Cancer‑associated fibroblasts in human malignancies, with a particular emphasis on sarcomas (Review)
Language English Country Greece Media print-electronic
Document type Journal Article, Review
PubMed
40776758
PubMed Central
PMC12370362
DOI
10.3892/ijo.2025.5785
PII: 79
Knihovny.cz E-resources
- Keywords
- cancer‑associated fibroblasts, carcinoma, human malignancies, sarcoma,
- MeSH
- Cancer-Associated Fibroblasts * pathology immunology drug effects metabolism MeSH
- Humans MeSH
- Tumor Microenvironment immunology drug effects MeSH
- Sarcoma * pathology immunology drug therapy MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Over the course of the last 10 years, clinical oncology has seen significant changes. Although there has been much interest in targeting cancer cells with immunotherapy, the initial enthusiasm has waned as clinical trial results have not met the initial expectations, especially for solid tumors. As a result, research efforts are now shifting towards the study of other cells in the tumor microenvironment. Cancer‑associated fibroblasts (CAFs) are one of the main adversarial cell types that help cancer cells to resist oncological treatment. However, although CAFs have been extensively studied in different types of carcinomas, their role in sarcomas remains poorly understood. Despite this topic being of especial importance, to the best of the authors' knowledge, no literature review currently addresses and summarizes the up‑to‑date knowledge on the role of CAFs in sarcomas. The present review article aimed to address this literature gap by summarizing our current understanding of CAFs in carcinomas and integrating this information with what is currently known about CAFs in sarcomas. The review also suggested novel approaches for targeting CAFs, and outlines new avenues for identifying novel therapeutic targets, which may markedly impact future research in this field.
See more in PubMed
Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18:175–196. doi: 10.1038/s41573-018-0006-z. PubMed DOI PMC
Mondal M, Guo J, He P, Zhou D. Recent advances of oncolytic virus in cancer therapy. Hum Vaccin Immunother. 2020;16:2389–2402. doi: 10.1080/21645515.2020.1723363. PubMed DOI PMC
Soerjomataram I, Bray F. Planning for tomorrow: Global cancer incidence and the role of prevention 2020-2070. Nat Rev Clin Oncol. 2021;18:663–672. doi: 10.1038/s41571-021-00514-z. PubMed DOI
Chen X, Song E. Turning foes to friends: Targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18:99–115. doi: 10.1038/s41573-018-0004-1. PubMed DOI
D'Agostino S, Tombolan L, Saggioro M, Frasson C, Rampazzo E, Pellegrini S, Favaretto F, Biz C, Ruggieri P, Gamba P, et al. Rhabdomyosarcoma cells produce their own extracellular matrix with minimal involvement of Cancer-associated fibroblasts: A preliminary study. Front Oncol. 2020;10:600980. doi: 10.3389/fonc.2020.600980. PubMed DOI PMC
Sarkar M, Nguyen T, Gundre E, Ogunlusi O, El-Sobky M, Giri B, Sarkar TR. Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Front Cell Dev Biol. 2023;11:1089068. doi: 10.3389/fcell.2023.1089068. PubMed DOI PMC
Pillozzi S, Bernini A, Palchetti I, Crociani O, Antonuzzo L, Campanacci D, Scoccianti G. Soft tissue sarcoma: An insight on biomarkers at molecular, metabolic and cellular level. Cancers. 2021;13:3044. doi: 10.3390/cancers13123044. PubMed DOI PMC
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20:174–186. doi: 10.1038/s41568-019-0238-1. PubMed DOI PMC
Maia A, Schollhorn A, Schuhmacher J, Gouttefangeas C. CAF-immune cell crosstalk and its impact in immunotherapy. Semin Immunopathol. 2023;45:203–214. doi: 10.1007/s00281-022-00977-x. PubMed DOI PMC
Kennel KB, Bozlar M, De Valk AF, Greten FR. Cancer-associated fibroblasts in inflammation and antitumor immunity. Clin Cancer Res. 2023;29:1009–1016. doi: 10.1158/1078-0432.CCR-22-1031. PubMed DOI PMC
Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, Murimwa G, Wright S, Gu X, Maddipati R, et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 2022;40:656–673.e7. doi: 10.1016/j.ccell.2022.04.011. PubMed DOI PMC
Kakarla S, Chow KK, Mata M, Shaffer DR, Song XT, Wu MF, Liu H, Wang LL, Rowley DR, Pfizenmaier K, Gottschalk S. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther. 2013;21:1611–1620. doi: 10.1038/mt.2013.110. PubMed DOI PMC
Chen B, Chan WN, Xie F, Mui CW, Liu X, Cheung AHK, Lung RWM, Chow C, Zhang Z, Fang C, et al. The molecular classification of cancer-associated fibroblasts on a pan-cancer single-cell transcriptional atlas. Clin Transl Med. 2023;13:e1516. doi: 10.1002/ctm2.1516. PubMed DOI PMC
Ohlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med. 2014;211:1503–1523. doi: 10.1084/jem.20140692. PubMed DOI PMC
Tsoumakidou M. The advent of immune stimulating CAFs in cancer. Nat Rev Cancer. 2023;23:258–269. doi: 10.1038/s41568-023-00549-7. PubMed DOI
Choi KJ, Nam JK, Kim JH, Choi SH, Lee YJ. Endothelial-to-mesenchymal transition in anticancer therapy and normal tissue damage. Exp Mol Med. 2020;52:781–792. doi: 10.1038/s12276-020-0439-4. PubMed DOI PMC
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–196. doi: 10.1038/nrm3758. PubMed DOI PMC
Taguchi A, Kawana K, Tomio K, Yamashita A, Isobe Y, Nagasaka K, Koga K, Inoue T, Nishida H, Kojima S, et al. Matrix metalloproteinase (MMP)-9 in cancer-associated fibroblasts (CAFs) is suppressed by omega-3 polyunsaturated fatty acids in vitro and in vivo. PLoS One. 2014;9:e89605. doi: 10.1371/journal.pone.0089605. PubMed DOI PMC
Cavazzoni A, Digiacomo G. Role of cytokines and other soluble factors in tumor development: Rationale for new therapeutic strategies. Cells. 2023;12:2532. doi: 10.3390/cells12212532. PubMed DOI PMC
O'Connell JT, Sugimoto H, Cooke VG, MacDonald BA, Mehta AI, LeBleu VS, Dewar R, Rocha RM, Brentani RR, Resnick MB, et al. VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Natl Acad Sci USA. 2011;108:16002–16007. doi: 10.1073/pnas.1109493108. PubMed DOI PMC
Liu T, Han C, Wang S, Fang P, Ma Z, Xu L, Yin R. Cancer-associated fibroblasts: An emerging target of Anti-cancer immunotherapy. J Hematol Oncol. 2019;12:86. doi: 10.1186/s13045-019-0770-1. PubMed DOI PMC
Robertson-Tessi M, Gillies RJ, Gatenby RA, Anderson AR. Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes. Cancer Res. 2015;75:1567–1579. doi: 10.1158/0008-5472.CAN-14-1428. PubMed DOI PMC
Wu D, Zhuo L, Wang X. Metabolic reprogramming of carcinoma-associated fibroblasts and its impact on metabolic heterogeneity of tumors. Semin Cell Dev Biol. 2017;64:125–131. doi: 10.1016/j.semcdb.2016.11.003. PubMed DOI
Martinez-Outschoorn UE, Lisanti MP, Sotgia F. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol. 2014;25:47–60. doi: 10.1016/j.semcancer.2014.01.005. PubMed DOI
Tavares-Valente D, Baltazar F, Moreira R, Queiros O. Cancer cell bioenergetics and pH regulation influence breast cancer cell resistance to paclitaxel and doxorubicin. J Bioenerg Biomembr. 2013;45:467–475. doi: 10.1007/s10863-013-9519-7. PubMed DOI
Guo Z, Zhang H, Fu Y, Kuang J, Zhao B, Zhang L, Lin J, Lin S, Wu D, Xie G. Cancer-associated fibroblasts induce growth and radioresistance of breast cancer cells through paracrine IL-6. Cell Death Discov. 2023;9:6. doi: 10.1038/s41420-023-01306-3. PubMed DOI PMC
Yoshida GJ. Regulation of heterogeneous cancer-associated fibroblasts: The molecular pathology of activated signaling pathways. J Exp Clin Cancer Res. 2020;39:112. doi: 10.1186/s13046-020-01611-0. PubMed DOI PMC
Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, Preall J, Tuveson D. IL1-Induced JAK/STAT signaling is antagonized by TGFβ to Shape CAF heterogeneity in pancreatic ductal adenocarcinomacinoma. Cancer Discov. 2019;9:282–301. doi: 10.1158/2159-8290.CD-18-0710. PubMed DOI PMC
Rimal R, Desai P, Daware R, Hosseinnejad A, Prakash J, Lammers T, Singh S. Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting. Adv Drug Deliv Rev. 2022;189:114504. doi: 10.1016/j.addr.2022.114504. PubMed DOI
Strizova Z, Bartunkova J, Smrz D. The challenges of adoptive cell transfer in the treatment of human renal cell carcinoma. Cancer Immunol Immunother. 2019;68:1831–1838. doi: 10.1007/s00262-019-02359-z. PubMed DOI PMC
Chen Y, Yang S, Tavormina J, Tampe D, Zeisberg M, Wang H, Mahadevan KK, Wu CJ, Sugimoto H, Chang CC, et al. Oncogenic collagen I homotrimers from cancer cells bind to α3β1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer. Cancer Cell. 2022;40:818–834.e9. doi: 10.1016/j.ccell.2022.06.011. PubMed DOI PMC
