LL-37 as a Powerful Molecular Tool for Boosting the Performance of Ex Vivo-Produced Human Dendritic Cells for Cancer Immunotherapy

. 2022 Dec 08 ; 14 (12) : . [epub] 20221208

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36559241

Grantová podpora
NU22-03-00300 Ministry of Health, Czech Republic

Odkazy

PubMed 36559241
PubMed Central PMC9780902
DOI 10.3390/pharmaceutics14122747
PII: pharmaceutics14122747
Knihovny.cz E-zdroje

Ex vivo-produced dendritic cells (DCs) constitute the core of active cellular immunotherapy (ACI) for cancer treatment. After many disappointments in clinical trials, the current protocols for their preparation are attempting to boost their therapeutic efficacy by enhancing their functionality towards Th1 response and capability to induce the expansion of cytotoxic tumor-specific CD8+ T cells. LL-37 is an antimicrobial peptide with strong immunomodulatory potential. This potential was previously found to either enhance or suppress the desired anti-tumor DC functionality when used at different phases of their ex vivo production. In this work, we show that LL-37 can be implemented during the whole process of DC production in a way that allows LL-37 to enhance the anti-tumor functionality of produced DCs. We found that the supplementation of LL-37 during the differentiation of monocyte-derived DCs showed only a tendency to enhance their in vitro-induced lymphocyte enrichment with CD8+ T cells. The supplementation of LL-37 also during the process of DC antigen loading (pulsation) and maturation significantly enhanced the cell culture enrichment with CD8+ T cells. Moreover, this enrichment was also associated with the downregulated expression of PD-1 in CD8+ T cells, significantly higher frequency of tumor cell-reactive CD8+ T cells, and superior in vitro cytotoxicity against tumor cells. These data showed that LL-37 implementation into the whole process of the ex vivo production of DCs could significantly boost their anti-tumor performance in ACI.

Zobrazit více v PubMed

Papaioannou N.E., Beniata O.V., Vitsos P., Tsitsilonis O., Samara P. Harnessing the immune system to improve cancer therapy. Ann. Transl. Med. 2016;4:261. doi: 10.21037/atm.2016.04.01. PubMed DOI PMC

Bol K.F., Schreibelt G., Gerritsen W.R., de Vries I.J., Figdor C.G. Dendritic Cell-Based Immunotherapy: State of the Art and Beyond. Clin. Cancer Res. 2016;22:1897–1906. doi: 10.1158/1078-0432.CCR-15-1399. PubMed DOI

Amigorena S. Dendritic Cells on the Way to Glory. J. Immunol. 2018;200:885–886. doi: 10.4049/jimmunol.1701693. PubMed DOI

Thordardottir S., Schaap N., Louer E., Kester M.G., Falkenburg J.H., Jansen J., Radstake T.R., Hobo W., Dolstra H. Hematopoietic stem cell-derived myeloid and plasmacytoid DC-based vaccines are highly potent inducers of tumor-reactive T cell and NK cell responses ex vivo. Oncoimmunology. 2017;6:e1285991. doi: 10.1080/2162402X.2017.1285991. PubMed DOI PMC

Huber A., Dammeijer F., Aerts J., Vroman H. Current State of Dendritic Cell-Based Immunotherapy: Opportunities for in vitro Antigen Loading of Different DC Subsets? Front. Immunol. 2018;9:2804. doi: 10.3389/fimmu.2018.02804. PubMed DOI PMC

Garg A.D., Vara Perez M., Schaaf M., Agostinis P., Zitvogel L., Kroemer G., Galluzzi L. Trial watch: Dendritic cell-based anticancer immunotherapy. Oncoimmunology. 2017;6:e1328341. doi: 10.1080/2162402X.2017.1328341. PubMed DOI PMC

Yang L., Shi P., Zhao G., Xu J., Peng W., Zhang J., Zhang G., Wang X., Dong Z., Chen F., et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther. 2020;5:8. doi: 10.1038/s41392-020-0110-5. PubMed DOI PMC

Fucikova J., Podrazil M., Jarolim L., Bilkova P., Hensler M., Becht E., Gasova Z., Klouckova J., Kayserova J., Horvath R., et al. Phase I/II trial of dendritic cell-based active cellular immunotherapy with DCVAC/PCa in patients with rising PSA after primary prostatectomy or salvage radiotherapy for the treatment of prostate cancer. Cancer Immunol. Immunother. CII. 2018;67:89–100. doi: 10.1007/s00262-017-2068-x. PubMed DOI PMC

