Thapsigargin-Stimulated LAD2 Human Mast Cell Line Is a Potent Cellular Adjuvant for the Maturation of Monocyte-Derived Dendritic Cells for Adoptive Cellular Immunotherapy

. 2021 Apr 12 ; 22 (8) : . [epub] 20210412

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33921475

Grantová podpora
PRIMUS/MED/12 Univerzita Karlova v Praze
AZV 16-28135A Ministerstvo Zdravotnictví Ceské Republiky

The preparation of dendritic cells (DCs) for adoptive cellular immunotherapy (ACI) requires the maturation of ex vivo-produced immature(i) DCs. This maturation ensures that the antigen presentation triggers an immune response towards the antigen-expressing cells. Although there is a large number of maturation agents capable of inducing strong DC maturation, there is still only a very limited number of these agents approved for use in the production of DCs for ACI. In seeking novel DC maturation agents, we used differentially activated human mast cell (MC) line LAD2 as a cellular adjuvant to elicit or modulate the maturation of ex vivo-produced monocyte-derived iDCs. We found that co-culture of iDCs with differentially activated LAD2 MCs in serum-containing media significantly modulated polyinosinic:polycytidylic acid (poly I:C)-elicited DC maturation as determined through the surface expression of the maturation markers CD80, CD83, CD86, and human leukocyte antigen(HLA)-DR. Once iDCs were generated in serum-free conditions, they became refractory to the maturation with poly I:C, and the LAD2 MC modulatory potential was minimized. However, the maturation-refractory phenotype of the serum-free generated iDCs was largely overcome by co-culture with thapsigargin-stimulated LAD2 MCs. Our data suggest that differentially stimulated mast cells could be novel and highly potent cellular adjuvants for the maturation of DCs for ACI.

Zobrazit více v PubMed

Gilfillan A.M., Austin S.J., Metcalfe D.D. Mast Cell Biology: Introduction and Overview. Adv. Exp. Med. Biol. 2011;716:2–12. doi: 10.1007/978-1-4419-9533-9_1. PubMed DOI PMC

Valent P., Akin C., Nedoszytko B., Bonadonna P., Hartmann K., Niedoszytko M., Brockow K., Siebenhaar F., Triggiani M., Arock M., et al. Diagnosis, Classification and Management of Mast Cell Activation Syndromes (MCAS) in the Era of Personalized Medicine. Int. J. Mol. Sci. 2020;21:9030. doi: 10.3390/ijms21239030. PubMed DOI PMC

Komi D.E.A., Redegeld F.A. Role of Mast Cells in Shaping the Tumor Microenvironment. Clin. Rev. Allergy Immunol. 2020;58:313–325. doi: 10.1007/s12016-019-08753-w. PubMed DOI PMC

Varricchi G., Galdiero M.R., Loffredo S., Marone G., Iannone R., Marone G., Granata F. Are Mast Cells MASTers in Cancer? Front. Immunol. 2017;8:424. doi: 10.3389/fimmu.2017.00424. PubMed DOI PMC

Derakhshani A., Vahidian F., Alihasanzadeh M., Mokhtarzadeh A., Lotfi Nezhad P., Baradaran B. Mast Cells: A Double-edged Sword in Cancer. Immunol. Lett. 2019;209:28–35. doi: 10.1016/j.imlet.2019.03.011. PubMed DOI

Carroll-Portillo A., Cannon J.L., te Riet J., Holmes A., Kawakami Y., Kawakami T., Cambi A., Lidke D.S. Mast Cells and Dendritic Cells Form Synapses That Facilitate Antigen Transfer for T Cell Activation. J. Cell. Biol. 2015;210:851–864. doi: 10.1083/jcb.201412074. PubMed DOI PMC