Taborska P, Lukac P, Stakheev D, Rajsiglova L, Kalkusova K, Strnadova K, Lacina L, Dvorankova B, Novotny J, Kolar M, et al. Novel PD-L1- and collagen-expressing patient-derived cell line of undifferentiated pleomorphic sarcoma (JBT19) as a model for cancer immunotherapy. Sci Rep. 2023;13:19079. doi: 10.1038/s41598-023-46305-7. PubMed DOI PMC
Sun X, Wu B, Chiang HC, Deng H, Zhang X, Xiong W, Liu J, Rozeboom AM, Harris BT, Blommaert E, et al. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion. Nature. 2021;599:673–678. doi: 10.1038/s41586-021-04057-2. PubMed DOI PMC
Meyaard L. The inhibitory collagen receptor LAIR-1 (CD305) J Leukoc Biol. 2008;83:799–803. doi: 10.1189/jlb.0907609. PubMed DOI
Horn LA, Chariou PL, Gameiro SR, Qin H, Iida M, Fousek K, Meyer TJ, Cam M, Flies D, Langermann S, et al. Remodeling the tumor microenvironment via blockade of LAIR-1 and TGF-β signaling enables PD-L1-mediated tumor eradication. J Clin Invest. 2022;132:e155148. doi: 10.1172/JCI155148. PubMed DOI PMC
Cheng Y, Li H, Deng Y, Tai Y, Zeng K, Zhang Y, Liu W, Zhang Q, Yang Y. Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis. 2018;9:422. doi: 10.1038/s41419-018-0458-4. PubMed DOI PMC
Cao H, Cheng HS, Wang JK, Tan NS, Tay CY. A 3D physio-mimetic interpenetrating network-based platform to decode the pro and anti-tumorigenic properties of cancer-associated fibroblasts. Acta Biomater. 2021;132:448–460. doi: 10.1016/j.actbio.2021.03.037. PubMed DOI
Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, Laklai H, Sugimoto H, Kahlert C, Novitskiy SV, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25:719–734. doi: 10.1016/j.ccr.2014.04.005. PubMed DOI PMC
Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, Dekleva EN, Saunders T, Becerra CP, Tattersall IW, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25:735–747. doi: 10.1016/j.ccr.2014.04.021. PubMed DOI PMC
Alkasalias T, Flaberg E, Kashuba V, Alexeyenko A, Pavlova T, Savchenko A, Szekely L, Klein G, Guven H. Inhibition of tumor cell proliferation and motility by fibroblasts is both contact and soluble factor dependent. Proc Natl Acad Sci USA. 2014;111:17188–17193. doi: 10.1073/pnas.1419554111. PubMed DOI PMC
Gorchs L, Ahmed S, Mayer C, Knauf A, Fernández Moro C, Svensson M, Heuchel R, Rangelova E, Bergman P, Kaipe H. The vitamin D analogue calcipotriol promotes an anti-tumorigenic phenotype of human pancreatic CAFs but reduces T cell mediated immunity. Sci Rep. 2020;10:17444. doi: 10.1038/s41598-020-74368-3. PubMed DOI PMC
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X, Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer. 2021;20:131. doi: 10.1186/s12943-021-01428-1. PubMed DOI PMC
Bartoschek M, Oskolkov N, Bocci M, Lövrot J, Larsson C, Sommarin M, Madsen CD, Lindgren D, Pekar G, Karlsson G, et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun. 2018;9:5150. doi: 10.1038/s41467-018-07582-3. PubMed DOI PMC
Newman L. Oncologic anthropology: Global variations in breast cancer risk, biology, and outcome. J Surg Oncol. 2023;128:959–966. doi: 10.1002/jso.27459. PubMed DOI
Ma J, Chan JJ, Toh CH, Yap YS. Emerging systemic therapy options beyond CDK4/6 inhibitors for hormone receptor-positive HER2-negative advanced breast cancer. NPJ Breast Cancer. 2023;9:74. doi: 10.1038/s41523-023-00578-3. PubMed DOI PMC
Pandey K, Katuwal NB, Park N, Hur J, Cho YB, Kim SK, Lee SA, Kim I, Lee SR, Moon YW. Combination of abemaciclib following eribulin overcomes Palbociclib-resistant breast cancer by inhibiting the G2/M cell cycle phase. Cancers (Basel) 2022;14:210. doi: 10.3390/cancers14010210. PubMed DOI PMC
Piwocka O, Musielak M, Piotrowski I, Kulcenty K, Adamczyk B, Fundowicz M, Suchorska WM, Malicki J. Primary cancer-associated fibroblasts exhibit high heterogeneity among breast cancer subtypes. Rep Pract Oncol Radiother. 2023;28:159–171. doi: 10.5603/RPOR.a2023.0026. PubMed DOI PMC
Kieffer Y, Hocine HR, Gentric G, Pelon F, Bernard C, Bourachot B, Lameiras S, Albergante L, Bonneau C, Guyard A, et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 2020;10:1330–1351. doi: 10.1158/2159-8290.CD-19-1384. PubMed DOI
Yamashita M, Ogawa T, Zhang X, Hanamura N, Kashikura Y, Takamura M, Yoneda M, Shiraishi T. Role of stromal myofibroblasts in invasive breast cancer: Stromal expression of alpha-smooth muscle actin correlates with worse clinical outcome. Breast Cancer. 2012;19:170–176. doi: 10.1007/s12282-010-0234-5. PubMed DOI
Pelon F, Bourachot B, Kieffer Y, Magagna I, Mermet-Meillon F, Bonnet I, Costa A, Givel AM, Attieh Y, Barbazan J, et al. Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nat Commun. 2020;11:404. doi: 10.1038/s41467-019-14134-w. PubMed DOI PMC
Ershaid N, Sharon Y, Doron H, Raz Y, Shani O, Cohen N, Monteran L, Leider-Trejo L, Ben-Shmuel A, Yassin M, et al. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat Commun. 2019;10:4375. doi: 10.1038/s41467-019-12370-8. PubMed DOI PMC
Yang SS, Ma S, Dou H, Liu F, Zhang SY, Jiang C, Xiao M, Huang YX. Breast cancer-derived exosomes regulate cell invasion and metastasis in breast cancer via miR-146a to activate cancer associated fibroblasts in tumor microenvironment. Exp Cell Res. 2020;391:111983. doi: 10.1016/j.yexcr.2020.111983. PubMed DOI
Ren J, Smid M, Iaria J, Salvatori DCF, van Dam H, Zhu HJ, Martens JWM, Ten Dijke P. Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression. Breast Cancer Res. 2019;21:109. doi: 10.1186/s13058-019-1194-0. PubMed DOI PMC
Wu HJ, Hao M, Yeo SK, Guan JL. FAK signaling in cancer-associated fibroblasts promotes breast cancer cell migration and metastasis by exosomal miRNAs-mediated intercellular communication. Oncogene. 2020;39:2539–2549. doi: 10.1038/s41388-020-1162-2. PubMed DOI PMC
Chatterjee A, Jana S, Chatterjee S, Wastall LM, Mandal G, Nargis N, Roy H, Hughes TA, Bhattacharyya A. MicroRNA-222 reprogrammed cancer-associated fibroblasts enhance growth and metastasis of breast cancer. Br J Cancer. 2019;121:679–689. doi: 10.1038/s41416-019-0566-7. PubMed DOI PMC
Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet. 2020;395:2008–2020. doi: 10.1016/S0140-6736(20)30974-0. PubMed DOI
Sohal DPS, Kennedy EB, Cinar P, Conroy T, Copur MS, Crane CH, Garrido-Laguna I, Lau MW, Johnson T, Krishnamurthi S, et al. Metastatic pancreatic cancer: ASCO guideline update. J Clin Oncol. 2020;38:3217–3230. doi: 10.1200/JCO.20.01364. PubMed DOI
Bekkali NLH, Oppong KW. Pancreatic ductal adenocarcinoma epidemiology and risk assessment: Could we prevent? Possibility for an early diagnosis. Endosc Ultrasound. 2017;6(Suppl 3):S58–S61. doi: 10.4103/eus.eus_60_17. PubMed DOI PMC
Hosein AN, Brekken RA, Maitra A. Pancreatic cancer stroma: An update on therapeutic targeting strategies. Nat Rev Gastroenterol Hepatol. 2020;17:487–505. doi: 10.1038/s41575-020-0300-1. PubMed DOI PMC
Manoukian P, Bijlsma M, van Laarhoven H. The cellular origins of Cancer-associated fibroblasts and their opposing contributions to pancreatic cancer growth. Front Cell Dev Biol. 2021;9:743907. doi: 10.3389/fcell.2021.743907. PubMed DOI PMC
Geng X, Chen H, Zhao L, Hu J, Yang W, Li G, Cheng C, Zhao Z, Zhang T, Li L, Sun B. Cancer-associated fibroblast (CAF) heterogeneity and targeting therapy of CAFs in pancreatic cancer. Front Cell Dev Biol. 2021;9:655152. doi: 10.3389/fcell.2021.655152. PubMed DOI PMC
Ohlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 2017;214:579–596. doi: 10.1084/jem.20162024. PubMed DOI PMC
Kim HW, Lee JC, Paik KH, Kang J, Kim J, Hwang JH. Serum interleukin-6 is associated with pancreatic ductal adenocarcinoma progression pattern. Medicine (Baltimore) 2017;96:e5926. doi: 10.1097/MD.0000000000005926. PubMed DOI PMC
Goulet CR, Champagne A, Bernard G, Vandal D, Chabaud S, Pouliot F, Bolduc S. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling. BMC Cancer. 2019;19:137. doi: 10.1186/s12885-019-5353-6. PubMed DOI PMC
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol. 2022;237:2770–2795. doi: 10.1002/jcp.30759. PubMed DOI
Rebelo R, Xavier CPR, Giovannetti E, Vasconcelos MH. Fibroblasts in pancreatic cancer: Molecular and clinical perspectives. Trends Mol Med. 2023;29:439–453. doi: 10.1016/j.molmed.2023.03.002. PubMed DOI
Richards KE, Zeleniak AE, Fishel ML, Wu J, Littlepage LE, Hill R. Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene. 2017;36:1770–1778. doi: 10.1038/onc.2016.353. PubMed DOI PMC
Aronsson L, Bengtsson A, Toren W, Andersson R, Ansari D. Intraductal papillary mucinous carcinoma versus pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. Int J Surg. 2019;71:91–99. doi: 10.1016/j.ijsu.2019.09.014. PubMed DOI
Aronsson L, Andersson R, Ansari D. Intraductal papillary mucinous neoplasm of the pancreas-epidemiology, risk factors, diagnosis, and management. Scand J Gastroenterol. 2017;52:803–815. doi: 10.1080/00365521.2017.1318948. PubMed DOI