Podrazil M., Horvath R., Becht E., Rozkova D., Bilkova P., Sochorova K., Hromadkova H., Kayserova J., Vavrova K., Lastovicka J., et al. Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget. 2015;6:18192–18205. doi: 10.18632/oncotarget.4145. PubMed DOI PMC

Antonarakis E.S., Small E.J., Petrylak D.P., Quinn D.I., Kibel A.S., Chang N.N., Dearstyne E., Harmon M., Campogan D., Haynes H., et al. Antigen-Specific CD8 Lytic Phenotype Induced by Sipuleucel-T in Hormone-Sensitive or Castration-Resistant Prostate Cancer and Association with Overall Survival. Clin. Cancer Res. 2018;24:4662–4671. doi: 10.1158/1078-0432.CCR-18-0638. PubMed DOI PMC

Zhang K., Guo Y., Wang X., Zhao H., Ji Z., Cheng C., Li L., Fang Y., Xu D., Zhu H.H., et al. WNT/beta-Catenin Directs Self-Renewal Symmetric Cell Division of hTERT(high) Prostate Cancer Stem Cells. Cancer Res. 2017;77:2534–2547. doi: 10.1158/0008-5472.CAN-16-1887. PubMed DOI

Khurana N., Sikka S.C. Interplay Between SOX9, Wnt/beta-Catenin and Androgen Receptor Signaling in Castration-Resistant Prostate Cancer. Int. J. Mol. Sci. 2019;20:2066. doi: 10.3390/ijms20092066. PubMed DOI PMC

Zhang Z., Yu W., Zheng M., Liao X., Wang J., Yang D., Lu W., Wang L., Zhang S., Liu H., et al. Pin1 inhibition potently suppresses gastric cancer growth and blocks PI3K/AKT and Wnt/beta-catenin oncogenic pathways. Mol. Carcinog. 2019;58:1450–1464. doi: 10.1002/mc.23027. PubMed DOI PMC

Geduk A., Atesoglu E.B., Tarkun P., Mehtap O., Hacihanefioglu A., Demirsoy E.T., Baydemir C. The Role of beta-Catenin in Bcr/Abl Negative Myeloproliferative Neoplasms: An Immunohistochemical Study. Clin. Lymphoma Myeloma Leuk. 2015;15:785–789. doi: 10.1016/j.clml.2015.08.084. PubMed DOI

Kandler K., Shaykhiev R., Kleemann P., Klescz F., Lohoff M., Vogelmeier C., Bals R. The anti-microbial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands. Int. Immunol. 2006;18:1729–1736. doi: 10.1093/intimm/dxl107. PubMed DOI

Davidson D.J., Currie A.J., Reid G.S., Bowdish D.M., MacDonald K.L., Ma R.C., Hancock R.E., Speert D.P. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol. 2004;172:1146–1156. doi: 10.4049/jimmunol.172.2.1146. PubMed DOI

Findlay E.G., Currie A.J., Zhang A., Ovciarikova J., Young L., Stevens H., McHugh B.J., Canel M., Gray M., Milling S.W.F., et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106. doi: 10.1080/2162402X.2019.1608106. PubMed DOI PMC

Taborska P., Stakheev D., Svobodova H., Strizova Z., Bartunkova J., Smrz D. Acute Conditioning of Antigen-Expanded CD8(+) T Cells via the GSK3beta-mTORC Axis Differentially Dictates Their Immediate and Distal Responses after Antigen Rechallenge. Cancers. 2020;12:3766. doi: 10.3390/cancers12123766. PubMed DOI PMC

Kaighn M.E., Narayan K.S., Ohnuki Y., Lechner J.F., Jones L.W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3) Investig. Urol. 1979;17:16–23. PubMed

Taborska P., Lastovicka J., Stakheev D., Strizova Z., Bartunkova J., Smrz D. SARS-CoV-2 spike glycoprotein-reactive T cells can be readily expanded from COVID-19 vaccinated donors. Immun. Inflamm. Dis. 2021;9:1452–1467. doi: 10.1002/iid3.496. PubMed DOI PMC

Stakheev D., Taborska P., Strizova Z., Podrazil M., Bartunkova J., Smrz D. The WNT/beta-catenin signaling inhibitor XAV939 enhances the elimination of LNCaP and PC-3 prostate cancer cells by prostate cancer patient lymphocytes in vitro. Sci. Rep. 2019;9:4761. doi: 10.1038/s41598-019-41182-5. PubMed DOI PMC