Dudeck J., Medyukhina A., Frobel J., Svensson C.M., Kotrba J., Gerlach M., Gradtke A.C., Schroder B., Speier S., Figge M.T., et al. Mast Cells Acquire MHCII from Dendritic Cells during Skin Inflammation. J. Exp. Med. 2017;214:3791–3811. doi: 10.1084/jem.20160783. PubMed DOI PMC

de Vries V.C., Pino-Lagos K., Nowak E.C., Bennett K.A., Oliva C., Noelle R.J. Mast Cells Condition Dendritic Cells to Mediate Allograft Tolerance. Immunity. 2011;35:550–561. doi: 10.1016/j.immuni.2011.09.012. PubMed DOI PMC

Dudeck J., Ghouse S.M., Lehmann C.H., Hoppe A., Schubert N., Nedospasov S.A., Dudziak D., Dudeck A. Mast-Cell-Derived TNF Amplifies CD8+ Dendritic Cell Functionality and CD8+ T Cell Priming. Cell Rep. 2015;13:399–411. doi: 10.1016/j.celrep.2015.08.078. PubMed DOI

Dudeck A., Suender C.A., Kostka S.L., von Stebut E., Maurer M. Mast Cells Promote Th1 and Th17 Responses by Modulating Dendritic Cell Maturation and Function. Eur. J. Immunol. 2011;41:1883–1893. doi: 10.1002/eji.201040994. PubMed DOI

Wculek S.K., Cueto F.J., Mujal A.M., Melero I., Krummel M.F., Sancho D. Dendritic Cells in Cancer Immunology and Immunotherapy. Nat. Rev. Immunol. 2020;20:7–24. doi: 10.1038/s41577-019-0210-z. PubMed DOI

Huber A., Dammeijer F., Aerts J., Vroman H. Current State of Dendritic Cell-Based Immunotherapy: Opportunities for in vitro Antigen Loading of Different DC Subsets? Front. Immunol. 2018;9:2804. doi: 10.3389/fimmu.2018.02804. PubMed DOI PMC

Calmeiro J., Carrascal M.A., Tavares A.R., Ferreira D.A., Gomes C., Falcao A., Cruz M.T., Neves B.M. Dendritic Cell Vaccines for Cancer Immunotherapy: The Role of Human Conventional Type 1 Dendritic Cells. Pharmaceutics. 2020;12:158. doi: 10.3390/pharmaceutics12020158. PubMed DOI PMC

Gardner A., de Mingo Pulido A., Ruffell B. Dendritic Cells and Their Role in Immunotherapy. Front. Immunol. 2020;11:924. doi: 10.3389/fimmu.2020.00924. PubMed DOI PMC

Calmeiro J., Mendes L., Duarte I.F., Leitao C., Tavares A.R., Ferreira D.A., Gomes C., Serra J., Falcao A., Cruz M.T., et al. In-Depth Analysis of the Impact of Different Serum-Free Media on the Production of Clinical Grade Dendritic Cells for Cancer Immunotherapy. Front. Immunol. 2020;11:593363. doi: 10.3389/fimmu.2020.593363. PubMed DOI PMC

Lovgren T., Sarhan D., Truxova I., Choudhary B., Maas R., Melief J., Nystrom M., Edback U., Vermeij R., Scurti G., et al. Enhanced Stimulation of Human Tumor-specific T Cells by Dendritic Cells Matured in the Presence of Interferon-gamma and Multiple Toll-like Receptor Agonists. Cancer Immunol. Immunother. CII. 2017;66:1333–1344. doi: 10.1007/s00262-017-2029-4. PubMed DOI PMC

Ten Brinke A., Karsten M.L., Dieker M.C., Zwaginga J.J., van Ham S.M. The Clinical Grade Maturation Cocktail Monophosphoryl Lipid A Plus IFNgamma Generates Monocyte-derived Dendritic Cells with the Capacity to Migrate and Induce Th1 Polarization. Vaccine. 2007;25:7145–7152. doi: 10.1016/j.vaccine.2007.07.031. PubMed DOI

