1016/j.ccell.2014.09.006. PubMed DOI PMC
MacNabb B.W., Tumuluru S., Chen X., Godfrey J., Kasal D.N., Yu J., Jongsma M.L.M., Spaapen R.M., Kline D.E., Kline J. Dendritic cells can prime anti-tumor CD8(+) T cell responses through major histocompatibility complex cross-dressing. Immunity. 2022;55:982–997.e8. PubMed PMC
Li Y., Zhao C., Liu J., Lu Z., Lu M., Gu J., Liu R. CD1d highly expressed on DCs reduces lung tumor burden by enhancing antitumor immunity. Oncol. Rep. 2019;41:2679–2688. doi: 10.3892/or.2019.7037. PubMed DOI PMC
Iwanowycz S., Ngoi S., Li Y., Hill M., Koivisto C., Parrish M., Guo B., Li Z., Liu B. Type 2 dendritic cells mediate control of cytotoxic T cell resistant tumors. JCI Insight. 2021;6:e145885. doi: 10.1172/jci.insight.145885. PubMed DOI PMC
Bruno A., Pagani A., Pulze L., Albini A., Dallaglio K., Noonan D.M., Mortara L. Orchestration of angiogenesis by immune cells. Front. Oncol. 2014;4:131. PubMed PMC
Wang Y.M., Qiu J.J., Qu X.Y., Peng J., Lu C., Zhang M., Zhang M.X., Qi X.L., Lv B., Guo J.J., et al. Accumulation of dysfunctional tumor-infiltrating PD-1+ DCs links PD-1/PD-L1 blockade immunotherapeutic response in cervical cancer. Oncoimmunology. 2022;11:2034257. doi: 10.1080/2162402X.2022.2034257. PubMed DOI PMC
Liu Q., Zhang C., Sun A., Zheng Y., Wang L., Cao X. Tumor-educated CD11bhighIalow regulatory dendritic cells suppress T cell response through arginase I. J. Immunol. 2009;182:6207–6216. PubMed
Kusmartsev S., Nefedova Y., Yoder D., Gabrilovich D.I. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J. Immunol. 2004;172:989–999. PubMed
Fallarino F., Grohmann U., You S., McGrath B.C., Cavener D.R., Vacca C., Orabona C., Bianchi R., Belladonna M.L., Volpi C., et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J. Immunol. 2006;176:6752–6761. doi: 10.4049/jimmunol.176.11.6752. PubMed DOI
Belladonna M.L., Volpi C., Bianchi R., Vacca C., Orabona C., Pallotta M.T., Boon L., Gizzi S., Fioretti M.C., Grohmann U., et al. Cutting edge: Autocrine TGF-beta sustains default tolerogenesis by IDO-competent dendritic cells. J. Immunol. 2008;181:5194–5198. doi: 10.4049/jimmunol.181.8.5194. PubMed DOI
Llopiz D., Ruiz M., Infante S., Villanueva L., Silva L., Hervas-Stubbs S., Alignani D., Guruceaga E., Lasarte J.J., Sarobe P. IL-10 expression defines an immunosuppressive dendritic cell population induced by antitumor therapeutic vaccination. Oncotarget. 2017;8:2659–2671. doi: 10.18632/oncotarget.13736. PubMed DOI PMC
Von Bergwelt-Baildon M.S., Popov A., Saric T., Chemnitz J., Classen S., Stoffel M.S., Fiore F., Roth U., Beyer M., Debey S., et al. CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo: Additional mechanisms of T-cell inhibition. Blood. 2006;108:228–237. doi: 10.1182/blood-2005-08-3507. PubMed DOI
Fainaru O., Almog N., Yung C.W., Nakai K., Montoya-Zavala M., Abdollahi A., D’Amato R., Ingber D.E. Tumor growth and angiogenesis are dependent on the presence of immature dendritic cells. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2010;24:1411–1418. doi: 10.1096/fj.09-147025. PubMed DOI PMC