Salah A., Wang H., Li Y., Ji M., Ou W.B., Qi N., Wu Y. Insights Into Dendritic Cells in Cancer Immunotherapy: From Bench to Clinical Applications. Front. Cell Dev. Biol. 2021;9:686544. doi: 10.3389/fcell.2021.686544. PubMed DOI PMC

Lak S., Janelle V., Djedid A., Boudreau G., Brasey A., Lisi V., Smaani A., Carli C., Busque L., Lavallee V.P., et al. Combined PD-L1 and TIM3 blockade improves expansion of fit human CD8(+) antigen-specific T cells for adoptive immunotherapy. Mol. Ther. Methods Clin. Dev. 2022;27:230–245. doi: 10.1016/j.omtm.2022.09.016. PubMed DOI PMC

Tian T., Li Z. Targeting Tim-3 in Cancer With Resistance to PD-1/PD-L1 Blockade. Front. Oncol. 2021;11:731175. doi: 10.3389/fonc.2021.731175. PubMed DOI PMC

Jiang W., Li F., Jiang Y., Li S., Liu X., Xu Y., Li B., Feng X., Zheng C. Tim-3 Blockade Elicits Potent Anti-Multiple Myeloma Immunity of Natural Killer Cells. Front. Oncol. 2022;12:739976. doi: 10.3389/fonc.2022.739976. PubMed DOI PMC

Laureano R.S., Sprooten J., Vanmeerbeerk I., Borras D.M., Govaerts J., Naulaerts S., Berneman Z.N., Beuselinck B., Bol K.F., Borst J., et al. Trial watch: Dendritic cell (DC)-based immunotherapy for cancer. Oncoimmunology. 2022;11:2096363. doi: 10.1080/2162402X.2022.2096363. PubMed DOI PMC

Ho N.I., Huis In ‘t Veld L.G.M., Raaijmakers T.K., Adema G.J. Adjuvants Enhancing Cross-Presentation by Dendritic Cells: The Key to More Effective Vaccines? Front. Immunol. 2018;9:2874. doi: 10.3389/fimmu.2018.02874. PubMed DOI PMC

Perez C.R., De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat. Commun. 2019;10:5408. doi: 10.1038/s41467-019-13368-y. PubMed DOI PMC

Calmeiro J., Mendes L., Duarte I.F., Leitao C., Tavares A.R., Ferreira D.A., Gomes C., Serra J., Falcao A., Cruz M.T., et al. In-Depth Analysis of the Impact of Different Serum-Free Media on the Production of Clinical Grade Dendritic Cells for Cancer Immunotherapy. Front. Immunol. 2020;11:593363. doi: 10.3389/fimmu.2020.593363. PubMed DOI PMC

Marques G.S., Silva Z., Videira P.A. Antitumor Efficacy of Human Monocyte-Derived Dendritic Cells: Comparing Effects of two Monocyte Isolation Methods. Biol. Proced. Online. 2018;20:4. doi: 10.1186/s12575-018-0069-6. PubMed DOI PMC

Hatfield P., Merrick A.E., West E., O’Donnell D., Selby P., Vile R., Melcher A.A. Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy. J. Immunother. 2008;31:620–632. doi: 10.1097/CJI.0b013e31818213df. PubMed DOI PMC

Gu Y.Z., Zhao X., Song X.R. Ex vivo pulsed dendritic cell vaccination against cancer. Acta Pharmacol. Sin. 2020;41:959–969. doi: 10.1038/s41401-020-0415-5. PubMed DOI PMC

Massa C., Thomas C., Wang E., Marincola F., Seliger B. Different maturation cocktails provide dendritic cells with different chemoattractive properties. J. Transl. Med. 2015;13:175. doi: 10.1186/s12967-015-0528-7. PubMed DOI PMC

Castiello L., Sabatino M., Jin P., Clayberger C., Marincola F.M., Krensky A.M., Stroncek D.F. Monocyte-derived DC maturation strategies and related pathways: A transcriptional view. Cancer Immunol. Immunother. CII. 2011;60:457–466. doi: 10.1007/s00262-010-0954-6. PubMed DOI PMC

Dalod M., Chelbi R., Malissen B., Lawrence T. Dendritic cell maturation: Functional specialization through signaling specificity and transcriptional programming. EMBO J. 2014;33:1104–1116. doi: 10.1002/embj.201488027. PubMed DOI PMC