Cechim G., Chies J.A.B. In Vitro Generation of Human Monocyte-derived Dendritic Cells Methodological Aspects in a Comprehensive Review. An. Acad. Bras. Cienc. 2019;91 doi: 10.1590/0001-3765201920190310. DOI

Kirshenbaum A.S., Akin C., Wu Y., Rottem M., Goff J.P., Beaven M.A., Rao V.K., Metcalfe D.D. Characterization of Novel Stem Cell Factor Responsive Human Mast Cell Lines LAD 1 and 2 Established from a Patient with Mast Cell Sarcoma/Leukemia; Activation Following Aggregation of FcεRI or FcγRI. Leuk. Res. 2003;27:677–682. doi: 10.1016/S0145-2126(02)00343-0. PubMed DOI

Rouas R., Lewalle P., El Ouriaghli F., Nowak B., Duvillier H., Martiat P. Poly(I:C) Used for Human Dendritic Cell Maturation Preserves Their Ability to Secondarily Secrete Bioactive IL-12. Int. Immunol. 2004;16:767–773. doi: 10.1093/intimm/dxh077. PubMed DOI

Fucikova J., Rozkova D., Ulcova H., Budinsky V., Sochorova K., Pokorna K., Bartunkova J., Spisek R. Poly I: C-activated Dendritic Cells That Were Generated in CellGro for Use in Cancer Immunotherapy Trials. J. Transl. Med. 2011;9:223. doi: 10.1186/1479-5876-9-223. PubMed DOI PMC

Davidson G.A., Varhol R.J. Kinetics of Thapsigargin-Ca2+-ATPase (Sarcoplasmic reticulum) Interaction Reveals a Two-step Binding Mechanism and Picomolar Inhibition. J. Biol. Chem. 1995;270:11731–11734. doi: 10.1074/jbc.270.20.11731. PubMed DOI

Kijima Y., Ogunbunmi E., Fleischer S. Drug Action of Thapsigargin on the Ca2+ Pump Protein of Sarcoplasmic reticulum. J. Biol. Chem. 1991;266:22912–22918. doi: 10.1016/S0021-9258(18)54441-0. PubMed DOI

Lytton J., Westlin M., Hanley M.R. Thapsigargin Inhibits the Sarcoplasmic or Endoplasmic reticulum Ca-ATPase Family of Calcium Pumps. J. Biol. Chem. 1991;266:17067–17071. doi: 10.1016/S0021-9258(19)47340-7. PubMed DOI

Goel G., Makkar H.P., Francis G., Becker K. Phorbol Esters: Structure, Biological Activity, and Toxicity in Animals. Int. J. Toxicol. 2007;26:279–288. doi: 10.1080/10915810701464641. PubMed DOI

Smrz D., Cruse G., Beaven M.A., Kirshenbaum A., Metcalfe D.D., Gilfillan A.M. Rictor Negatively Regulates High-Affinity Receptors for IgE-Induced Mast Cell Degranulation. J. Immunol. 2014;193:5924–5932. doi: 10.4049/jimmunol.1303495. PubMed DOI PMC

Cruse G., Gilfillan A.M., Smrz D. Flow Cytometry-based Monitoring of Mast Cell Activation. Methods Mol. Biol. 2015;1220:365–379. doi: 10.1007/978-1-4939-1568-2_23. PubMed DOI

Cruse G., Beaven M.A., Ashmole I., Bradding P., Gilfillan A.M., Metcalfe D.D. A Truncated Splice-variant of the FcepsilonRIbeta Receptor Subunit is Critical for Microtubule Formation and Degranulation in Mast Cells. Immunity. 2013;38:906–917. doi: 10.1016/j.immuni.2013.04.007. PubMed DOI PMC