Gupta Y.H., Khanom A., Acton S.E. Control of Dendritic Cell Function Within the Tumour Microenvironment. Front. Immunol. 2022;13:733800. doi: 10.3389/fimmu.2022.733800. PubMed DOI PMC
Gerhard G.M., Bill R., Messemaker M., Klein A.M., Pittet M.J. Tumor-infiltrating dendritic cell states are conserved across solid human cancers. J. Exp. Med. 2021;218:e20200264. doi: 10.1084/jem.20200264. PubMed DOI PMC
Dudeck J., Froebel J., Kotrba J., Lehmann C.H.K., Dudziak D., Speier S., Nedospasov S.A., Schraven B., Dudeck A. Engulfment of mast cell secretory granules on skin inflammation boosts dendritic cell migration and priming efficiency. J. Allergy Clin. Immunol. 2019;143:1849–1864.e4. doi: 10.1016/j.jaci.2018.08.052. PubMed DOI
Dudeck J., Medyukhina A., Frobel J., Svensson C.M., Kotrba J., Gerlach M., Gradtke A.C., Schroder B., Speier S., Figge M.T., et al. Mast cells acquire MHCII from dendritic cells during skin inflammation. J. Exp. Med. 2017;214:3791–3811. doi: 10.1084/jem.20160783. PubMed DOI PMC
De Vries V.C., Pino-Lagos K., Nowak E.C., Bennett K.A., Oliva C., Noelle R.J. Mast cells condition dendritic cells to mediate allograft tolerance. Immunity. 2011;35:550–561. doi: 10.1016/j.immuni.2011.09.012. PubMed DOI PMC
Dudeck J., Ghouse S.M., Lehmann C.H., Hoppe A., Schubert N., Nedospasov S.A., Dudziak D., Dudeck A. Mast-Cell-Derived TNF Amplifies CD8(+) Dendritic Cell Functionality and CD8(+) T Cell Priming. Cell Rep. 2015;13:399–411. doi: 10.1016/j.celrep.2015.08.078. PubMed DOI
Hackler Y., Siebenhaar F., Lohning M., Maurer M., Munoz M. Mast Cells Modulate Antigen-Specific CD8(+) T Cell Activation During LCMV Infection. Front. Immunol. 2021;12:688347. doi: 10.3389/fimmu.2021.688347. PubMed DOI PMC
Somasundaram R., Connelly T., Choi R., Choi H., Samarkina A., Li L., Gregorio E., Chen Y., Thakur R., Abdel-Mohsen M., et al. Tumor-infiltrating mast cells are associated with resistance to anti-PD-1 therapy. Nat. Commun. 2021;12:346. doi: 10.1038/s41467-020-20600-7. PubMed DOI PMC
Panagi M., Mpekris F., Voutouri C., Michael C., Constantinidou A., Martin J.D., Stylianopoulos T. Abstract 6382: Targeting mast cells restores T cell infiltration and sensitizes sarcomas to PD-L1 inhibition. Cancer Res. 2022;82((Suppl. 12)):6382. doi: 10.1158/1538-7445.AM2022-6382. DOI
Lyons J.J., Metcalfe D.D. Targeting Mast Cells with Biologics. Immunol. Allergy Clin. North Am. 2020;40:667–685. doi: 10.1016/j.iac.2020.06.007. PubMed DOI
Sokol K.C., Amar N.K., Starkey J., Grant J.A. Ketotifen in the management of chronic urticaria: Resurrection of an old drug. Ann. Allergy Asthma Immunol. 2013;111:433–436. doi: 10.1016/j.anai.2013.10.003. PubMed DOI PMC
Cardet J.C., Akin C., Lee M.J. Mastocytosis: Update on pharmacotherapy and future directions. Expert Opin. Pharmacother. 2013;14:2033–2045. doi: 10.1517/14656566.2013.824424. PubMed DOI PMC
Abbaspour Babaei M., Kamalidehghan B., Saleem M., Huri H.Z., Ahmadipour F. Receptor tyrosine kinase (c-Kit) inhibitors: A potential therapeutic target in cancer cells. Drug Des. Dev. Ther. 2016;10:2443–2459. doi: 10.2147/DDDT.S89114. PubMed DOI PMC
Murugesan G., Weigle B., Crocker P.R. Siglec and anti-Siglec therapies. Curr. Opin. Chem. Biol. 2021;62:34–42. doi: 10.1016/j.cbpa.2021.01.001. PubMed DOI