Bernard V, Semaan A, Huang J, San Lucas FA, Mulu FC, Stephens BM, Guerrero PA, Huang Y, Zhao J, Kamyabi N, et al. Single-cell transcriptomics of pancreatic cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an early event in neoplastic progression. Clin Cancer Res. 2019;25:2194–2205. doi: 10.1158/1078-0432.CCR-18-1955. PubMed DOI PMC
Storandt MH, Zemla TM, Patell K, Naleid N, Gile JJ, Tran NH, Chakrabarti S, Jin Z, Borad M, Mahipal A. Atezolizumab plus bevacizumab as first-line systemic therapy for hepatocellular carcinoma: A multi-institutional cohort study. Oncologist. 2024;29:986–996. doi: 10.1093/oncolo/oyae142. PubMed DOI PMC
Selene II, Ozen M, Patel RA. Hepatocellular carcinoma: Advances in systemic therapy. Semin Intervent Radiol. 2024;41:56–62. doi: 10.1055/s-0044-1779713. PubMed DOI PMC
Singal AG, Llovet JM, Yarchoan M, Mehta N, Heimbach JK, Dawson LA, Jou JH, Kulik LM, Agopian VG, Marrero JA, et al. AASLD practice guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology. 2023;78:1922–1965. doi: 10.1097/HEP.0000000000000466. PubMed DOI PMC
Loh JJ, Li TW, Zhou L, Wong TL, Liu X, Ma VWS, Lo CM, Man K, Lee TK, Ning W, et al. FSTL1 secreted by activated fibroblasts promotes hepatocellular carcinoma metastasis and stemness. Cancer Res. 2021;81:5692–5705. doi: 10.1158/0008-5472.CAN-20-4226. PubMed DOI
Liu J, Chen S, Wang W, Ning BF, Chen F, Shen W, Ding J, Chen W, Xie WF, Zhang X, et al. Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways. Cancer Lett. 2016;379:49–59. doi: 10.1016/j.canlet.2016.05.022. PubMed DOI
Jia CC, Wang TT, Liu W, Fu BS, Hua X, Wang GY, Li TJ, Li X, Wu XY, Tai Y, et al. Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS One. 2013;8:e63243. doi: 10.1371/journal.pone.0063243. PubMed DOI PMC
Xiong S, Wang R, Chen Q, Luo J, Wang J, Zhao Z, Li Y, Wang Y, Wang X, Cheng B. Cancer-associated fibroblasts promote stem cell-like properties of hepatocellular carcinoma cells through IL-6/STAT3/Notch signaling. Am J Cancer Res. 2018;8:302–316. PubMed PMC
Li Y, Wang R, Xiong S, Wang X, Zhao Z, Bai S, Wang Y, Zhao Y, Cheng B. Cancer-associated fibroblasts promote the stemness of CD24+ liver cells via paracrine signaling. J Mol Med (Berl) 2019;97:243–255. doi: 10.1007/s00109-018-1731-9. PubMed DOI
Zhu GQ, Tang Z, Huang R, Qu WF, Fang Y, Yang R, Tao CY, Gao J, Wu XL, Sun HX, et al. CD36+ cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor. Cell Discov. 2023;9:25. doi: 10.1038/s41421-023-00529-z. PubMed DOI PMC
Eun JW, Yoon JH, Ahn HR, Kim S, Kim YB, Lim SB, Park W, Kang TW, Baek GO, Yoon MG, et al. Cancer-associated fibroblast-derived secreted phosphoprotein 1 contributes to resistance of hepatocellular carcinoma to sorafenib and lenvatinib. Cancer Commun (Lond) 2023;43:455–479. doi: 10.1002/cac2.12414. PubMed DOI PMC
Xia S, Pan Y, Liang Y, Xu J, Cai X. The microenvironmental and metabolic aspects of sorafenib resistance in hepatocellular carcinoma. EBioMedicine. 2020;51:102610. doi: 10.1016/j.ebiom.2019.102610. PubMed DOI PMC
Yu L, Liu Q, Huo J, Wei F, Guo W. Cancer-associated fibroblasts induce immunotherapy resistance in hepatocellular carcinoma animal model. Cell Mol Biol (Noisy-le-Grand) 2020;66:36–40. doi: 10.14715/cmb/2020.66.2.5. PubMed DOI
Lotfollahzadeh S, Recio-Boiles A, Cagir B. Colon cancer. StatPearls. 2024 Treasure Island (FL) with ineligible companies. Disclosure: Alejandro Recio-Boiles declares no relevant financial relationships with ineligible companies. Disclosure: Burt Cagir declares no relevant financial relationships with ineligible companies.
Constantinou V, Constantinou C. Focusing on colorectal cancer in young adults (Review) Mol Clin Oncol. 2024;20:8. doi: 10.3892/mco.2023.2706. PubMed DOI PMC
Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA Cancer J Clin. 2023;73:233–254. PubMed
Zeineddine FA, Zeineddine MA, Yousef A, Gu Y, Chowdhury S, Dasari A, Huey RW, Johnson B, Kee B, Lee MS, et al. Survival improvement for patients with metastatic colorectal cancer over twenty years. NPJ Precis Oncol. 2023;7:16. doi: 10.1038/s41698-023-00353-4. PubMed DOI PMC
Morris VK, Kennedy EB, Baxter NN, Benson AB, III, Cercek A, Cho M, Ciombor KK, Cremolini C, Davis A, Deming DA, et al. Treatment of metastatic colorectal cancer: ASCO Guideline. J Clin Oncol. 2023;41:678–700. doi: 10.1200/JCO.22.01690. PubMed DOI PMC
Deng L, Jiang N, Zeng J, Wang Y, Cui H. The versatile roles of Cancer-associated fibroblasts in colorectal cancer and therapeutic implications. Front Cell Dev Biol. 2021;9:733270. doi: 10.3389/fcell.2021.733270. PubMed DOI PMC
Wikberg ML, Edin S, Lundberg IV, Van Guelpen B, Dahlin AM, Rutegård J, Stenling R, Oberg A, Palmqvist R. High intratumoral expression of fibroblast activation protein (FAP) in colon cancer is associated with poorer patient prognosis. Tumour Biol. 2013;34:1013–1020. doi: 10.1007/s13277-012-0638-2. PubMed DOI PMC
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 2019;18:91. doi: 10.1186/s12943-019-1019-x. PubMed DOI PMC
Aizawa T, Karasawa H, Funayama R, Shirota M, Suzuki T, Maeda S, Suzuki H, Yamamura A, Naitoh T, Nakayama K, Unno M. Cancer-associated fibroblasts secrete Wnt2 to promote cancer progression in colorectal cancer. Cancer Med. 2019;8:6370–6382. doi: 10.1002/cam4.2523. PubMed DOI PMC
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74:12–49. PubMed
Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou N, Mok T, Petrella F, Spaggiari L, Rosell R. Non-small-cell lung cancer. Nat Rev Dis Primers. 2015;1:15009. doi: 10.1038/nrdp.2015.9. PubMed DOI
Herbst RS, Morgensztern D, Boshoff C. The biology and management of Non-small cell lung cancer. Nature. 2018;553:446–454. doi: 10.1038/nature25183. PubMed DOI
Kim SH, Choe C, Shin YS, Jeon MJ, Choi SJ, Lee J, Bae GY, Cha HJ, Kim J. Human lung cancer-associated fibroblasts enhance motility of Non-small cell lung cancer cells in co-culture. Anticancer Res. 2013;33:2001–2009. PubMed
An J, Enomoto A, Weng L, Kato T, Iwakoshi A, Ushida K, Maeda K, Ishida-Takagishi M, Ishii G, Ming S, et al. Significance of cancer-associated fibroblasts in the regulation of gene expression in the leading cells of invasive lung cancer. J Cancer Res Clin Oncol. 2013;139:379–388. doi: 10.1007/s00432-012-1328-6. PubMed DOI PMC
Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA, Ling TY, Yu SL, Yuan SS, Chen YJ, Lin CY, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014;5:3472. doi: 10.1038/ncomms4472. PubMed DOI
Wang L, Cao L, Wang H, Liu B, Zhang Q, Meng Z, Wu X, Zhou Q, Xu K. Cancer-associated fibroblasts enhance metastatic potential of lung cancer cells through IL-6/STAT3 signaling pathway. Oncotarget. 2017;8:76116–76128. doi: 10.18632/oncotarget.18814. PubMed DOI PMC
Vicent S, Sayles LC, Vaka D, Khatri P, Gevaert O, Chen R, Zheng Y, Gillespie AK, Clarke N, Xu Y, et al. Cross-species functional analysis of cancer-associated fibroblasts identifies a critical role for CLCF1 and IL-6 in non-small cell lung cancer in vivo. Cancer Res. 2012;72:5744–5756. doi: 10.1158/0008-5472.CAN-12-1097. PubMed DOI PMC
Yang F, Yan Y, Yang Y, Hong X, Wang M, Yang Z, Liu B, Ye L. MiR-210 in exosomes derived from CAFs promotes non-small cell lung cancer migration and invasion through PTEN/PI3K/AKT pathway. Cell Signal. 2020;73:109675. doi: 10.1016/j.cellsig.2020.109675. PubMed DOI
Xiang H, Ramil CP, Hai J, Zhang C, Wang H, Watkins AA, Afshar R, Georgiev P, Sze MA, Song XS, et al. Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma. Cancer Immunol Res. 2020;8:436–450. doi: 10.1158/2326-6066.CIR-19-0507. PubMed DOI
Kanwal B, Biswas S, Seminara RS, Jeet C. Immunotherapy in advanced Non-small cell lung cancer patients: Ushering chemotherapy through the checkpoint inhibitors? Cureus. 2018;10:e3254. PubMed PMC
Herzog BH, Baer JM, Borcherding N, Kingston NL, Belle JI, Knolhoff BL, Hogg GD, Ahmad F, Kang LI, Petrone J, et al. Tumor-associated fibrosis impairs immune surveillance and response to immune checkpoint blockade in non-small cell lung cancer. Sci Transl Med. 2023;15:eadh8005. doi: 10.1126/scitranslmed.adh8005. PubMed DOI
Jenkins L, Jungwirth U, Avgustinova A, Iravani M, Mills A, Haider S, Harper J, Isacke CM. Cancer-associated fibroblasts suppress CD8+ T-cell infiltration and confer resistance to Immune-checkpoint blockade. Cancer Res. 2022;82:2904–2917. doi: 10.1158/0008-5472.CAN-21-4141. PubMed DOI PMC
Tauriello DVF. Targeting CAFs to improve Anti-PD-1 checkpoint immunotherapy. Cancer Res. 2023;83:655–656. doi: 10.1158/0008-5472.CAN-22-3677. PubMed DOI
Shintani Y, Kimura T, Funaki S, Ose N, Kanou T, Fukui E. Therapeutic targeting of Cancer-associated fibroblasts in the Non-small cell lung cancer tumor microenvironment. Cancers (Basel) 2023;15:335. doi: 10.3390/cancers15020335. PubMed DOI PMC