Sandgren S., Wittrup A., Cheng F., Jonsson M., Eklund E., Busch S., Belting M. The human antimicrobial peptide LL-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. J. Biol. Chem. 2004;279:17951–17956. doi: 10.1074/jbc.M311440200. PubMed DOI

Badal D., Dayal D., Singh G., Sachdeva N. Role of DNA-LL37 complexes in the activation of plasmacytoid dendritic cells and monocytes in subjects with type 1 diabetes. Sci. Rep. 2020;10:8896. doi: 10.1038/s41598-020-65851-y. PubMed DOI PMC

Carozza J.A., Bohnert V., Nguyen K.C., Skariah G., Shaw K.E., Brown J.A., Rafat M., von Eyben R., Graves E.E., Glenn J.S., et al. Extracellular cGAMP is a cancer cell-produced immunotransmitter involved in radiation-induced anti-cancer immunity. Nat. Cancer. 2020;1:184–196. doi: 10.1038/s43018-020-0028-4. PubMed DOI PMC

Skopelja-Gardner S., An J., Tai J., Tanaka L., Sun X., Hermanson P., Baum R., Kawasumi M., Green R., Gale M., Jr., et al. The early local and systemic Type I interferon responses to ultraviolet B light exposure are cGAS dependent. Sci. Rep. 2020;10:7908. doi: 10.1038/s41598-020-64865-w. PubMed DOI PMC

Li C., Liu W., Wang F., Hayashi T., Mizuno K., Hattori S., Fujisaki H., Ikejima T. DNA damage-triggered activation of cGAS-STING pathway induces apoptosis in human keratinocyte HaCaT cells. Mol. Immunol. 2021;131:180–190. doi: 10.1016/j.molimm.2020.12.037. PubMed DOI

Wei X., Zhang L., Yang Y., Hou Y., Xu Y., Wang Z., Su H., Han F., Han J., Liu P., et al. LL-37 transports immunoreactive cGAMP to activate STING signaling and enhance interferon-mediated host antiviral immunity. Cell Rep. 2022;39:110880. doi: 10.1016/j.celrep.2022.110880. PubMed DOI

Yang B., Good D., Mosaiab T., Liu W., Ni G., Kaur J., Liu X., Jessop C., Yang L., Fadhil R., et al. Significance of LL-37 on Immunomodulation and Disease Outcome. BioMed Res. Int. 2020;2020:8349712. doi: 10.1155/2020/8349712. PubMed DOI PMC

Bals R., Wang X., Zasloff M., Wilson J.M. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc. Natl. Acad. Sci. USA. 1998;95:9541–9546. doi: 10.1073/pnas.95.16.9541. PubMed DOI PMC

Oliveira-Bravo M., Sangiorgi B.B., Schiavinato J.L., Carvalho J.L., Covas D.T., Panepucci R.A., Neves F.A., Franco O.L., Pereira R.W., Saldanha-Araujo F. LL-37 boosts immunosuppressive function of placenta-derived mesenchymal stromal cells. Stem Cell Res. Ther. 2016;7:189. doi: 10.1186/s13287-016-0448-3. PubMed DOI PMC

Alexandre-Ramos D.S., Silva-Carvalho A.E., Lacerda M.G., Serejo T.R.T., Franco O.L., Pereira R.W., Carvalho J.L., Neves F.A.R., Saldanha-Araujo F. LL-37 treatment on human peripheral blood mononuclear cells modulates immune response and promotes regulatory T-cells generation. Biomed. Pharmacother. 2018;108:1584–1590. doi: 10.1016/j.biopha.2018.10.014. PubMed DOI

Zhang Z., Chen W.Q., Zhang S.Q., Bai J.X., Lau C.L., Sze S.C., Yung K.K., Ko J.K. The human cathelicidin peptide LL-37 inhibits pancreatic cancer growth by suppressing autophagy and reprogramming of the tumor immune microenvironment. Front. Pharmacol. 2022;13:906625. doi: 10.3389/fphar.2022.906625. PubMed DOI PMC

Ito T., Smrž D., Jung M.Y., Bandara G., Desai A., Smržová S., Kuehn H.S., Beaven M.A., Metcalfe D.D., Gilfillan A.M. Stem Cell Factor Programs the Mast Cell Activation Phenotype. J. Immunol. 2012;188:5428–5437. doi: 10.4049/jimmunol.1103366. PubMed DOI PMC