Cao K., Zhang G., Zhang X., Yang M., Wang Y., He M., Lu J., Liu H. Stromal infiltrating mast cells identify immunoevasive subtype high-grade serous ovarian cancer with poor prognosis and inferior immunotherapeutic response. Oncoimmunology. 2021;10:1969075. doi: 10.1080/2162402X.2021.1969075. PubMed DOI PMC
Hu G., Wang S., Cheng P. Tumor-infiltrating tryptase(+) mast cells predict unfavorable clinical outcome in solid tumors. Int. J. Cancer. 2018;142:813–821. doi: 10.1002/ijc.31099. PubMed DOI
Li J., Peng G., Zhu K., Jie X., Xu Y., Rao X., Xu Y., Chen Y., Xing B., Wu G., et al. PD-1(+) mast cell enhanced by PD-1 blocking therapy associated with resistance to immunotherapy. Cancer Immunol. Immunother. CII. 2022 doi: 10.1007/s00262-022-03282-6. PubMed DOI PMC
Dabiri S., Huntsman D., Makretsov N., Cheang M., Gilks B., Bajdik C., Gelmon K., Chia S., Hayes M. The presence of stromal mast cells identifies a subset of invasive breast cancers with a favorable prognosis. Mod. Pathol. 2004;17:690–695. doi: 10.1038/modpathol.3800094. PubMed DOI
Bo X., Wang J., Suo T., Ni X., Liu H., Shen S., Li M., Wang Y., Liu H., Xu J. Tumor-infiltrating mast cells predict prognosis and gemcitabine-based adjuvant chemotherapeutic benefit in biliary tract cancer patients. BMC Cancer. 2018;18:313. doi: 10.1186/s12885-018-4220-1. PubMed DOI PMC
Ozdemir O. Evaluation of human mast cell-mediated cytotoxicity by DIOC18 target cell labeling in flow cytometry. J. Immunol. Methods. 2007;319:98–103. doi: 10.1016/j.jim.2006.11.004. PubMed DOI
Fereydouni M., Ahani E., Desai P., Motaghed M., Dellinger A., Metcalfe D.D., Yin Y., Lee S.H., Kafri T., Bhatt A.P., et al. Human Tumor Targeted Cytotoxic Mast Cells for Cancer Immunotherapy. Front. Oncol. 2022;12:871390. doi: 10.3389/fonc.2022.871390. PubMed DOI PMC
Nigro E.A., Brini A.T., Yenagi V.A., Ferreira L.M., Achatz-Straussberger G., Ambrosi A., Sanvito F., Soprana E., van Anken E., Achatz G., et al. Cutting Edge: IgE Plays an Active Role in Tumor Immunosurveillance in Mice. J. Immunol. 2016;197:2583–2588. doi: 10.4049/jimmunol.1601026. PubMed DOI
Draber P., Halova I., Polakovicova I., Kawakami T. Signal transduction and chemotaxis in mast cells. Eur. J. Pharmacol. 2016;778:11–23. doi: 10.1016/j.ejphar.2015.02.057. PubMed DOI PMC
Martinez-Lostao L., Anel A., Pardo J. How Do Cytotoxic Lymphocytes Kill Cancer Cells? Clin. Cancer Res. 2015;21:5047–5056. doi: 10.1158/1078-0432.CCR-15-0685. PubMed DOI
Fereydouni M., Motaghed M., Ahani E., Kafri T., Dellinger K., Metcalfe D.D., Kepley C.L. Harnessing the Anti-Tumor Mediators in Mast Cells as a New Strategy for Adoptive Cell Transfer for Cancer. Front. Oncol. 2022;12:830199. doi: 10.3389/fonc.2022.830199. PubMed DOI PMC
Nussenzweig M.C., Steinman R.M., Gutchinov B., Cohn Z.A. Dendritic cells are accessory cells for the development of anti-trinitrophenyl cytotoxic T lymphocytes. J. Exp. Med. 1980;152:1070–1084. doi: 10.1084/jem.152.4.1070. PubMed DOI PMC
Dunn G.P., Bruce A.T., Sheehan K.C., Shankaran V., Uppaluri R., Bui J.D., Diamond M.S., Koebel C.M., Arthur C., White J.M., et al. A critical function for type I interferons in cancer immunoediting. Nat. Immunol. 2005;6:722–729. doi: 10.1038/ni1213. PubMed DOI