Li M, Wu B, Li L, Lv C, Tian Y. Reprogramming of cancer-associated fibroblasts combined with immune checkpoint inhibitors: A potential therapeutic strategy for cancers. Biochimica et biophysica acta. Rev Cancer. 2023;1878:188945. doi: 10.1016/j.bbcan.2023.188945. PubMed DOI
Rawla P. Epidemiology of prostate cancer. World J Oncol. 2019;10:63–89. doi: 10.14740/wjon1191. PubMed DOI PMC
Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol. 2020;77:38–52. doi: 10.1016/j.eururo.2019.08.005. PubMed DOI
Hammerer P, Manka L. Androgen deprivation therapy for advanced prostate cancer. In: Merseburger AS, Burger M, editors. Urologic Oncology. Springer International Publishing; Cham: 2019. pp. 255–276. DOI
Figueiredo A, Costa L, Mauricio MJ, Figueira L, Ramos R, Martins-da-Silva C. Nonmetastatic castration-resistant prostate cancer: Current challenges and trends. Clin Drug Investig. 2022;42:631–642. doi: 10.1007/s40261-022-01178-y. PubMed DOI PMC
Bubendorf L, Schopfer A, Wagner U, Sauter G, Moch H, Willi N, Gasser TC, Mihatsch MJ. Metastatic patterns of prostate cancer: An autopsy study of 1,589 patients. Hum Pathol. 2000;31:578–583. doi: 10.1053/hp.2000.6698. PubMed DOI
Begley LA, Kasina S, MacDonald J, Macoska JA. The inflammatory microenvironment of the aging prostate facilitates cellular proliferation and hypertrophy. Cytokine. 2008;43:194–199. doi: 10.1016/j.cyto.2008.05.012. PubMed DOI PMC
Levesque C, Nelson PS. Cellular constituents of the prostate stroma: Key contributors to prostate cancer progression and therapy resistance. Cold Spring Harb Perspect Med. 2018;8:a030510. doi: 10.1101/cshperspect.a030510. PubMed DOI PMC
ChallaSivaKanaka S, Vickman RE, Kakarla M, Hayward SW, Franco OE. Fibroblast heterogeneity in prostate carcinogenesis. Cancer Lett. 2022;525:76–83. doi: 10.1016/j.canlet.2021.10.028. PubMed DOI PMC
Franco OE, Hayward SW. Targeting the tumor stroma as a novel therapeutic approach for prostate cancer. Adv Pharmacol. 2012;65:267–313. doi: 10.1016/B978-0-12-397927-8.00009-9. PubMed DOI
Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, Berry JE, McGee S, Lee E, Sun H, et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun. 2013;4:1795. doi: 10.1038/ncomms2766. PubMed DOI PMC
Bavik C, Coleman I, Dean JP, Knudsen B, Plymate S, Nelson PS. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res. 2006;66:794–802. doi: 10.1158/0008-5472.CAN-05-1716. PubMed DOI
Bedeschi M, Marino N, Cavassi E, Piccinini F, Tesei A. Cancer-associated fibroblast: Role in prostate cancer progression to metastatic disease and therapeutic resistance. Cells. 2023;12:802. doi: 10.3390/cells12050802. PubMed DOI PMC
Bonollo F, Thalmann GN, Kruithof-de Julio M, Karkampouna S. The role of Cancer-Associated fibroblasts in prostate cancer tumorigenesis. Cancers (Basel) 2020;12:1887. doi: 10.3390/cancers12071887. PubMed DOI PMC
Lavie D, Ben-Shmuel A, Erez N, Scherz-Shouval R. Cancer-associated fibroblasts in the single-cell era. Nat Cancer. 2022;3:793–807. doi: 10.1038/s43018-022-00411-z. PubMed DOI PMC
Nguyen EV, Pereira BA, Lawrence MG, Ma X, Rebello RJ, Chan H, Niranjan B, Wu Y, Ellem S, Guan X, et al. Proteomic profiling of human prostate Cancer-associated fibroblasts (CAF) reveals LOXL2-dependent regulation of the tumor microenvironment. Mol Cell Proteomics. 2019;18:1410–1427. doi: 10.1074/mcp.RA119.001496. PubMed DOI PMC
Wadosky KM, Koochekpour S. Molecular mechanisms underlying resistance to androgen deprivation therapy in prostate cancer. Oncotarget. 2016;7:64447–64470. doi: 10.18632/oncotarget.10901. PubMed DOI PMC
Boudadi K, Antonarakis ES. Resistance to novel antiandrogen therapies in metastatic Castration-resistant prostate cancer. Clin Med Insights Oncol. 2016;10(Suppl 1):S1–S9. PubMed PMC
Chandrasekar T, Yang JC, Gao AC, Evans CP. Mechanisms of resistance in castration-resistant prostate cancer (CRPC) Transl Androl Urol. 2015;4:365–380. PubMed PMC
Leach DA, Buchanan G. Stromal androgen receptor in prostate cancer development and progression. Cancers (Basel) 2017;9:10. doi: 10.3390/cancers9010010. PubMed DOI PMC
Cioni B, Nevedomskaya E, Melis MHM, van Burgsteden J, Stelloo S, Hodel E, Spinozzi D, de Jong J, van der Poel H, de Boer JP, et al. Loss of androgen receptor signaling in prostate cancer-associated fibroblasts (CAFs) promotes CCL2- and CXCL8-mediated cancer cell migration. Mol Oncol. 2018;12:1308–1323. doi: 10.1002/1878-0261.12327. PubMed DOI PMC
Eder T, Weber A, Neuwirt H, Grünbacher G, Ploner C, Klocker H, Sampson N, Eder IE. Cancer-associated fibroblasts modify the response of prostate cancer cells to androgen and Anti-androgens in Three-dimensional spheroid culture. Int J Mol Sci. 2016;17:1458. doi: 10.3390/ijms17091458. PubMed DOI PMC
Cheteh EH, Augsten M, Rundqvist H, Bianchi J, Sarne V, Egevad L, Bykov VJ, Östman A, Wiman KG. Human cancer-associated fibroblasts enhance glutathione levels and antagonize drug-induced prostate cancer cell death. Cell Death Dis. 2017;8:e2848. doi: 10.1038/cddis.2017.225. PubMed DOI PMC
Baumhoer D, Hench J, Amary F. Recent advances in molecular profiling of bone and soft tissue tumors. Skeletal Radiol. 2024;53:1925–1936. doi: 10.1007/s00256-024-04584-9. PubMed DOI PMC
Anderson WJ, Doyle LA. Updates from the 2020 World health organization classification of soft tissue and bone tumours. Histopathology. 2021;78:644–657. doi: 10.1111/his.14265. PubMed DOI
Ehnman M, Chaabane W, Haglund F, Tsagkozis P. The tumor microenvironment of pediatric sarcoma: Mesenchymal mechanisms regulating cell migration and metastasis. Curr Oncol Rep. 2019;21:90. doi: 10.1007/s11912-019-0839-6. PubMed DOI PMC
Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL, Driskell RR, Rosenthal N, Biernaskie J, Fibroblasts Horsley V. Origins, definitions, and functions in health and disease. Cell. 2021;184:3852–3872. doi: 10.1016/j.cell.2021.06.024. PubMed DOI PMC
Resag A, Toffanin G, Benesova I, Müller L, Potkrajcic V, Ozaniak A, Lischke R, Bartunkova J, Rosato A, Jöhrens K, et al. The immune contexture of liposarcoma and its clinical implications. Cancers. 2022;14:4578. doi: 10.3390/cancers14194578. PubMed DOI PMC
Jones JEC, Rabhi N, Orofino J, Gamini R, Perissi V, Vernochet C, Farmer SR. The adipocyte acquires a fibroblast-like transcriptional signature in response to a high fat diet. Sci Rep. 2020;10:2380. doi: 10.1038/s41598-020-59284-w. PubMed DOI PMC
Lendahl U, Muhl L, Betsholtz C. Identification, discrimination and heterogeneity of fibroblasts. Nat Commun. 2022;13:3409. doi: 10.1038/s41467-022-30633-9. PubMed DOI PMC
Bochet L, Lehuede C, Dauvillier S, Wang YY, Dirat B, Laurent V, Dray C, Guiet R, Maridonneau-Parini I, Le Gonidec S, et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 2013;73:5657–5668. doi: 10.1158/0008-5472.CAN-13-0530. PubMed DOI
Bouche C, Quail DF. Fueling the tumor microenvironment with cancer-associated adipocytes. Cancer Res. 2023;83:1170–1172. doi: 10.1158/0008-5472.CAN-23-0505. PubMed DOI
Harati K, Daigeler A, Hirsch T, Jacobsen F, Behr B, Wallner C, Lehnhardt M, Becerikli M. Tumor-associated fibroblasts promote the proliferation and decrease the doxorubicin sensitivity of liposarcoma cells. Int J Mol Med. 2016;37:1535–1541. doi: 10.3892/ijmm.2016.2556. PubMed DOI PMC
Xu C, Yan L, Guan X, Wang Z, Wu J, Lv A, Liu D, Liu F, Dong B, Zhao M, et al. Tsp2 facilitates tumor-associated fibroblasts formation and promotes tumor progression in retroperitoneal liposarcoma. Int J Biol Sci. 2022;18:5038–5055. doi: 10.7150/ijbs.70083. PubMed DOI PMC
Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582–598. doi: 10.1038/nrc.2016.73. PubMed DOI
Skapek SX, Ferrari A, Gupta AA, Lupo PJ, Butler E, Shipley J, Barr FG, Hawkins DS. Rhabdomyosarcoma. Nat Rev Dis Primers. 2019;5:1. doi: 10.1038/s41572-018-0051-2. PubMed DOI PMC
Hettmer S, Wagers AJ. Muscling in: Uncovering the origins of rhabdomyosarcoma. Nat Med. 2010;16:171–173. doi: 10.1038/nm0210-171. PubMed DOI
Chapman MA, Meza R, Lieber RL. Skeletal muscle fibroblasts in health and disease. Differentiation. 2016;92:108–115. doi: 10.1016/j.diff.2016.05.007. PubMed DOI PMC
Tarnowski M, Grymula K, Liu R, Tarnowska J, Drukala J, Ratajczak J, Mitchell RA, Ratajczak MZ, Kucia M. Macrophage migration inhibitory factor is secreted by rhabdomyosarcoma cells, modulates tumor metastasis by binding to CXCR4 and CXCR7 receptors and inhibits recruitment of cancer-associated fibroblasts. Mol Cancer Res. 2010;8:1328–1343. doi: 10.1158/1541-7786.MCR-10-0288. PubMed DOI PMC
Wysoczynski M, Shin DM, Kucia M, Ratajczak MZ. Selective upregulation of interleukin-8 by human rhabdomyosarcomas in response to hypoxia: Therapeutic implications. Int J Cancer. 2010;126:371–381. doi: 10.1002/ijc.24732. PubMed DOI PMC
Awaji M, Saxena S, Wu L, Prajapati DR, Purohit A, Varney ML, Kumar S, Rachagani S, Ly QP, Jain M, et al. CXCR2 signaling promotes secretory cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. FASEB J. 2020;34:9405–9418. doi: 10.1096/fj.201902990R. PubMed DOI PMC
Dhayni K, Zibara K, Issa H, Kamel S, Bennis Y. Targeting CXCR1 and CXCR2 receptors in cardiovascular diseases. Pharmacol Ther. 2022;237:108257. doi: 10.1016/j.pharmthera.2022.108257. PubMed DOI
Ghayad SE, Rammal G, Ghamloush F, Basma H, Nasr R, Diab-Assaf M, Chelala C, Saab R. Exosomes derived from embryonal and alveolar rhabdomyosarcoma carry differential miRNA cargo and promote invasion of recipient fibroblasts. Sci Rep. 2016;6:37088. doi: 10.1038/srep37088. PubMed DOI PMC
Fahs A, Hussein N, Zalzali H, Ramadan F, Ghamloush F, Tamim H, El Homsi M, Badran B, Boulos F, Tawil A, et al. CD147 promotes tumorigenesis via Exosome-mediated signaling in rhabdomyosarcoma. Cells. 2022;11:2267. doi: 10.3390/cells11152267. PubMed DOI PMC
Burns J, Wilding CP, Krasny L, Zhu X, Chadha M, Tam YB, Ps H, Mahalingam AH, Lee ATJ, Arthur A, et al. The proteomic landscape of soft tissue sarcomas. Nature Commun. 2023;14:3834. doi: 10.1038/s41467-023-39486-2. PubMed DOI PMC
Stork T, Hegedus B, Guder W, Hamacher R, Hardes J, Kaths M, Plönes T, Pöttgen C, Schildhaus HU, Streitbürger A, et al. Prognostic factors for leiomyosarcoma with isolated metastases to the lungs: Impact of metastasectomy. Ann Surg Oncol. 2022;29:4429–4436. doi: 10.1245/s10434-022-11806-8. PubMed DOI PMC
Tseng WW, Swallow CJ, Strauss DC, Bonvalot S, Rutkowski P, Ford SJ, Gonzalez RJ, Gladdy RA, Gyorki DE, Fairweather M, et al. Management of locally recurrent retroperitoneal sarcoma in the Adult: An updated consensus approach from the transatlantic australasian retroperitoneal sarcoma working group. Ann Surg Oncol. 2022;29:7335–7348. doi: 10.1245/s10434-022-11864-y. PubMed DOI
Tran V, Slavin J. Immunohistochemistry in bone and soft tissue tumours. In: Choong PFM, editor. Sarcoma: A Practical Guide to Multidisciplinary Management. Springer Singapore; Singapore: 2021. pp. 119–134. DOI
Porrello G, Cannella R, Randazzo A, Badalamenti G, Brancatelli G, Vernuccio F. CT and MR imaging of retroperitoneal sarcomas: A practical guide for the radiologist. Cancers (Basel) 2023;15:2985. doi: 10.3390/cancers15112985. PubMed DOI PMC
Kerrison WGJ, Thway K, Jones RL, Huang PH. The biology and treatment of leiomyosarcomas. Crit Rev Oncol Hematol. 2023;184:103955. doi: 10.1016/j.critrevonc.2023.103955. PubMed DOI
Tai Y, Woods EL, Dally J, Kong D, Steadman R, Moseley R, Midgley AC. Myofibroblasts: Function, formation, and scope of molecular therapies for skin fibrosis. Biomolecules. 2021;11:1095. doi: 10.3390/biom11081095. PubMed DOI PMC
Nagao Y, Yokoi A, Yoshida K, Kitagawa M, Asano-Inami E, Kato T, Ishikawa M, Yamamoto Y, Kajiyama H. Uterine leiomyosarcoma cell-derived extracellular vesicles induce the formation of cancer-associated fibroblasts. Biochim Biophys Acta Mol Basis Dis. 2024;1870:167103. doi: 10.1016/j.bbadis.2024.167103. PubMed DOI
Canter RJ, Beal S, Borys D, Martinez SR, Bold RJ, Robbins AS. Interaction of histologic subtype and histologic grade in predicting survival for soft-tissue sarcomas. J Am Coll Surg. 2010;210:191–198.e2. doi: 10.1016/j.jamcollsurg.2009.10.007. PubMed DOI
Sun H, Liu J, Hu F, Xu M, Leng A, Jiang F, Chen K. Current research and management of undifferentiated pleomorphic sarcoma/myofibrosarcoma. Front Genet. 2023;14:1109491. doi: 10.3389/fgene.2023.1109491. PubMed DOI PMC
Ozzello L, Stout AP, Murray MR. Cultural characteristics of malignant histiocytomas and fibrous xanthomas. Cancer. 1963;16:331–344. doi: 10.1002/1097-0142(196303)16:3<331::AID-CNCR2820160307>3.0.CO;2-F. PubMed DOI
O'Brien JE, Stout AP. Malignant fibrous xanthomas. Cancer. 1964;17:1445–1455. doi: 10.1002/1097-0142(196411)17:11<1445::AID-CNCR2820171112>3.0.CO;2-G. PubMed DOI
Iwasaki H, Isayama T, Johzaki H, Kikuchi M. Malignant fibrous histiocytoma. Evidence of perivascular mesenchymal cell origin immunocytochemical studies with monoclonal anti-MFH antibodies. Am J Pathol. 1987;128:528–537. PubMed PMC
Erlandson RA, Antonescu CR. The rise and fall of malignant fibrous histiocytoma. Ultrastruct Pathol. 2004;28:283–289. doi: 10.1080/019131290882150. PubMed DOI
Widemann BC, Italiano A. Biology and management of undifferentiated pleomorphic sarcoma, myxofibrosarcoma, and malignant peripheral nerve sheath tumors: State of the art and perspectives. J Clin Oncol. 2018;36:160–167. doi: 10.1200/JCO.2017.75.3467. PubMed DOI PMC
Osanai T, Yamakawa M, Suda A, Watanabe Y. Metamorphosed fibroblasts and their relation to the histogenesis of malignant fibrous histiocytoma in experimental murine model. Histol Histopathol. 2000;15:697–705. PubMed
Taxy JB, Battifora H. Malignant fibrous histiocytoma. An electron microscopic study. Cancer. 1977;40:254–267. doi: 10.1002/1097-0142(197707)40:1<254::AID-CNCR2820400138>3.0.CO;2-W. PubMed DOI
Wood GS, Beckstead JH, Turner RR, Hendrickson MR, Kempson RL, Warnke RA. Malignant fibrous histiocytoma tumor cells resemble fibroblasts. Am J Surg Pathol. 1986;10:323–335. doi: 10.1097/00000478-198605000-00004. PubMed DOI
Chang Y, Cho B, Kim S, Kim J. Direct conversion of fibroblasts to osteoblasts as a novel strategy for bone regeneration in elderly individuals. Exp Mol Med. 2019;51:1–8. PubMed PMC
Neumann E, Lefevre S, Zimmermann B, Gay S, Muller-Ladner U. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol Med. 2010;16:458–468. doi: 10.1016/j.molmed.2010.07.004. PubMed DOI
Setty BA, Gikandi A, DuBois SG. Ewing sarcoma drug therapy: Current standard of care and emerging agents. Paediatr Drugs. 2023;25:389–397. doi: 10.1007/s40272-023-00568-9. PubMed DOI
Riggi N, Suva ML, Stamenkovic I. Ewing's Sarcoma. N Engl J Med. 2021;384:154–164. doi: 10.1056/NEJMra2028910. PubMed DOI
Volchenboum SL, Andrade J, Huang L, Barkauskas DA, Krailo M, Womer RB, Ranft A, Potratz J, Dirksen U, Triche TJ, Lawlor ER. Gene expression profiling of ewing sarcoma tumors reveals the prognostic importance of Tumor-stromal interactions: A report from the Children's oncology group. J Pathol Clin Res. 2015;1:83–94. doi: 10.1002/cjp2.9. PubMed DOI PMC
Wrenn ED, Apfelbaum AA, Rudzinski ER, Deng X, Jiang W, Sud S, Van Noord RA, Newman EA, Garcia NM, Miyaki A, et al. Cancer-associated Fibroblast-like tumor cells remodel the ewing sarcoma tumor microenvironment. Clin Cancer Res. 2023;29:5140–5154. doi: 10.1158/1078-0432.CCR-23-1111. PubMed DOI PMC
Li S, Zhang H, Liu J, Shang G. Targeted therapy for osteosarcoma: A review. J Cancer Res Clin Oncol. 2023;149:6785–6797. doi: 10.1007/s00432-023-04614-4. PubMed DOI PMC
Panez-Toro I, Munoz-Garcia J, Vargas-Franco JW, Renodon-Cornière A, Heymann MF, Lézot F, Heymann D. Advances in osteosarcoma. Curr Osteoporos Rep. 2023;21:330–343. doi: 10.1007/s11914-023-00803-9. PubMed DOI PMC
Misaghi A, Goldin A, Awad M, Kulidjian AA. Osteosarcoma: A comprehensive review. SICOT J. 2018;4:12. doi: 10.1051/sicotj/2017028. PubMed DOI PMC
Hu J, Lazar AJ, Ingram D, Wang WL, Zhang W, Jia Z, Ragoonanan D, Wang J, Xia X, Mahadeo K, et al. Cell membrane-anchored and tumor-targeted IL-12 T-cell therapy destroys cancer-associated fibroblasts and disrupts extracellular matrix in heterogenous osteosarcoma xenograft models. J Immunother Cancer. 2024;12:e006991. doi: 10.1136/jitc-2023-006991. PubMed DOI PMC
Wang JW, Wu XF, Gu XJ, Jiang XH. Exosomal miR-1228 from Cancer-associated fibroblasts promotes cell migration and invasion of osteosarcoma by directly targeting SCAI. Oncol Res. 2019;27:979–986. doi: 10.3727/096504018X15336368805108. PubMed DOI PMC
Mazumdar A, Urdinez J, Boro A, Migliavacca J, Arlt MJE, Muff R, Fuchs B, Snedeker JG, Gvozdenovic A. Osteosarcoma-derived extracellular vesicles induce lung fibroblast reprogramming. Int J Mol Sci. 2020;21:5451. doi: 10.3390/ijms21155451. PubMed DOI PMC
Zhang Y, Liu Z, Yang X, Lu W, Chen Y, Lin Y, Wang J, Lin S, Yun JP. H3K27 acetylation activated-COL6A1 promotes osteosarcoma lung metastasis by repressing STAT1 and activating pulmonary cancer-associated fibroblasts. Theranostics. 2021;11:1473–1492. doi: 10.7150/thno.51245. PubMed DOI PMC
David MS, Kelly E, Zoellner H. Opposite cytokine synthesis by fibroblasts in contact co-culture with osteosarcoma cells compared with transwell co-cultures. Cytokine. 2013;62:48–51. doi: 10.1016/j.cyto.2013.02.028. PubMed DOI
Xu Y, Chen P, Liu D, Xu Q, Meng H, Wang X. Exploration of s new biomarker in osteosarcoma and association with clinical outcomes: TOP2A+ cancer associated fibroblasts. J Gene Med. 2023;25:e3528. doi: 10.1002/jgm.3528. PubMed DOI
Liu Y, Han X, Han Y, Bi J, Wu Y, Xiang D, Zhang Y, Bi W, Xu M, Li J. Integrated transcriptomic analysis systematically reveals the heterogeneity and molecular characterization of cancer-associated fibroblasts in osteosarcoma. Gene. 2024;907:148286. doi: 10.1016/j.gene.2024.148286. PubMed DOI
LeBleu VS, Neilson EG. Origin and functional heterogeneity of fibroblasts. FASEB. 2020;34:3519–3536. doi: 10.1096/fj.201903188R. PubMed DOI
Pittenger MF, Discher DE, Peault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen Med. 2019;4:22. doi: 10.1038/s41536-019-0083-6. PubMed DOI PMC
Sannino G, Marchetto A, Kirchner T, Grunewald TGP. Epithelial-to-mesenchymal and mesenchymal-to-epithelial transition in mesenchymal tumors: A paradox in sarcomas? Cancer Res. 2017;77:4556–4561. doi: 10.1158/0008-5472.CAN-17-0032. PubMed DOI
Mehta A, Stanger BZ. Lineage Plasticity: The new cancer hallmark on the block. Cancer Res. 2024;84:184–191. doi: 10.1158/0008-5472.CAN-23-1067. PubMed DOI PMC
Strating E, Verhagen MP, Wensink E, Dünnebach E, Wijler L, Aranguren I, De la Cruz AS, Peters NA, Hageman JH, van der Net MMC, et al. Co-cultures of colon cancer cells and cancer-associated fibroblasts recapitulate the aggressive features of mesenchymal-like colon cancer. Front Immunol. 2023;14:1053920. doi: 10.3389/fimmu.2023.1053920. PubMed DOI PMC
Jeong SY, Lee JH, Shin Y, Chung S, Kuh HJ. Co-culture of tumor spheroids and fibroblasts in a collagen Matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLoS One. 2016;11:e0159013. doi: 10.1371/journal.pone.0159013. PubMed DOI PMC
Abercrombie M, Heaysman JE, Karthauser HM. Social behaviour of cells in tissue culture. III. Mutual influence of sarcoma cells and fibroblasts. Exp Cell Res. 1957;13:276–291. doi: 10.1016/0014-4827(57)90007-1. PubMed DOI
Abercrombie M, Heaysman JE. Invasive behavior between sarcoma and fibroblast populations in cell culture. J Natl Cancer Inst. 1976;56:561–570. doi: 10.1093/jnci/56.3.561. PubMed DOI
Johnson GS, Friedman RM, Pastan I. Restoration of several morphological characteristics of normal fibroblasts in sarcoma cells treated with adenosine-3': 5'-cyclic monophosphate and its derivatives. Proc Natl Acad Sci USA. 1971;68:425–429. doi: 10.1073/pnas.68.2.425. PubMed DOI PMC
Dahlberg WK, Little JB, Fletcher JA, Suit HD, Okunieff P. Radiosensitivity in vitro of human soft tissue sarcoma cell lines and skin fibroblasts derived from the same patients. Int J Radiat Biol. 1993;63:191–198. doi: 10.1080/09553009314550251. PubMed DOI
Fisher C. Low-grade sarcomas with CD34-positive fibroblasts and Low-grade myofibroblastic sarcomas. Ultrastruct Pathol. 2004;28:291–305. doi: 10.1080/019131290882187. PubMed DOI
Broz MT, Ko EY, Ishaya K, Xiao J, De Simone M, Hoi XP, Piras R, Gala B, Tessaro FHG, Karlstaedt A, et al. Metabolic targeting of cancer associated fibroblasts overcomes T-cell exclusion and chemoresistance in Soft-tissue sarcomas. Nat Commun. 2024;15:2498. doi: 10.1038/s41467-024-46504-4. PubMed DOI PMC
Liu Y, Sinjab A, Min J, Han G, Paradiso F, Zhang Y, Wang R, Pei G, Dai Y, Liu Y, et al. Conserved spatial subtypes and cellular neighborhoods of cancer-associated fibroblasts revealed by single-cell spatial multi-omics. Cancer Cell. 2025;43:905–924.e6. doi: 10.1016/j.ccell.2025.03.004. PubMed DOI PMC
Kazakova AN, Lukina MM, Anufrieva KS, Bekbaeva IV, Ivanova OM, Shnaider PV, Slonov A, Arapidi GP, Shender VO. Exploring the diversity of cancer-associated fibroblasts: Insights into mechanisms of drug resistance. Front Cell Dev Biol. 2024;12:1403122. doi: 10.3389/fcell.2024.1403122. PubMed DOI PMC
Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 2021;18:792–804. doi: 10.1038/s41571-021-00546-5. PubMed DOI PMC
Wang LC, Lo A, Scholler J, Sun J, Majumdar RS, Kapoor V, Antzis M, Cotner CE, Johnson LA, Durham AC, et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol Res. 2014;2:154–166. doi: 10.1158/2326-6066.CIR-13-0027. PubMed DOI PMC
Liu Y, Sun Y, Wang P, Li S, Dong Y, Zhou M, Shi B, Jiang H, Sun R, Li Z. FAP-targeted CAR-T suppresses MDSCs recruitment to improve the antitumor efficacy of claudin18.2-targeted CAR-T against pancreatic cancer. J Transl Med. 2023;21:255. doi: 10.1186/s12967-023-04080-z. PubMed DOI PMC
Gao Y, Li X, Zeng C, Liu C, Hao Q, Li W, Zhang K, Zhang W, Wang S, Zhao H, et al. CD63+ Cancer-associated fibroblasts confer tamoxifen resistance to breast cancer cells through exosomal miR-22. Adv Sci (Weinh) 2020;7:2002518. doi: 10.1002/advs.202002518. PubMed DOI PMC
Zhou P, Du X, Jia W, Feng K, Zhang Y. Engineered extracellular vesicles for targeted reprogramming of cancer-associated fibroblasts to potentiate therapy of pancreatic cancer. Signal Transduct Target Ther. 2024;9:151. doi: 10.1038/s41392-024-01872-7. PubMed DOI PMC
Peng D, Fu M, Wang M, Wei Y, Wei X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer. 2022;21:104. doi: 10.1186/s12943-022-01569-x. PubMed DOI PMC
Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, Horn A, Kireva T, Beyer C, Zwerina J, et al. Activation of canonical Wnt signalling is required for TGF-beta-mediated fibrosis. Nat Commun. 2012;3:735. doi: 10.1038/ncomms1734. PubMed DOI PMC
Xu L, Cui WH, Zhou WC, Li DL, Li LC, Zhao P, Mo XT, Zhang Z, Gao J. Activation of Wnt/β-catenin signalling is required for TGF-β/Smad2/3 signalling during myofibroblast proliferation. J Cell Mol Med. 2017;21:1545–1554. doi: 10.1111/jcmm.13085. PubMed DOI PMC
Giguelay A, Turtoi E, Khelaf L, Tosato G, Dadi I, Chastel T, Poul MA, Pratlong M, Nicolescu S, Severac D, et al. The landscape of cancer-associated fibroblasts in colorectal cancer liver metastases. Theranostics. 2022;12:7624–7639. doi: 10.7150/thno.72853. PubMed DOI PMC
Li H, Liu W, Zhang X, Wang Y. Cancer-associated fibroblast-secreted collagen triple helix repeat containing-1 promotes breast cancer cell migration, invasiveness and epithelial-mesenchymal transition by activating the Wnt/β-catenin pathway. Oncol Lett. 2021;22:814. PubMed PMC
Avgustinova A, Iravani M, Robertson D, Fearns A, Gao Q, Klingbeil P, Hanby AM, Speirs V, Sahai E, Calvo F, Isacke CM. Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat Commun. 2016;7:10305. doi: 10.1038/ncomms10305. PubMed DOI PMC
Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, True L, Nelson PS. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med. 2012;18:1359–1368. doi: 10.1038/nm.2890. PubMed DOI PMC
Kramer N, Schmollerl J, Unger C, Nivarthi H, Rudisch A, Unterleuthner D, Scherzer M, Riedl A, Artaker M, Crncec I, et al. Autocrine WNT2 signaling in fibroblasts promotes colorectal cancer progression. Oncogene. 2017;36:5460–5472. doi: 10.1038/onc.2017.144. PubMed DOI
Zhang C, Fei Y, Wang H, Hu S, Liu C, Hu R, Du Q. CAFs orchestrates tumor immune microenvironment-A new target in cancer therapy? Front Pharmacol. 2023;14:1113378. doi: 10.3389/fphar.2023.1113378. PubMed DOI PMC
Huang TX, Tan XY, Huang HS, Li YT, Liu BL, Liu KS, Chen X, Chen Z, Guan XY, Zou C, Fu L. Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity. Gut. 2022;71:333–344. doi: 10.1136/gutjnl-2020-322924. PubMed DOI PMC
Moynihan KD, Kumar MP, Sultan H, Pappas DC, Park T, Chin SM, Bessette P, Lan RY, Nguyen HC, Mathewson ND, et al. IL-2 targeted to CD8+ T cells promotes robust effector T cell responses and potent antitumor immunity. Cancer Discov. 2024;14:1206–1225. doi: 10.1158/2159-8290.CD-23-1266. PubMed DOI PMC
Siebert N, Leopold J, Zumpe M, Troschke-Meurer S, Biskupski S, Zikoridse A, Lode HN. The immunocytokine FAP-IL-2v enhances anti-neuroblastoma efficacy of the anti-GD2 antibody dinutuximab beta. Cancers. 2022;14:4842. doi: 10.3390/cancers14194842. PubMed DOI PMC
Rivas EI, Linares J, Zwick M, Gómez-Llonin A, Guiu M, Labernadie A, Badia-Ramentol J, Lladó A, Bardia L, Pérez-Núñez I, et al. Targeted immunotherapy against distinct cancer-associated fibroblasts overcomes treatment resistance in refractory HER2+ breast tumors. Nat Commun. 2022;13:5310. doi: 10.1038/s41467-022-32782-3. PubMed DOI PMC
Karthik R, Deshpande NU, Iago de Castro S, Anna B, Ifeanyichukwu O, Haleh A, Andrews A, Vanessa G, Siddharth M, Samara S, et al. Abstract C021: Granulocytic MDSC-derived NLRP3 inflammasome activation is a novel regulator of inflammatory CAF skewness in pancreatic cancer. In: Proceedings of the AACR Special Conference in Cancer Research: Pancreatic Cancer; 2023 Sep 27-30; Boston, Massachusetts. Philadelphia (PA), AACR. Cancer Res. 2024;84(Suppl 2) Abstract nr C021.
Shao X, Zhao X, Wang B, Fan J, Wang J, An H. Tumor microenvironment targeted nano-drug delivery systems for multidrug resistant tumor therapy. Theranostics. 2025;15:1689–1714. doi: 10.7150/thno.103636. PubMed DOI PMC
Crane JN, Graham DS, Mona CE, Nelson SD, Samiei A, Dawson DW, Dry SM, Masri MG, Crompton JG, Benz MR, et al. Fibroblast activation protein expression in sarcomas. Sarcoma. 2023;2023:2480493. doi: 10.1155/2023/2480493. PubMed DOI PMC
Miettinen M. Immunohistochemistry of soft tissue tumours-review with emphasis on 10 markers. Histopathology. 2014;64:101–118. doi: 10.1111/his.12298. PubMed DOI PMC
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, et al. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: New opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer. 2023;22:159. doi: 10.1186/s12943-023-01860-5. PubMed DOI PMC
Brahmi M, Lesluyes T, Dufresne A, Toulmonde M, Italiano A, Mir O, Le Cesne A, Valentin T, Chevreau C, Bonvalot S, et al. Expression and prognostic significance of PDGF ligands and receptors across soft tissue sarcomas. ESMO Open. 2021;6:100037. doi: 10.1016/j.esmoop.2020.100037. PubMed DOI PMC
Robin YM, Penel N, Perot G, Neuville A, Vélasco V, Ranchère-Vince D, Terrier P, Coindre JM. Transgelin is a novel marker of smooth muscle differentiation that improves diagnostic accuracy of leiomyosarcomas: A comparative immunohistochemical reappraisal of myogenic markers in 900 soft tissue tumors. Mod Pathol. 2013;26:502–510. doi: 10.1038/modpathol.2012.192. PubMed DOI
Dagher R, Cohen M, Williams G, Rothmann M, Gobburu J, Robbie G, Rahman A, Chen G, Staten A, Griebel D, Pazdur R. Approval summary: Imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin Cancer Res. 2002;8:3034–3038. PubMed
Tap WD, Jones RL, Van Tine BA, Chmielowski B, Elias AD, Adkins D, Agulnik M, Cooney MM, Livingston MB, Pennock G, et al. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: An open-label phase 1b and randomised phase 2 trial. Lancet. 2016;388:488–497. doi: 10.1016/S0140-6736(16)30587-6. PubMed DOI PMC
Tap WD, Wagner AJ, Schoffski P, Martin-Broto J, Krarup-Hansen A, Ganjoo KN, Yen CC, Abdul Razak AR, Spira A, Kawai A, et al. Effect of doxorubicin plus olaratumab vs doxorubicin plus placebo on survival in patients with advanced soft tissue sarcomas: The ANNOUNCE randomized clinical trial. JAMA. 2020;323:1266–1276. doi: 10.1001/jama.2020.1707. PubMed DOI PMC
Martin-Broto J, Hindi N, Grignani G, Martinez-Trufero J, Redondo A, Valverde C, Stacchiotti S, Lopez-Pousa A, D'Ambrosio L, Gutierrez A, et al. Nivolumab and sunitinib combination in advanced soft tissue sarcomas: A multicenter, Single-arm, phase Ib/II trial. J Immunother Cancer. 2020;8:e001561. doi: 10.1136/jitc-2020-001561. PubMed DOI PMC
Shahvali S, Rahiman N, Jaafari MR, Arabi L. Targeting fibroblast activation protein (FAP): Advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy. Drug Deliv Transl Res. 2023;13:2041–2056. doi: 10.1007/s13346-023-01308-9. PubMed DOI
Xiao W, Wang J, Wen X, Xu B, Que Y, Yu K, Xu L, Zhao J, Pan Q, Zhou P, Zhang X. Chimeric antigen receptor-modified T-cell therapy for platelet-derived growth factor receptor α-positive rhabdomyosarcoma. Cancer. 2020;126(Suppl 9):S2093–S2100. doi: 10.1002/cncr.32764. PubMed DOI
Vogt KC, Silberman PC, Lin Q, Han JE, Laflin A, Gellineau HA, Heller DA, Scheinberg DA. Microenvironment actuated CAR T cells improve solid tumor efficacy without toxicity. Sci Adv. 2025;11:eads3403. doi: 10.1126/sciadv.ads3403. PubMed DOI PMC
Dharani S, Cho H, Fernandez JP, Juillerat A, Valton J, Duchateau P, Poirot L, Das S. TALEN-edited allogeneic inducible dual CAR T cells enable effective targeting of solid tumors while mitigating off-tumor toxicity. Mol Ther. 2024;32:3915–3931. doi: 10.1016/j.ymthe.2024.08.018. PubMed DOI PMC
Liu H, Yang W, Jiang J. Targeting tumor metabolism to augment CD8+ T cell anti-tumor immunity. J Pharm Anal. 2025;15:101150. doi: 10.1016/j.jpha.2024.101150. PubMed DOI PMC
Ben-Ami E, Perret R, Huang Y, Courgeon F, Gokhale PC, Laroche-Clary A, Eschle BK, Velasco V, Le Loarer F, Algeo MP, et al. LRRC15 targeting in Soft-tissue sarcomas: Biological and clinical implications. Cancers (Basel) 2020;12:57. doi: 10.3390/cancers12030757. PubMed DOI PMC
Slemmons KK, Mukherjee S, Meltzer P, Purcell JW, Helman LJ. LRRC15 antibody-drug conjugates show promise as osteosarcoma therapeutics in preclinical studies. Pediatr Blood Cancer. 2021;68:e28771. doi: 10.1002/pbc.28771. PubMed DOI PMC
Brennen WN, Isaacs JT, Denmeade SR. Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol Cancer Ther. 2012;11:257–266. doi: 10.1158/1535-7163.MCT-11-0340. PubMed DOI PMC
Giammarile F, Knoll P, Paez D, Estrada Lobato E, Calapaqui Teran AK, Delgado Bolton RC. Fibroblast activation protein inhibitor (FAPI) PET imaging in sarcomas: A new frontier in nuclear medicine. Semin Nucl Med. 2024;54:340–344. doi: 10.1053/j.semnuclmed.2024.01.001. PubMed DOI
Greifenstein L, Gunkel A, Hoehne A, Osterkamp F, Smerling C, Landvogt C, Mueller C, Baum RP. 3BP-3940, a highly potent FAP-targeting peptide for theranostics-production, validation and first in human experience with Ga-68 and Lu-177. iScience. 2023;26:108541. doi: 10.1016/j.isci.2023.108541. PubMed DOI PMC
Xie N, Shen G, Gao W, Huang Z, Huang C, Fu L. Neoantigens: Promising targets for cancer therapy. Signal Transduct Target Ther. 2023;8:9. doi: 10.1038/s41392-022-01270-x. PubMed DOI PMC
Kirane A, Lee D, Ariyan C. Surgical considerations in Tumor-infiltrating lymphocyte therapy: Challenges and opportunities. Transplant Cell Ther. 2025;31(Suppl 1):S591–S598. doi: 10.1016/j.jtct.2024.11.015. PubMed DOI
Fan S, Wang W, Che W, Xu Y, Jin C, Dong L, Xia Q. Nanomedicines targeting metabolic pathways in the tumor microenvironment: Future perspectives and the role of AI. Metabolites. 2025;15:201. doi: 10.3390/metabo15030201. PubMed DOI PMC
Di Dedda C, Vignali D, Piemonti L, Monti P. Pharmacological targeting of GLUT1 to control Autoreactive T cell responses. Int J Mol Sci. 2019;20:4962. doi: 10.3390/ijms20194962. PubMed DOI PMC
Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, Anderson SM, Abel ED, Chen BJ, Hale LP, Rathmell JC. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 2014;20:61–72. doi: 10.1016/j.cmet.2014.05.004. PubMed DOI PMC
Sung KE, Su X, Berthier E, Pehlke C, Friedl A, Beebe DJ. Understanding the impact of 2D and 3D fibroblast cultures on in vitro breast cancer models. PLoS One. 2013;8:e76373. doi: 10.1371/journal.pone.0076373. PubMed DOI PMC
Tolle RC, Gaggioli C, Dengjel J. Three-dimensional cell culture conditions affect the proteome of cancer-associated fibroblasts. J Proteome Res. 2018;17:2780–2789. doi: 10.1021/acs.jproteome.8b00237. PubMed DOI
Shao H, Moller M, Wang D, Ting A, Boulina M, Liu ZJ. A Novel stromal Fibroblast-modulated 3D tumor spheroid model for studying Tumor-stroma interaction and drug discovery. J Vis Exp. 2020 Feb 28; doi: 10.3791/60660. PubMed DOI
Chen H, Cheng Y, Wang X, Wang J, Shi X, Li X, Tan W, Tan Z. 3D printed in vitro tumor tissue model of colorectal cancer. Theranostics. 2020;10:12127–12143. doi: 10.7150/thno.52450. PubMed DOI PMC
Mondal A, Gebeyehu A, Miranda M, Bahadur D, Patel N, Ramakrishnan S, Rishi AK, Singh M. Characterization and printability of Sodium alginate-Gelatin hydrogel for bioprinting NSCLC co-culture. Sci Rep. 2019;9:19914. doi: 10.1038/s41598-019-55034-9. PubMed DOI PMC
Kuen J, Darowski D, Kluge T, Majety M. Pancreatic cancer cell/fibroblast co-culture induces M2 like macrophages that influence therapeutic response in a 3D model. PLoS One. 2017;12:e0182039. doi: 10.1371/journal.pone.0182039. PubMed DOI PMC
Jobe NP, Rosel D, Dvořánková B, Kodet O, Lacina L, Mateu R, Smetana K, Brábek J. Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem Cell Biol. 2016;146:205–217. doi: 10.1007/s00418-016-1433-8. PubMed DOI
Balachander GM, Talukdar PM, Debnath M, Rangarajan A, Chatterjee K. Inflammatory role of Cancer-associated fibroblasts in invasive breast tumors revealed using a fibrous polymer scaffold. ACS Appl Mater Interfaces. 2018;10:33814–33826. doi: 10.1021/acsami.8b07609. PubMed DOI
Linxweiler J, Hajili T, Körbel C, Berchem C, Zeuschner P, Müller A, Stöckle M, Menger MD, Junker K, Saar M. Cancer-associated fibroblasts stimulate primary tumor growth and metastatic spread in an orthotopic prostate cancer xenograft model. Sci Reps. 2020;10:12575. doi: 10.1038/s41598-020-69424-x. PubMed DOI PMC
Miyazaki Y, Oda T, Inagaki Y, Kushige H, Saito Y, Mori N, Takayama Y, Kumagai Y, Mitsuyama T, Kida YS. Adipose-derived mesenchymal stem cells differentiate into heterogeneous cancer-associated fibroblasts in a stroma-rich xenograft model. Sci Rep. 2021;11:4690. doi: 10.1038/s41598-021-84058-3. PubMed DOI PMC
Wahbi W, Awad S, Salo T, Al-Samadi A. Stroma modulation of radiation response in head and neck squamous cell carcinoma: Insights from zebrafish larvae xenografts. Exp Cell Res. 2024;435:113911. doi: 10.1016/j.yexcr.2024.113911. PubMed DOI
Foster DS, Januszyk M, Delitto D, Yost KE, Griffin M, Guo J, Guardino N, Delitto AE, Chinta M, Burcham AR, et al. Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell. 2022;40:1392–1406.e7. doi: 10.1016/j.ccell.2022.09.015. PubMed DOI PMC
Cho C, Mukherjee R, Peck AR, Sun Y, McBrearty N, Katlinski KV, Gui J, Govindaraju PK, Puré E, Rui H, Fuchs SY. Cancer-associated fibroblasts downregulate type I interferon receptor to stimulate intratumoral stromagenesis. Oncogene. 2020;39:6129–6137. doi: 10.1038/s41388-020-01424-7. PubMed DOI PMC
Helms EJ, Berry MW, Chaw RC, DuFort CC, Sun D, Onate MK, Oon C, Bhattacharyya S, Sanford-Crane H, Horton W, et al. Mesenchymal lineage heterogeneity underlies nonredundant functions of pancreatic Cancer-associated fibroblasts. Cancer Discov. 2022;12:484–501. doi: 10.1158/2159-8290.CD-21-0601. PubMed DOI PMC
De Vita A, Recine F, Miserocchi G, Pieri F, Spadazzi C, Cocchi C, Vanni S, Liverani C, Farnedi A, Fabbri F, et al. The potential role of the extracellular matrix in the activity of trabectedin in UPS and L-sarcoma: Evidences from a patient-derived primary culture case series in tridimensional and zebrafish models. J Exp Clin Cancer Res. 2021;40:165. doi: 10.1186/s13046-021-01963-1. PubMed DOI PMC
Molina ER, Chim LK, Salazar MC, Koons GL, Menegaz BA, Ruiz-Velasco A, Lamhamedi-Cherradi SE, Vetter AM, Satish T, Cuglievan B, et al. 3D Tissue-engineered tumor model for Ewing's sarcoma that incorporates Bone-like ECM and mineralization. ACS Biomater Sci Eng. 2020;6:539–552. doi: 10.1021/acsbiomaterials.9b01068. PubMed DOI
Moghimi N, Hosseini SA, Dalan AB, Mohammadrezaei D, Goldman A, Kohandel M. Controlled tumor heterogeneity in a co-culture system by 3D bio-printed tumor-on-chip model. Sci Rep. 2023;13:13648. doi: 10.1038/s41598-023-40680-x. PubMed DOI PMC
Yang D, Jones MG, Naranjo S, Rideout WM, III, Min KHJ, Ho R, Wu W, Replogle JM, Page JL, Quinn JJ, et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell. 2022;185:1905–1923.e25. doi: 10.1016/j.cell.2022.04.015. PubMed DOI PMC
Simeonov KP, Byrns CN, Clark ML, Norgard RJ, Martin B, Stanger BZ, Shendure J, McKenna A, Lengner CJ. Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. Cancer Cell. 2021;39:1150–1162.e9. doi: 10.1016/j.ccell.2021.05.005. PubMed DOI PMC
Liu J, Liu C, Ma Y, Pan X, Chu R, Yao S, Chen J, Liu C, Chen Z, Sheng C, et al. STING inhibitors sensitize platinum chemotherapy in ovarian cancer by inhibiting the CGAS-STING pathway in cancer-associated fibroblasts (CAFs) Cancer Lett. 2024;588:216700. doi: 10.1016/j.canlet.2024.216700. PubMed DOI
de Kruijf EM, van Nes JG, van de Velde CJ, Putter H, Smit VT, Liefers GJ, Kuppen PJ, Tollenaar RA, Mesker WE. Tumor-stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients. Breast Cancer Res Treat. 2011;125:687–696. doi: 10.1007/s10549-010-0855-6. PubMed DOI
Huijbers A, Tollenaar RA, v Pelt GW, Zeestraten EC, Dutton S, McConkey CC, Domingo E, Smit VT, Midgley R, Warren BF, et al. The proportion of tumor-stroma as a strong prognosticator for stage II and III colon cancer patients: Validation in the VICTOR trial. Ann Oncol. 2013;24:179–185. doi: 10.1093/annonc/mds246. PubMed DOI
De Vlieghere E, Verset L, Demetter P, Bracke M, De Wever O. Cancer-associated fibroblasts as target and tool in cancer therapeutics and diagnostics. Virchows Arch. 2015;467:367–382. doi: 10.1007/s00428-015-1818-4. PubMed DOI
Kanzaki R, Pietras K. Heterogeneity of cancer-associated fibroblasts: Opportunities for precision medicine. Cancer Sci. 2020;111:2708–2717. doi: 10.1111/cas.14537. PubMed DOI PMC
Wang Q, Zhang X, Du K, Wu X, Zhou Y, Chen D, Zeng L. Machine learning identifies characteristics molecules of cancer associated fibroblasts significantly correlated with the prognosis, immunotherapy response and immune microenvironment in lung adenocarcinoma. Front Oncol. 2022;12:1059253. doi: 10.3389/fonc.2022.1059253. PubMed DOI PMC
Shen C, Rawal S, Brown R, Zhou H, Agarwal A, Watson MA, Cote RJ, Yang C. Automatic detection of circulating tumor cells and cancer associated fibroblasts using deep learning. Sci Rep. 2023;13:5708. doi: 10.1038/s41598-023-32955-0. PubMed DOI PMC
Agnoletto C, Caruso C, Garofalo C. Heterogeneous circulating tumor cells in sarcoma: Implication for clinical practice. Cancers (Basel) 2021;13:2189. doi: 10.3390/cancers13092189. PubMed DOI PMC
Yang Z, Zhou D, Huang J. Identifying explainable machine learning models and a novel SFRP2+ fibroblast signature as predictors for precision medicine in ovarian cancer. Int J Mol Sci. 2023;24:16942. doi: 10.3390/ijms242316942. PubMed DOI PMC
Min KW, Kim DH, Noh YK, Son BK, Kwon MJ, Moon JY. Cancer-associated fibroblasts are associated with poor prognosis in solid type of lung adenocarcinoma in a machine learning analysis. Sci Rep. 2021;11:16779. doi: 10.1038/s41598-021-96344-1. PubMed DOI PMC
Huang B, Chen Q, Ye Z, Zeng L, Huang C, Xie Y, Zhang R, Shen H. Construction of a matrix Cancer-associated fibroblast signature Gene-based risk prognostic signature for directing immunotherapy in patients with breast cancer using Single-cell analysis and machine learning. Int J Mol Sci. 2023;24:13175. doi: 10.3390/ijms241713175. PubMed DOI PMC
Ao Z, Shah SH, Machlin LM, Parajuli R, Miller PC, Rawal S, Williams AJ, Cote RJ, Lippman ME, Datar RH, El-Ashry D. Identification of Cancer-associated fibroblasts in circulating blood from patients with metastatic breast cancer. Cancer Res. 2015;75:4681–4687. doi: 10.1158/0008-5472.CAN-15-1633. PubMed DOI
Booijink R, Terstappen LWMM, Dathathri E, Isebia K, Kraan J, Martens J, Bansal R. Identification of functional and diverse circulating cancer-associated fibroblasts in metastatic Castration-naive prostate cancer patients. Mol Oncol. 2024;19:2074–2091. doi: 10.1002/1878-0261.13653. PubMed DOI PMC
Lu T, Oomens L, Terstappen L, Prakash J. In vivo detection of circulating cancer-associated fibroblasts in breast tumor mouse xenograft: Impact of tumor stroma and chemotherapy. Cancers (Basel) 2023;15:1127. doi: 10.3390/cancers15041127. PubMed DOI PMC