Jung M.Y., Smrž D., Desai A., Bandara G., Ito T., Iwaki S., Kang J.H., Andrade M.V., Hilderbrand S.C., Brown J.M., et al. IL-33 Induces a Hyporesponsive Phenotype in Human and Mouse Mast Cells. J. Immunol. 2013;190:531–538. doi: 10.4049/jimmunol.1201576. PubMed DOI PMC

Desai A., Jung M.Y., Olivera A., Gilfillan A.M., Prussin C., Kirshenbaum A.S., Beaven M.A., Metcalfe D.D. IL-6 promotes an increase in human mast cell numbers and reactivity through suppression of suppressor of cytokine signaling 3. J. Allergy Clin. Immunol. 2016;137:1863–1871.e6. doi: 10.1016/j.jaci.2015.09.059. PubMed DOI PMC

Smrž D., Bandara G., Beaven M.A., Metcalfe D.D., Gilfillan A.M. Prevention of F-actin assembly switches the response to SCF from chemotaxis to degranulation in human mast cells. Eur. J. Immunol. 2013;43:1873–1882. doi: 10.1002/eji.201243214. PubMed DOI PMC

Zheng Y., Niyonsaba F., Ushio H., Nagaoka I., Ikeda S., Okumura K., Ogawa H. Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human alpha-defensins from neutrophils. Br. J. Dermatol. 2007;157:1124–1131. doi: 10.1111/j.1365-2133.2007.08196.x. PubMed DOI

Lande R., Gregorio J., Facchinetti V., Chatterjee B., Wang Y.H., Homey B., Cao W., Wang Y.H., Su B., Nestle F.O., et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449:564–569. doi: 10.1038/nature06116. PubMed DOI

Ganguly D., Chamilos G., Lande R., Gregorio J., Meller S., Facchinetti V., Homey B., Barrat F.J., Zal T., Gilliet M. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J. Exp. Med. 2009;206:1983–1994. doi: 10.1084/jem.20090480. PubMed DOI PMC

Niyonsaba F., Ushio H., Nakano N., Ng W., Sayama K., Hashimoto K., Nagaoka I., Okumura K., Ogawa H. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J. Investig. Dermatol. 2007;127:594–604. doi: 10.1038/sj.jid.5700599. PubMed DOI

Cheng M., Ho S., Yoo J.H., Tran D.H., Bakirtzi K., Su B., Tran D.H., Kubota Y., Ichikawa R., Koon H.W. Cathelicidin suppresses colon cancer development by inhibition of cancer associated fibroblasts. Clin. Exp. Gastroenterol. 2015;8:13–29. doi: 10.2147/CEG.S70906. PubMed DOI PMC

Pinheiro da Silva F., Gallo R.L., Nizet V. Differing effects of exogenous or endogenous cathelicidin on macrophage toll-like receptor signaling. Immunol. Cell Biol. 2009;87:496–500. doi: 10.1038/icb.2009.19. PubMed DOI PMC

Hu Z., Murakami T., Suzuki K., Tamura H., Reich J., Kuwahara-Arai K., Iba T., Nagaoka I. Antimicrobial cathelicidin peptide LL-37 inhibits the pyroptosis of macrophages and improves the survival of polybacterial septic mice. Int. Immunol. 2016;28:245–253. doi: 10.1093/intimm/dxv113. PubMed DOI PMC

Torres-Juarez F., Cardenas-Vargas A., Montoya-Rosales A., Gonzalez-Curiel I., Garcia-Hernandez M.H., Enciso-Moreno J.A., Hancock R.E., Rivas-Santiago B. LL-37 immunomodulatory activity during Mycobacterium tuberculosis infection in macrophages. Infect. Immun. 2015;83:4495–4503. doi: 10.1128/IAI.00936-15. PubMed DOI PMC

Chuang C.M., Monie A., Wu A., Mao C.P., Hung C.F. Treatment with LL-37 peptide enhances antitumor effects induced by CpG oligodeoxynucleotides against ovarian cancer. Hum. Gene Ther. 2009;20:303–313. doi: 10.1089/hum.2008.124. PubMed DOI PMC

Ji P., Zhou Y., Yang Y., Wu J., Zhou H., Quan W., Sun J., Yao Y., Shang A., Gu C., et al. Myeloid cell-derived LL-37 promotes lung cancer growth by activating Wnt/beta-catenin signaling. Theranostics. 2019;9:2209–2223. doi: 10.7150/thno.30726. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...