Fucikova J., Podrazil M., Jarolim L., Bilkova P., Hensler M., Becht E., Gasova Z., Klouckova J., Kayserova J., Horvath R., et al. Phase I/II Trial of Dendritic Cell-based Active Cellular Immunotherapy with DCVAC/PCa in Patients with Rising PSA after Primary Prostatectomy or Salvage Radiotherapy for the Treatment of Prostate Cancer. Cancer Immunol. Immunother. CII. 2018;67:89–100. doi: 10.1007/s00262-017-2068-x. PubMed DOI PMC

Podrazil M., Horvath R., Becht E., Rozkova D., Bilkova P., Sochorova K., Hromadkova H., Kayserova J., Vavrova K., Lastovicka J., et al. Phase I/II Clinical Trial of Dendritic-cell Based Immunotherapy (DCVAC/PCa) Combined with Chemotherapy in Patients with Metastatic, Castration-resistant Prostate Cancer. Oncotarget. 2015;6:18192–18205. doi: 10.18632/oncotarget.4145. PubMed DOI PMC

Jin P., Han T.H., Ren J., Saunders S., Wang E., Marincola F.M., Stroncek D.F. Molecular Signatures of Maturing Dendritic Cells: Implications for Testing the Quality of Dendritic Cell Therapies. J. Transl. Med. 2010;8:4. doi: 10.1186/1479-5876-8-4. PubMed DOI PMC

Pufnock J.S., Cigal M., Rolczynski L.S., Andersen-Nissen E., Wolfl M., McElrath M.J., Greenberg P.D. Priming CD8+ T Cells with Dendritic Cells Matured Using TLR4 and TLR7/8 Ligands Together Enhances Generation of CD8+ T Cells Retaining CD28. Blood. 2011;117:6542–6551. doi: 10.1182/blood-2010-11-317966. PubMed DOI PMC

Alam M.M., Yang D., Trivett A., Meyer T.J., Oppenheim J.J. HMGN1 and R848 Synergistically Activate Dendritic Cells Using Multiple Signaling Pathways. Front. Immunol. 2018;9:2982. doi: 10.3389/fimmu.2018.02982. PubMed DOI PMC

Nie Y., Yang D., Trivett A., Han Z., Xin H., Chen X., Oppenheim J.J. Development of a Curative Therapeutic Vaccine (TheraVac) for the Treatment of Large Established Tumors. Sci. Rep. 2017;7:14186. doi: 10.1038/s41598-017-14655-8. PubMed DOI PMC

Loudovaris M., Hansen M., Suen Y., Lee S.M., Casing P., Bender J.G. Differential Effects of Autologous Serum on CD34+ or Monocyte-derived Dendritic Cells. J. Hematotherapy Stem Cell Res. 2001;10:569–578. doi: 10.1089/15258160152509172. PubMed DOI

Ratta M., Fagnoni F., Curti A., Vescovini R., Sansoni P., Oliviero B., Fogli M., Ferri E., Della Cuna G.R., Tura S., et al. Dendritic Cells are Functionally Defective in Multiple Myeloma: The Role of Interleukin-6. Blood. 2002;100:230–237. doi: 10.1182/blood.V100.1.230. PubMed DOI

Jung S.H., Lee H.J., Lee Y.K., Yang D.H., Kim H.J., Rhee J.H., Emmrich F., Lee J.J. A Phase I Clinical Study of Autologous Dendritic Cell Therapy in Patients with Relapsed or Refractory Multiple Myeloma. Oncotarget. 2017;8:41538–41548. doi: 10.18632/oncotarget.14582. PubMed DOI PMC

Moon T.C., Befus A.D., Kulka M. Mast Cell Mediators: Their Differential Release and the Secretory Pathways Involved. Front. Immunol. 2014;5:569. doi: 10.3389/fimmu.2014.00569. PubMed DOI PMC

Mukai K., Tsai M., Saito H., Galli S.J. Mast Cells as Sources of Cytokines, Chemokines, and Growth Factors. Immunol. Rev. 2018;282:121–150. doi: 10.1111/imr.12634. PubMed DOI PMC