Macatonia S.E., Hosken N.A., Litton M., Vieira P., Hsieh C.S., Culpepper J.A., Wysocka M., Trinchieri G., Murphy K.M., O’Garra A. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J. Immunol. 1995;154:5071–5079. PubMed
Yu J., Sun H., Cao W., Song Y., Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp. Hematol. Oncol. 2022;11:3. doi: 10.1186/s40164-022-00257-2. PubMed DOI PMC
Hu X., Chakraborty N.G., Sporn J.R., Kurtzman S.H., Ergin M.T., Mukherji B. Enhancement of cytolytic T lymphocyte precursor frequency in melanoma patients following immunization with the MAGE-1 peptide loaded antigen presenting cell-based vaccine. Cancer Res. 1996;56:2479–2483. PubMed
Mukherji B., Chakraborty N.G., Yamasaki S., Okino T., Yamase H., Sporn J.R., Kurtzman S.K., Ergin M.T., Ozols J., Meehan J., et al. Induction of antigen-specific cytolytic T cells in situ in human melanoma by immunization with synthetic peptide-pulsed autologous antigen presenting cells. Proc. Natl. Acad. Sci. USA. 1995;92:8078–8082. doi: 10.1073/pnas.92.17.8078. PubMed DOI PMC
Nestle F.O., Alijagic S., Gilliet M., Sun Y., Grabbe S., Dummer R., Burg G., Schadendorf D. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med. 1998;4:328–332. doi: 10.1038/nm0398-328. PubMed DOI
Holtl L., Rieser C., Papesh C., Ramoner R., Bartsch G., Thurnher M. CD83+ blood dendritic cells as a vaccine for immunotherapy of metastatic renal-cell cancer. Lancet. 1998;352:1358. doi: 10.1016/S0140-6736(05)60748-9. PubMed DOI
Hsu F.J., Benike C., Fagnoni F., Liles T.M., Czerwinski D., Taidi B., Engleman E.G., Levy R. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 1996;2:52–58. doi: 10.1038/nm0196-52. PubMed DOI
Tjoa B.A., Simmons S.J., Bowes V.A., Ragde H., Rogers M., Elgamal A., Kenny G.M., Cobb O.E., Ireton R.C., Troychak M.J., et al. Evaluation of phase I/II clinical trials in prostate cancer with dendritic cells and PSMA peptides. Prostate. 1998;36:39–44. doi: 10.1002/(SICI)1097-0045(19980615)36:1<39::AID-PROS6>3.0.CO;2-6. PubMed DOI
Cheever M.A., Higano C.S. PROVENGE (Sipuleucel-T) in prostate cancer: The first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res. 2011;17:3520–3526. doi: 10.1158/1078-0432.CCR-10-3126. PubMed DOI
Wei X.X., Kwak L., Hamid A., He M., Sweeney C., Flanders S.C., Harmon M., Choudhury A.D. Outcomes in men with metastatic castration-resistant prostate cancer who received sipuleucel-T and no immediate subsequent therapy: Experience at Dana Farber and in the PROCEED Registry. Prostate Cancer Prostatic Dis. 2022;25:314–319. doi: 10.1038/s41391-022-00493-x. PubMed DOI
Harari A., Graciotti M., Bassani-Sternberg M., Kandalaft L.E. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat. Rev. Drug. Discov. 2020;19:635–652. doi: 10.1038/s41573-020-0074-8. PubMed DOI
Thommen D.S., Schumacher T.N. T Cell Dysfunction in Cancer. Cancer Cell. 2018;33:547–562. doi: 10.1016/j.ccell.2018.03.012. PubMed DOI PMC
Wu P., Gao W., Su M., Nice E.C., Zhang W., Lin J., Xie N. Adaptive Mechanisms of Tumor Therapy Resistance Driven by Tumor Microenvironment. Front. Cell Dev. Biol. 2021;9:641469. doi: 10.3389/fcell.2021.641469. PubMed DOI PMC
Laureano R.S., Sprooten J., Vanmeerbeerk I., Borras D.M., Govaerts J., Naulaerts S., Berneman Z.N., Beuselinck B., Bol K.F., Borst J., et al. Trial watch: Dendritic cell (DC)-based immunotherapy for cancer. Oncoimmunology. 2022;11:2096363. doi: 10.1080/2162402X.2022.2096363. PubMed DOI PMC
Zhang Z., Lu M., Qin Y., Gao W., Tao L., Su W., Zhong J. Neoantigen: A New Breakthrough in Tumor Immunotherapy. Front. Immunol. 2021;12:672356. doi: 10.3389/fimmu.2021.672356. PubMed DOI PMC
Sahin U., Tureci O. Personalized vaccines for cancer immunotherapy. Science. 2018;359:1355–1360. doi: 10.1126/science.aar7112. PubMed DOI
Wirth T.C., Kuhnel F. Neoantigen Targeting-Dawn of a New Era in Cancer Immunotherapy? Front. Immunol. 2017;8:1848. doi: 10.3389/fimmu.2017.01848. PubMed DOI PMC
Ding Z., Li Q., Zhang R., Xie L., Shu Y., Gao S., Wang P., Su X., Qin Y., Wang Y., et al. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal Transduct. Target. Ther. 2021;6:26. doi: 10.1038/s41392-020-00448-5. PubMed DOI PMC
Dammeijer F., Lievense L.A., Kaijen-Lambers M.E., van Nimwegen M., Bezemer K., Hegmans J.P., van Hall T., Hendriks R.W., Aerts J.G. Depletion of Tumor-Associated Macrophages with a CSF-1R Kinase Inhibitor Enhances Antitumor Immunity and Survival Induced by DC Immunotherapy. Cancer Immunol. Res. 2017;5:535–546. doi: 10.1158/2326-6066.CIR-16-0309. PubMed DOI
Garg A.D., Coulie P.G., Van den Eynde B.J., Agostinis P. Integrating Next-Generation Dendritic Cell Vaccines into the Current Cancer Immunotherapy Landscape. Trends Immunol. 2017;38:577–593. doi: 10.1016/j.it.2017.05.006. PubMed DOI
Hensler M., Rakova J., Kasikova L., Lanickova T., Pasulka J., Holicek P., Hraska M., Hrnciarova T., Kadlecova P., Schoenenberger A., et al. Peripheral gene signatures reveal distinct cancer patient immunotypes with therapeutic implications for autologous DC-based vaccines. Oncoimmunology. 2022;11:2101596. doi: 10.1080/2162402X.2022.2101596. PubMed DOI PMC
Fucikova J., Podrazil M., Jarolim L., Bilkova P., Hensler M., Becht E., Gasova Z., Klouckova J., Kayserova J., Horvath R., et al. Phase I/II trial of dendritic cell-based active cellular immunotherapy with DCVAC/PCa in patients with rising PSA after primary prostatectomy or salvage radiotherapy for the treatment of prostate cancer. Cancer Immunol. Immunother. CII. 2018;67:89–100. doi: 10.1007/s00262-017-2068-x. PubMed DOI PMC
Podrazil M., Horvath R., Becht E., Rozkova D., Bilkova P., Sochorova K., Hromadkova H., Kayserova J., Vavrova K., Lastovicka J., et al. Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget. 2015;6:18192–18205. doi: 10.18632/oncotarget.4145. PubMed DOI PMC
Fucikova J., Hensler M., Kasikova L., Lanickova T., Pasulka J., Rakova J., Drozenova J., Fredriksen T., Hraska M., Hrnciarova T., et al. An Autologous Dendritic Cell Vaccine Promotes Anticancer Immunity in Patients with Ovarian Cancer with Low Mutational Burden and Cold Tumors. Clin. Cancer Res. 2022;28:3053–3065. doi: 10.1158/1078-0432.CCR-21-4413. PubMed DOI
Taborska P., Stakheev D., Bartunkova J., Smrz D. Thapsigargin-Stimulated LAD2 Human Mast Cell Line Is a Potent Cellular Adjuvant for the Maturation of Monocyte-Derived Dendritic Cells for Adoptive Cellular Immunotherapy. Int. J. Mol. Sci. 2021;22:3978. doi: 10.3390/ijms22083978. PubMed DOI PMC
Kijima Y., Ogunbunmi E., Fleischer S. Drug action of thapsigargin on the Ca2+ pump protein of sarcoplasmic reticulum. J. Biol. Chem. 1991;266:22912–22918. doi: 10.1016/S0021-9258(18)54441-0. PubMed DOI
Lytton J., Westlin M., Hanley M.R. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J. Biol. Chem. 1991;266:17067–17071. doi: 10.1016/S0021-9258(19)47340-7. PubMed DOI
Smrz D., Cruse G., Beaven M.A., Kirshenbaum A., Metcalfe D.D., Gilfillan A.M. Rictor Negatively Regulates High-Affinity Receptors for IgE-Induced Mast Cell Degranulation. J. Immunol. 2014;193:5924–5932. doi: 10.4049/jimmunol.1303495. PubMed DOI PMC
McDonnell A.M., Lesterhuis W.J., Khong A., Nowak A.K., Lake R.A., Currie A.J., Robinson B.W. Tumor-infiltrating dendritic cells exhibit defective cross-presentation of tumor antigens, but is reversed by chemotherapy. Eur. J. Immunol. 2015;45:49–59. doi: 10.1002/eji.201444722. PubMed DOI
Vicari A.P., Chiodoni C., Vaure C., Ait-Yahia S., Dercamp C., Matsos F., Reynard O., Taverne C., Merle P., Colombo M.P., et al. Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J. Exp. Med. 2002;196:541–549. doi: 10.1084/jem.20020732. PubMed DOI PMC
Plotkin J.D., Elias M.G., Fereydouni M., Daniels-Wells T.R., Dellinger A.L., Penichet M.L., Kepley C.L. Human Mast Cells from Adipose Tissue Target and Induce Apoptosis of Breast Cancer Cells. Front. Immunol. 2019;10:138. doi: 10.3389/fimmu.2019.00138. PubMed DOI PMC
Yin Y., Bai Y., Olivera A., Desai A., Metcalfe D.D. An optimized protocol for the generation and functional analysis of human mast cells from CD34+ enriched cell populations. J. Immunol. Methods. 2017;448:105–111. doi: 10.1016/j.jim.2017.06.003. PubMed DOI PMC
Daguenet E., Louati S., Wozny A.S., Vial N., Gras M., Guy J.B., Vallard A., Rodriguez-Lafrasse C., Magne N. Radiation-induced bystander and abscopal effects: Important lessons from preclinical models. Br. J. Cancer. 2020;123:339–348. doi: 10.1038/s41416-020-0942-3. PubMed DOI PMC
Le V.H., Franko J., Paz B.I., Singh G., Fakih M., Chung V. Chemotherapy-induced early transient increase and surge of CA 19–9 level in patients with pancreatic Adenocarcinoma. Cancer Treat. Res. Commun. 2021;28:100397. doi: 10.1016/j.ctarc.2021.100397. PubMed DOI
Xu X., Li T., Shen S., Wang J., Abdou P., Gu Z., Mo R. Advances in Engineering Cells for Cancer Immunotherapy. Theranostics. 2019;9:7889–7905. doi: 10.7150/thno.38583. PubMed DOI PMC
Andrea A.E., Chiron A., Mallah S., Bessoles S., Sarrabayrouse G., Hacein-Bey-Abina S. Advances in CAR-T Cell Genetic Engineering Strategies to Overcome Hurdles in Solid Tumors Treatment. Front. Immunol. 2022;13:830292. doi: 10.3389/fimmu.2022.830292. PubMed DOI PMC
Wei F., Cheng X.X., Xue J.Z., Xue S.A. Emerging Strategies in TCR-Engineered T Cells. Front. Immunol. 2022;13:850358. doi: 10.3389/fimmu.2022.850358. PubMed DOI PMC
Han B.S., Ji S., Woo S., Lee J.H., Sin J.I. Regulation of the translation activity of antigen-specific mRNA is responsible for antigen loss and tumor immune escape in a HER2-expressing tumor model. Sci. Rep. 2019;9:2855. doi: 10.1038/s41598-019-39557-9. PubMed DOI PMC
Hubbe M.L., Jaehger D.E., Andresen T.L., Andersen M.H. Leveraging Endogenous Dendritic Cells to Enhance the Therapeutic Efficacy of Adoptive T-Cell Therapy and Checkpoint Blockade. Front. Immunol. 2020;11:578349. doi: 10.3389/fimmu.2020.578349. PubMed DOI PMC
Walsh S.R., Simovic B., Chen L., Bastin D., Nguyen A., Stephenson K., Mandur T.S., Bramson J.L., Lichty B.D., Wan Y. Endogenous T cells prevent tumor immune escape following adoptive T cell therapy. J. Clin. Investig. 2019;129:5400–5410. doi: 10.1172/JCI126199. PubMed DOI PMC
Kahkonen T.E., Suominen M.I., Maki-Jouppila J.H.E., Halleen J.M., Tanaka A., Seiler M., Bernoulli J. Human Immune System Increases Breast Cancer-Induced Osteoblastic Bone Growth in a Humanized Mouse Model without Affecting Normal Bone. J. Immunol. Res. 2019;2019:4260987. doi: 10.1155/2019/4260987. PubMed DOI PMC
Calmeiro J., Carrascal M.A., Tavares A.R., Ferreira D.A., Gomes C., Cruz M.T., Falcao A., Neves B.M. Pharmacological combination of nivolumab with dendritic cell vaccines in cancer immunotherapy: An overview. Pharmacol. Res. 2021;164:105309. doi: 10.1016/j.phrs.2020.105309. PubMed DOI
Abakushina E.V., Popova L.I., Zamyatnin A.A., Jr., Werner J., Mikhailovsky N.V., Bazhin A.V. The Advantages and Challenges of Anticancer Dendritic Cell Vaccines and NK Cells in Adoptive Cell Immunotherapy. Vaccines. 2021;9:1363. doi: 10.3390/vaccines9111363. PubMed DOI PMC
Jiang N., Qiao G., Wang X., Morse M.A., Gwin W.R., Zhou L., Song Y., Zhao Y., Chen F., Zhou X., et al. Dendritic Cell/Cytokine-Induced Killer Cell Immunotherapy Combined with S-1 in Patients with Advanced Pancreatic Cancer: A Prospective Study. Clin. Cancer Res. 2017;23:5066–5073. doi: 10.1158/1078-0432.CCR-17-0492. PubMed DOI
Qin V.M., D’Souza C., Neeson P.J., Zhu J.J. Chimeric Antigen Receptor beyond CAR-T Cells. Cancers. 2021;13:404. doi: 10.3390/cancers13030404. PubMed DOI PMC
Kang B.H., Lee H.K. Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors. Int. J. Mol. Sci. 2022;23:7325. doi: 10.3390/ijms23137325. PubMed DOI PMC
Lv Y., Zhao Y., Wang X., Chen N., Mao F., Teng Y., Wang T., Peng L., Zhang J., Cheng P., et al. Increased intratumoral mast cells foster immune suppression and gastric cancer progression through TNF-alpha-PD-L1 pathway. J. Immunother. Cancer. 2019;7:54. doi: 10.1186/s40425-019-0530-3. PubMed DOI PMC
Metcalfe D.D. Mast cells and mastocytosis. Blood. 2008;112:946–956. doi: 10.1182/blood-2007-11-078097. PubMed DOI PMC
Molderings G.J., Zienkiewicz T., Homann J., Menzen M., Afrin L.B. Risk of solid cancer in patients with mast cell activation syndrome: Results from Germany and USA. F1000Research. 2017;6:1889. doi: 10.12688/f1000research.12730.1. PubMed DOI PMC
Ryan R.J., Akin C., Castells M., Wills M., Selig M.K., Nielsen G.P., Ferry J.A., Hornick J.L. Mast cell sarcoma: A rare and potentially under-recognized diagnostic entity with specific therapeutic implications. Mod. Pathol. 2013;26:533–543. doi: 10.1038/modpathol.2012.199. PubMed DOI