Lv Y., Zhao Y., Wang X., Chen N., Mao F., Teng Y., Wang T., Peng L., Zhang J., Cheng P., et al. Increased Intratumoral Mast Cells Foster Immune Suppression and Gastric Cancer Progression through TNF-alpha-PD-L1 Pathway. J. Immunother. Cancer. 2019;7:54. doi: 10.1186/s40425-019-0530-3. PubMed DOI PMC

Somasundaram R., Connelly T., Choi R., Choi H., Samarkina A., Li L., Gregorio E., Chen Y., Thakur R., Abdel-Mohsen M., et al. Tumor-infiltrating Mast Cells are Associated with Resistance to Anti-PD-1 Therapy. Nat. Commun. 2021;12:346. doi: 10.1038/s41467-020-20600-7. PubMed DOI PMC

Rajput A.B., Turbin D.A., Cheang M.C., Voduc D.K., Leung S., Gelmon K.A., Gilks C.B., Huntsman D.G. Stromal Mast Cells in Invasive Breast Cancer are a Marker of Favourable Prognosis: A Study of 4,444 Cases. Breast Cancer Res. Treat. 2008;107:249–257. doi: 10.1007/s10549-007-9546-3. PubMed DOI PMC

Fleischmann A., Schlomm T., Köllermann J., Sekulic N., Huland H., Mirlacher M., Sauter G., Simon R., Erbersdobler A. Immunological Microenvironment in Prostate Cancer: High Mast Cell Densities are Associated with Favorable Tumor Characteristics and Good Prognosis. Prostate. 2009;69:976–981. doi: 10.1002/pros.20948. PubMed DOI

Dzopalic T., Rajkovic I., Dragicevic A., Colic M. The Response of Human Dendritic Cells to Co-ligation of Pattern-recognition Receptors. Immunol. Res. 2012;52:20–33. doi: 10.1007/s12026-012-8279-5. PubMed DOI

Williams K.L. Endotoxin Detection and Control in Pharma, Limulus, and Mammalian Systems. Springer; Cham, Switzeland: 2019.

Casella C.R., Mitchell T.C. Putting Endotoxin to Work for Us: Monophosphoryl Lipid A as a Safe and Effective Vaccine Adjuvant. Cell. Mol. Life Sci. CMLS. 2008;65:3231–3240. doi: 10.1007/s00018-008-8228-6. PubMed DOI PMC

Varricchi G., Rossi F.W., Galdiero M.R., Granata F., Criscuolo G., Spadaro G., de Paulis A., Marone G. Physiological Roles of Mast Cells: Collegium Internationale Allergologicum Update 2019. Int. Arch. Allergy Immunol. 2019;179:247–261. doi: 10.1159/000500088. PubMed DOI

Porebski G., Kwiecien K., Pawica M., Kwitniewski M. Mas-Related G Protein-Coupled Receptor-X2 (MRGPRX2) in Drug Hypersensitivity Reactions. Front. Immunol. 2018;9:3027. doi: 10.3389/fimmu.2018.03027. PubMed DOI PMC

Willows S., Kulka M. Harnessing the Power of Mast Cells in unconventional Immunotherapy Strategies and Vaccine Adjuvants. Cells. 2020;9:2713. doi: 10.3390/cells9122713. PubMed DOI PMC

Metz M., Piliponsky A.M., Chen C.C., Lammel V., Abrink M., Pejler G., Tsai M., Galli S.J. Mast Cells Can Enhance Resistance to Snake and Honeybee Venoms. Science. 2006;313:526–530. doi: 10.1126/science.1128877. PubMed DOI

Piconese S., Gri G., Tripodo C., Musio S., Gorzanelli A., Frossi B., Pedotti R., Pucillo C.E., Colombo M.P. Mast Cells Counteract Regulatory T-cell Suppression through Interleukin-6 and OX40/OX40L Axis toward Th17-cell Differentiation. Blood. 2009;114:2639–2648. doi: 10.1182/blood-2009-05-220004. PubMed DOI

Foufelle F., Fromenty B. Role of Endoplasmic Reticulum Stress in Drug-induced Toxicity. Pharmacol. Res. Perspect. 2016;4:e00211. doi: 10.1002/prp2.211. PubMed DOI PMC

Sehgal P., Szalai P., Olesen C., Praetorius H.A., Nissen P., Christensen S.B., Engedal N., Moller J.V. Inhibition of the Sarco/Endoplasmic Reticulum (ER) Ca2+-ATPase by Thapsigargin Analogs Induces Cell Death via ER Ca2+ Depletion and the Unfolded Protein Response. J. Biol. Chem. 2017;292:19656–19673. doi: 10.1074/jbc.M117.796920. PubMed DOI PMC

Katsoulis-Dimitriou K., Kotrba J., Voss M., Dudeck J., Dudeck A. Mast Cell Functions Linking Innate Sensing to Adaptive Immunity. Cells. 2020;9:2538. doi: 10.3390/cells9122538. PubMed DOI PMC

Yamaguchi M., Lantz C.S., Oettgen H.C., Katona I.M., Fleming T., Miyajima I., Kinet J.P., Galli S.J. IgE Enhances Mouse Mast Cell Fc(epsilon)RI Expression in vitro and in vivo: Evidence for a Novel Amplification Mechanism in IgE-dependent Reactions. J. Exp. Med. 1997;185:663–672. doi: 10.1084/jem.185.4.663. PubMed DOI PMC

Yamaguchi M., Sayama K., Yano K., Lantz C.S., Noben-Trauth N., Ra C., Costa J.J., Galli S.J. IgE Enhances Fc Epsilon Receptor I Expression and IgE-dependent Release of Histamine and Lipid Mediators from Human Umbilical Cord Blood-derived Mast Cells: Synergistic Effect of IL-4 and IgE on Human Mast Cell Fc Epsilon Receptor I Expression and Mediator Release. J. Immunol. 1999;162:5455–5465. PubMed

Goulding L.V., Yang J., Jiang Z., Zhang H., Lea D., Emes R.D., Dottorini T., Pu J., Liu J., Chang K.C. Thapsigargin at Non-Cytotoxic Levels Induces a Potent Host Antiviral Response that Blocks Influenza A Virus Replication. Viruses. 2020;12:1093. doi: 10.3390/v12101093. PubMed DOI PMC

Zhao H., Raines L.N., Huang S.C. Molecular Chaperones: Molecular Assembly Line Brings Metabolism and Immunity in Shape. Metabolites. 2020;10:394. doi: 10.3390/metabo10100394. PubMed DOI PMC

Taborska P., Bartunkova J., Smrz D. Simultaneous in vitro Generation of Human CD34+-derived Dendritic Cells and Mast Cells from Non-mobilized Peripheral Blood Mononuclear Cells. J. Immunol. Methods. 2018;458:63–73. doi: 10.1016/j.jim.2018.04.005. PubMed DOI

Tkaczyk C., Beaven M.A., Brachman S.M., Metcalfe D.D., Gilfillan A.M. The Phospholipase Cg1-dependent Pathway of FceRI-mediated Mast Cell Activation is Regulated Independently of Phosphatidylinositol 3-kinase. J. Biol. Chem. 2003;278:48474–48484. doi: 10.1074/jbc.M301350200. PubMed DOI

Taborska P., Stakheev D., Svobodova H., Strizova Z., Bartunkova J., Smrz D. Acute Conditioning of Antigen-Expanded CD8+ T Cells via the GSK3beta-mTORC Axis Differentially Dictates Their Immediate and Distal Responses after Antigen Rechallenge. Cancers. 2020;12:3766. doi: 10.3390/cancers12123766. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace