The Immune Contexture of Liposarcoma and Its Clinical Implications

. 2022 Sep 21 ; 14 (19) : . [epub] 20220921

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36230502

Liposarcomas (LPS) are the most frequent malignancies in the soft tissue sarcoma family and consist of five distinctive histological subtypes, termed well-differentiated LPS, dedifferentiated LPS (DDLPS), myxoid LPS (MLPS), pleomorphic LPS, and myxoid pleomorphic LPS. They display variations in genetic alterations, clinical behavior, and prognostic course. While accumulating evidence implicates a crucial role of the tumor immune contexture in shaping the response to anticancer treatments, the immunological landscape of LPS is highly variable across different subtypes. Thus, DDLPS is characterized by a higher abundance of infiltrating T cells, yet the opposite was reported for MLPS. Interestingly, a recent study indicated that the frequency of pre-existing T cells in soft tissue sarcomas has a predictive value for immune checkpoint inhibitor (CPI) therapy. Additionally, B cells and tertiary lymphoid structures were identified as potential biomarkers for the clinical outcome of LPS patients and response to CPI therapy. Furthermore, it was demonstrated that macrophages, predominantly of M2 polarization, are frequently associated with poor prognosis. An improved understanding of the complex LPS immune contexture enables the design and refinement of novel immunotherapeutic approaches. Here, we summarize recent studies focusing on the clinicopathological, genetic, and immunological determinants of LPS.

Zobrazit více v PubMed

Bourcier K., le Cesne A., Tselikas L., Adam J., Mir O., Honore C., de Baere T. Basic Knowledge in Soft Tissue Sarcoma. Cardiovasc. Interv. Radiol. 2019;42:1255–1261. doi: 10.1007/s00270-019-02259-w. PubMed DOI

Jones R.L., Lee A.T.J., Thway K., Huang P.H. Clinical and Molecular Spectrum of Liposarcoma. J. Clin. Oncol. 2018;36:151–159. doi: 10.1200/JCO.2017.74.9598. PubMed DOI PMC

Saponara M., Stacchiotti S., Gronchi A. Pharmacological Therapies for Liposarcoma. Expert Rev. Clin. Pharmacol. 2017;10:361–377. doi: 10.1080/17512433.2017.1289086. PubMed DOI

Suarez-Kelly L.P., Baldi G.G., Gronchi A. Pharmacotherapy for Liposarcoma: Current State of the Art and Emerging Systemic Treatments. Expert Opin. Pharmacother. 2019;20:1503–1515. doi: 10.1080/14656566.2019.1618271. PubMed DOI

Abbas Manji G., Singer S., Koff A., Schwartz G.K. Application of Molecular Biology to Individualize Therapy for Patients with Liposarcoma. Am. Soc. Clin. Oncol. Educ. Book. 2015;35:213–218. doi: 10.14694/EdBook_AM.2015.35.213. PubMed DOI

Creytens D., Folpe A.L., Koelsche C., Mentzel T., Ferdinande L., van Gorp J.M., van der Linden M., Raman L., Menten B., Fritchie K., et al. Myxoid Pleomorphic Liposarcoma-a Clinicopathologic, Immunohistochemical, Molecular Genetic and Epigenetic Study of 12 Cases, Suggesting a Possible Relationship with Conventional Pleomorphic Liposarcoma. Mod. Pathol. 2021;34:2043–2049. doi: 10.1038/s41379-021-00862-2. PubMed DOI

Choi J.H., Ro J.Y. The 2020 WHO Classification of Tumors of Soft Tissue: Selected Changes and New Entities. Adv. Anat. Pathol. 2021;28:44–58. doi: 10.1097/PAP.0000000000000284. PubMed DOI

Haddox C.L., Riedel R.F. Recent Advances in the Understanding and Management of Liposarcoma. Fac. Rev. 2021;10:1. doi: 10.12703/r/10-1. PubMed DOI PMC

Lu J., Wood D., Ingley E., Koks S., Wong D. Update on Genomic and Molecular Landscapes of Well-Differentiated Liposarcoma and Dedifferentiated Liposarcoma. Mol. Biol. Rep. 2021;48:3637–3647. doi: 10.1007/S11033-021-06362-5. PubMed DOI

Blay J.Y., Honoré C., Stoeckle E., Meeus P., Jafari M., Gouin F., Anract P., Ferron G., Rochwerger A., Ropars M., et al. Surgery in Reference Centers Improves Survival of Sarcoma Patients: A Nationwide Study. Ann. Oncol. 2019;30:1143–1153. doi: 10.1093/annonc/mdz124. PubMed DOI PMC

Manji G.A., Schwartz G.K. Managing Liposarcomas: Cutting Through the Fat. J. Oncol. Pract. 2016;12:221–227. doi: 10.1200/JOP.2015.009860. PubMed DOI

Bruni D., Angell H.K., Galon J. The Immune Contexture and Immunoscore in Cancer Prognosis and Therapeutic Efficacy. Nat. Rev. Cancer. 2020;20:662–680. doi: 10.1038/s41568-020-0285-7. PubMed DOI

Helmink B.A., Reddy S.M., Gao J., Zhang S., Basar R., Thakur R., Yizhak K., Sade-Feldman M., Blando J., Han G., et al. B Cells and Tertiary Lymphoid Structures Promote Immunotherapy Response. Nature. 2020;577:549–555. doi: 10.1038/s41586-019-1922-8. PubMed DOI PMC

Petitprez F., de Reyniès A., Keung E.Z., Chen T.W.W., Sun C.M., Calderaro J., Jeng Y.M., Hsiao L.P., Lacroix L., Bougoüin A., et al. B Cells Are Associated with Survival and Immunotherapy Response in Sarcoma. Nature. 2020;577:556–560. doi: 10.1038/s41586-019-1906-8. PubMed DOI

Keung E.Z., Burgess M., Salazar R., Parra E.R., Rodrigues-Canales J., Bolejack V., van Tine B.A., Schuetze S.M., Attia S., Riedel R.F., et al. Correlative Analyses of the SARC028 Trial Reveal an Association between Sarcoma-Associated Immune Infiltrate and Response to Pembrolizumab. Clin. Cancer Res. 2020;26:1258–1266. doi: 10.1158/1078-0432.CCR-19-1824. PubMed DOI PMC

Coindre J.M., Pédeutour F., Aurias A. Well-Differentiated and Dedifferentiated Liposarcomas. Virchows Arch. 2010;456:167–179. doi: 10.1007/s00428-009-0815-x. PubMed DOI

Lin O., Zakowski M.F. Comprehensive Cytopathology. W.B. Saunders; Philadelphia, PA, USA: 2008. Cytology of Soft Tissue, Bone, and Skin; pp. 471–513.

Thway K. Well-Differentiated Liposarcoma and Dedifferentiated Liposarcoma: An Updated Review. Semin. Diagn. Pathol. 2019;36:112–121. doi: 10.1053/j.semdp.2019.02.006. PubMed DOI

Moulin B., Messiou C., Crombe A., Kind M., Hohenberger P., Rutkowski P., van Houdt W.J., Strauss D., Gronchi A., Bonvalot S. Diagnosis Strategy of Adipocytic Soft-Tissue Tumors in Adults: A Consensus from European Experts. Eur. J. Surg. Oncol. 2022;48:518–525. doi: 10.1016/j.ejso.2021.10.009. PubMed DOI

Fabbroni C., Fucà G., Ligorio F., Fumagalli E., Barisella M., Collini P., Morosi C., Gronchi A., Tos A.P.D., Casali P.G., et al. Impact of Pathological Stratification on the Clinical Outcomes of Advanced Well-Differentiated/Dedifferentiated Liposarcoma Treated with Trabectedin. Cancers. 2021;13:1453. doi: 10.3390/CANCERS13061453. PubMed DOI PMC

de Vita A., Mercatali L., Recine F., Pieri F., Riva N., Bongiovanni A., Liverani C., Spadazzi C., Miserocchi G., Amadori D., et al. Current Classification, Treatment Options, and New Perspectives in the Management of Adipocytic Sarcomas. Onco Targets Ther. 2016;9:6246. doi: 10.2147/OTT.S112580. PubMed DOI PMC

Kammerer-Jacquet S.F., Thierry S., Cabillic F., Lannes M., Burtin F., Henno S., Dugay F., Bouzillé G., Rioux-Leclercq N., Belaud-Rotureau M.A., et al. Differential Diagnosis of Atypical Lipomatous Tumor/Well-Differentiated Liposarcoma and Dedifferentiated Liposarcoma: Utility of P16 in Combination with MDM2 and CDK4 Immunohistochemistry. Hum. Pathol. 2017;59:34–40. doi: 10.1016/j.humpath.2016.08.009. PubMed DOI

Bill K.L.J., Seligson N.D., Hays J.L., Awasthi A., Demoret B., Stets C.W., Duggan M.C., Bupathi M., Brock G.N., Millis S.Z., et al. Degree of MDM2 Amplification Affects Clinical Outcomes in Dedifferentiated Liposarcoma. Oncologist. 2019;24:989–996. doi: 10.1634/theoncologist.2019-0047. PubMed DOI PMC

Doyle L.A. Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms. Academic Press; Cambridge, MA, USA: 2014. Surgical Pathology of Sarcomas; pp. 3546–3562.

Tyler R., Wanigasooriya K., Taniere P., Almond M., Ford S., Desai A., Beggs A. A Review of Retroperitoneal Liposarcoma Genomics. Cancer Treat. Rev. 2020;86:102013. doi: 10.1016/j.ctrv.2020.102013. PubMed DOI

Binh M.B.N., Sastre-Garau X., Guillou L., de Pinieux G., Terrier P., Lagacé R., Aurias A., Hostein I., Coindre J.M. MDM2 and CDK4 Immunostainings Are Useful Adjuncts in Diagnosing Well-Differentiated and Dedifferentiated Liposarcoma Subtypes: A Comparative Analysis of 559 Soft Tissue Neoplasms with Genetic Data. Am. J. Surg. Pathol. 2005;29:1340–1347. doi: 10.1097/01.pas.0000170343.09562.39. PubMed DOI

Montella L., Altucci L., Sarno F., Buonerba C., de Simone S., Facchini B.A., Franzese E., de Vita F., Tafuto S., Berretta M., et al. Toward a Personalized Therapy in Soft-Tissue Sarcomas: State of the Art and Future Directions. Cancers. 2021;13:2359. doi: 10.3390/cancers13102359. PubMed DOI PMC

Zhang K., Chu K., Wu X., Gao H., Wang J., Yuan Y.C., Loera S., Ho K., Wang Y., Chow W., et al. Amplification of FRS2 and Activation of FGFR/FRS2 Signaling Pathway in High-Grade Liposarcoma. Cancer Res. 2013;73:1298–1307. doi: 10.1158/0008-5472.CAN-12-2086. PubMed DOI

Dehner C.A., Hagemann I.S., Chrisinger J.S.A. Retroperitoneal Dedifferentiated Liposarcoma. Am. J. Clin. Pathol. 2021;156:920–925. doi: 10.1093/ajcp/aqab051. PubMed DOI

Dang T.N., Tiongco R.P., Brown L.M., Taylor J.L., Lyons J.M., Lau F.H., Floyd Z.E. Expression of the Preadipocyte Marker ZFP423 Is Dysregulated between Well-Differentiated and Dedifferentiated Liposarcoma. BMC Cancer. 2022;22:300. doi: 10.1186/S12885-022-09379-6/FIGURES/7. PubMed DOI PMC

Kim Y.J., Yu D.B., Kim M., Choi Y.L. Adipogenesis Induces Growth Inhibition of Dedifferentiated Liposarcoma. Cancer Sci. 2019;110:2683. doi: 10.1111/CAS.14036. PubMed DOI PMC

Murphey M.D., Arcara L.K., Fanburg-Smith J. From the Archives of the AFIP: Imaging of Musculoskeletal Liposarcoma with Radiologic-Pathologic Correlation. Radiographics. 2005;25:1371–1395. doi: 10.1148/rg.255055106. PubMed DOI

Danieli M., Swallow C.J., Gronchi A. How to Treat Liposarcomas Located in Retroperitoneum. Eur. J. Surg. Oncol. 2022 doi: 10.1016/j.ejso.2022.04.020. in press . PubMed DOI

Wen Y., He X., Zhao M. Dedifferentiated Liposarcoma with Abrupt Transition of Low-Grade and High-Grade Dedifferentiation: A Rare Case Report. Int. J. Immunopathol. Pharmacol. 2021;35:20587384211048565. doi: 10.1177/20587384211048565. PubMed DOI PMC

Tseng W.W., Barretta F., Baia M., Barisella M., Radaelli S., Callegaro D., Yoon D.H., Fiore M., Gronchi A. Dedifferentiation within Well-Differentiated Liposarcoma of the Extremity or Trunk: Implications for Clinical Management. J. Surg. Oncol. 2021;124:838–845. doi: 10.1002/jso.26590. PubMed DOI

Beird H.C., Wu C.C., Ingram D.R., Wang W.L., Alimohamed A., Gumbs C., Little L., Song X., Feig B.W., Roland C.L., et al. Genomic Profiling of Dedifferentiated Liposarcoma Compared to Matched Well-Differentiated Liposarcoma Reveals Higher Genomic Complexity and a Common Origin. Cold Spring Harb. Mol. Case Stud. 2018;4:a002386. doi: 10.1101/mcs.a002386. PubMed DOI PMC

Barretina J., Taylor B.S., Banerji S., Ramos A.H., Lagos-Quintana M., Decarolis P.L., Shah K., Socci N.D., Weir B.A., Ho A., et al. Subtype-Specific Genomic Alterations Define New Targets for Soft-Tissue Sarcoma Therapy. Nat. Genet. 2010;42:715–721. doi: 10.1038/ng.619. PubMed DOI PMC

Crago A.M., Socci N.D., DeCarolis P., O’Connor R., Taylor B.S., Qin L.X., Antonescu C.R., Singer S. Copy Number Losses Define Subgroups of Dedifferentiated Liposarcoma with Poor Prognosis and Genomic Instability. Clin. Cancer Res. 2012;18:1334–1340. doi: 10.1158/1078-0432.CCR-11-2820. PubMed DOI PMC

Thway K., Jones R.L., Noujaim J., Zaidi S., Miah A.B., Fisher C. Dedifferentiated Liposarcoma: Updates on Morphology, Genetics, and Therapeutic Strategies. Adv. Anat. Pathol. 2016;23:30–40. doi: 10.1097/PAP.0000000000000101. PubMed DOI

Tap W.D., Eilber F.C., Ginther C., Dry S.M., Reese N., Barzan-Smith K., Chen H.-W., Wu H., Eilber F.R., Slamon D.J., et al. Evaluation of Well-Differentiated/de-Differentiated Liposarcomas by High-Resolution Oligonucleotide Array-Based Comparative Genomic Hybridization. Genes Chromosomes Cancer. 2011;50:95–112. doi: 10.1002/gcc.20835. PubMed DOI

Takahira T., Oda Y., Tamiya S., Yamamoto H., Kobayashi C., Izumi T., Ito K., Iwamoto Y., Tsuneyoshi M. Alterations of the RB1 Gene in Dedifferentiated Liposarcoma. Mod. Pathol. 2005;18:1461–1470. doi: 10.1038/modpathol.3800447. PubMed DOI

Saifuddin A., Andrei V., Rajakulasingam R., Oliveira I., Seddon B. Magnetic Resonance Imaging of Trunk and Extremity Myxoid Liposarcoma: Diagnosis, Staging, and Response to Treatment. Skelet. Radiol. 2021;50:1963–1980. doi: 10.1007/s00256-021-03769-w. PubMed DOI

Tariq H., Sarfraz T., Saeed I. Myxoid Liposarcoma with Cartilagenous Differentiation. J. Coll. Physicians Surg. Pak. 2020;30:1096–1098. doi: 10.29271/JCPSP.2020.10.1096. PubMed DOI

Mujtaba B., Wang F., Taher A., Aslam R., Madewell J.E., Nassar S. Myxoid Liposarcoma With Skeletal Metastases: Pathophysiology and Imaging Characteristics. Curr. Probl. Diagn. Radiol. 2021;50:66–73. doi: 10.1067/j.cpradiol.2019.10.008. PubMed DOI

Codenotti S., Mansoury W., Pinardi L., Monti E., Marampon F., Fanzani A. Animal Models of Well-Differentiated/Dedifferentiated Liposarcoma: Utility and Limitations. Onco Targets Ther. 2019;12:5257–5268. doi: 10.2147/OTT.S175710. PubMed DOI PMC

Yu J.S.E., Colborne S., Hughes C.S., Morin G.B., Nielsen T.O. The FUS-DDIT3 Interactome in Myxoid Liposarcoma. Neoplasia. 2019;21:740–751. doi: 10.1016/J.NEO.2019.05.004. PubMed DOI PMC

Scapa J.V., Cloutier J.M., Raghavan S.S., Peters-Schulze G., Varma S., Charville G.W. DDIT3 Immunohistochemistry Is a Useful Tool for the Diagnosis of Myxoid Liposarcoma. Am. J. Surg. Pathol. 2021;45:230–239. doi: 10.1097/PAS.0000000000001564. PubMed DOI PMC

Zhu G., Benayed R., Ho C., Mullaney K., Sukhadia P., Rios K., Berry R., Rubin B.P., Nafa K., Wang L., et al. Diagnosis of Known Sarcoma Fusions and Novel Fusion Partners by Targeted RNA Sequencing with Identification of a Recurrent ACTB-FOSB Fusion in Pseudomyogenic Hemangioendothelioma. Mod. Pathol. 2019;32:609–620. doi: 10.1038/s41379-018-0175-7. PubMed DOI PMC

Anderson W.J., Jo V.Y. Pleomorphic Liposarcoma: Updates and Current Differential Diagnosis. Semin. Diagn. Pathol. 2019;36:122–128. doi: 10.1053/J.SEMDP.2019.02.007. PubMed DOI

Wan L., Tu C., Qi L., Li Z. Survivorship and Prognostic Factors for Pleomorphic Liposarcoma: A Population-Based Study. J. Orthop. Surg. Res. 2021;16:175. doi: 10.1186/s13018-021-02327-3. PubMed DOI PMC

Downes K.A., Goldblum J.R., Montgomery E.A., Fisher C. Pleomorphic Liposarcoma: A Clinicopathologic Analysis of 19 Cases. Mod. Pathol. 2001;14:179–184. doi: 10.1038/MODPATHOL.3880280. PubMed DOI

Dermawan J.K., Hwang S., Wexler L., Tap W.D., Singer S., Vanderbilt C.M., Antonescu C.R. Myxoid Pleomorphic Liposarcoma Is Distinguished from Other Liposarcomas by Widespread Loss of Heterozygosity and Significantly Worse Overall Survival: A Genomic and Clinicopathologic Study. Mod. Pathol. 2022:1–12. doi: 10.1038/S41379-022-01107-6. PubMed DOI PMC

Gami S., Tiwari S.B., Gautam K., Sharma S., Shrivastav S., Sapkota R. A Rare Case of Myxoid Pleomorphic Liposarcoma in an Infant: A Report. Int. J. Surg. Case Rep. 2021;87:106365. doi: 10.1016/J.IJSCR.2021.106365. PubMed DOI PMC

Alaggio R., Coffin C.M., Weiss S.W., Bridge J.A., Issakov J., Oliveira A.M., Folpe A.L. Liposarcomas in Young Patients: A Study of 82 Cases Occurring in Patients Younger than 22 Years of Age. Am. J. Surg. Pathol. 2009;33:645–658. doi: 10.1097/PAS.0B013E3181963C9C. PubMed DOI

Zare S.Y., Leivo M., Fadare O. Recurrent Pleomorphic Myxoid Liposarcoma in a Patient With Li-Fraumeni Syndrome. Int. J. Surg. Pathol. 2020;28:225–228. doi: 10.1177/1066896919878804. PubMed DOI

Rizer M., Singer A.D., Edgar M., Jose J., Subhawong T.K. The Histological Variants of Liposarcoma: Predictive MRI Findings with Prognostic Implications, Management, Follow-up, and Differential Diagnosis. Skelet. Radiol. 2016;45:1193–1204. doi: 10.1007/s00256-016-2409-4. PubMed DOI

Mansfield S.A., Pollock R.E., Grignol V.P. Surgery for Abdominal Well-Differentiated Liposarcoma. Curr. Treat. Options Oncol. 2018;19:1. doi: 10.1007/s11864-018-0520-6. PubMed DOI

Kito M., Yoshimura Y., Isobe K., Aoki K., Momose T., Suzuki S., Tanaka A., Sano K., Akahane T., Kato H. Clinical Outcome of Deep-Seated Atypical Lipomatous Tumor of the Extremities with Median-Term Follow-up Study. Eur. J. Surg. Oncol. 2015;41:400–406. doi: 10.1016/j.ejso.2014.11.044. PubMed DOI

von Mehren M., Randall R.L., Benjamin R.S., Boles S., Bui M.M., Ganjoo K.N., George S., Gonzalez R.J., Heslin M.J., Kane J.M., et al. Soft Tissue Sarcoma, Version 2.2018: Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2018;16:536–563. doi: 10.6004/jnccn.2018.0025. PubMed DOI

Crago A.M., Dickson M.A. Liposarcoma: Multimodality Management and Future Targeted Therapies. Surg. Oncol. Clin. N. Am. 2016;25:761–773. doi: 10.1016/j.soc.2016.05.007. PubMed DOI PMC

Zagars G.K., Ballo M.T., Pisters P.W.T., Pollock R.E., Patel S.R., Benjamin R.S. Preoperative vs. Postoperative Radiation Therapy for Soft Tissue Sarcoma: A Retrospective Comparative Evaluation of Disease Outcome. Int. J. Radiat. Oncol. Biol. Phys. 2003;56:482–488. doi: 10.1016/S0360-3016(02)04510-8. PubMed DOI

le Cesne A., Ouali M., Leahy M.G., Santoro A., Hoekstra H.J., Hohenberger P., van Coevorden F., Rutkowski P., van Hoesel R., Verweij J., et al. Doxorubicin-Based Adjuvant Chemotherapy in Soft Tissue Sarcoma: Pooled Analysis of Two STBSG-EORTC Phase III Clinical Trials. Ann. Oncol. 2014;25:2425–2432. doi: 10.1093/annonc/mdu460. PubMed DOI

Gronchi A., Ferrari S., Quagliuolo V., Broto J.M., Pousa A.L., Grignani G., Basso U., Blay J.Y., Tendero O., Beveridge R.D., et al. Histotype-Tailored Neoadjuvant Chemotherapy versus Standard Chemotherapy in Patients with High-Risk Soft-Tissue Sarcomas (ISG-STS 1001): An International, Open-Label, Randomised, Controlled, Phase 3, Multicentre Trial. Lancet Oncol. 2017;18:812–822. doi: 10.1016/S1470-2045(17)30334-0. PubMed DOI

Eilber F.C., Eilber F.R., Eckardt J., Rosen G., Riedel E., Maki R.G., Brennan M.F., Singer S. The Impact of Chemotherapy on the Survival of Patients with High-Grade Primary Extremity Liposarcoma. Ann. Surg. 2004;240:686–697. doi: 10.1097/01.sla.0000141710.74073.0d. PubMed DOI PMC

Gahvari Z., Parkes A. Dedifferentiated Liposarcoma: Systemic Therapy Options. Curr. Treat. Options Oncol. 2020;21:15. doi: 10.1007/s11864-020-0705-7. PubMed DOI

Bonvalot S., Gronchi A., le Péchoux C., Swallow C.J., Strauss D., Meeus P., van Coevorden F., Stoldt S., Stoeckle E., Rutkowski P., et al. Preoperative Radiotherapy plus Surgery versus Surgery Alone for Patients with Primary Retroperitoneal Sarcoma (EORTC-62092: STRASS): A Multicentre, Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2020;21:1366–1377. doi: 10.1016/S1470-2045(20)30446-0. PubMed DOI

Callegaro D., Raut C.P., Ajayi T., Strauss D., Bonvalot S., Ng D., Stoeckle E., Fairweather M., Rutkowski P., van Houdt W.J., et al. Preoperative Radiotherapy in Patients with Primary Retroperitoneal Sarcoma: EORTC-62092 Trial (STRASS) Versus Off-Trial (STREXIT) Results. Ann. Surg. 2022 doi: 10.1097/SLA.0000000000005492. PubMed DOI

Dürr H.R., Rauh J., Baur-Melnyk A., Knösel T., Lindner L., Roeder F., Jansson V., Klein A. Myxoid Liposarcoma: Local Relapse and Metastatic Pattern in 43 Patients. BMC Cancer. 2018;18:304. doi: 10.1186/s12885-018-4226-8. PubMed DOI PMC

Visgauss J.D., Wilson D.A., Perrin D.L., Colglazier R., French R., Mattei J.C., Griffin A.M., Wunder J.S., Ferguson P.C. Staging and Surveillance of Myxoid Liposarcoma: Follow-up Assessment and the Metastatic Pattern of 169 Patients Suggests Inadequacy of Current Practice Standards. Ann. Surg. Oncol. 2021;28:7903–7911. doi: 10.1245/s10434-021-10091-1. PubMed DOI

Patel S.R., Andrew Burgess M., Plager C., Papadopoulos N.E., Linke K.A., Benjamin R.S. Myxoid Liposarcoma. Experience with Chemotherapy. Cancer. 1994;74:1265–1269. doi: 10.1002/1097-0142(19940815)74:4<1265::AID-CNCR2820740414>3.0.CO;2-X. PubMed DOI

Pitson G., Robinson P., Wilke D., Kandel R.A., White L., Griffin A.M., Bell R.S., Catton C.N., Wunder J.S., O’Sullivan B. Radiation Response: An Additional Unique Signature of Myxoid Liposarcoma. Int. J. Radiat. Oncol. Biol. Phys. 2004;60:522–526. doi: 10.1016/j.ijrobp.2004.03.009. PubMed DOI

Issels R.D., Lindner L.H., Verweij J., Wessalowski R., Reichardt P., Wust P., Ghadjar P., Hohenberger P., Angele M., Salat C., et al. Effect of Neoadjuvant Chemotherapy plus Regional Hyperthermia on Long-Term Outcomes among Patients with Localized High-Risk Soft Tissue Sarcoma the EORTC 62961-ESHO 95 Randomized Clinical Trial. JAMA Oncol. 2018;4:483–492. doi: 10.1001/jamaoncol.2017.4996. PubMed DOI PMC

Oei A.L., Kok H.P., Oei S.B., Horsman M.R., Stalpers L.J.A., Franken N.A.P., Crezee J. Molecular and Biological Rationale of Hyperthermia as Radio- and Chemosensitizer. Adv. Drug Deliv. Rev. 2020;163–164:84–97. doi: 10.1016/j.addr.2020.01.003. PubMed DOI

Lee S., Son B., Park G., Kim H., Kang H., Jeon J., Youn H., Youn B. Immunogenic Effect of Hyperthermia on Enhancing Radiotherapeutic Efficacy. Int. J. Mol. Sci. 2018;19:2795. doi: 10.3390/ijms19092795. PubMed DOI PMC

Neuwirth M.G., Song Y., Sinnamon A.J., Fraker D.L., Zager J.S., Karakousis G.C. Isolated Limb Perfusion and Infusion for Extremity Soft Tissue Sarcoma: A Contemporary Systematic Review and Meta-Analysis. Ann. Surg. Oncol. 2017;24:3803–3810. doi: 10.1245/s10434-017-6109-7. PubMed DOI

Judson I., Verweij J., Gelderblom H., Hartmann J.T., Schöffski P., Blay J.Y., Kerst J.M., Sufliarsky J., Whelan J., Hohenberger P., et al. Doxorubicin Alone versus Intensified Doxorubicin plus Ifosfamide for First-Line Treatment of Advanced or Metastatic Soft-Tissue Sarcoma: A Randomised Controlled Phase 3 Trial. Lancet Oncol. 2014;15:415–423. doi: 10.1016/S1470-2045(14)70063-4. PubMed DOI

Zijoo R., von Mehren M. Efficacy of Trabectedin for the Treatment of Liposarcoma. Expert Opin. Pharmacother. 2016;17:1953–1962. doi: 10.1080/14656566.2016.1229304. PubMed DOI

Lee A.T.J., Jones R.L., Huang P.H. Pazopanib in Advanced Soft Tissue Sarcomas. Signal Transduct. Target. Ther. 2019;4:16. doi: 10.1038/s41392-019-0049-6. PubMed DOI PMC

Assi T., Kattan J., el Rassy E., Honore C., Dumont S., Mir O., le Cesne A. A Comprehensive Review of the Current Evidence for Trabectedin in Advanced Myxoid Liposarcoma. Cancer Treat. Rev. 2019;72:37–44. doi: 10.1016/j.ctrv.2018.11.003. PubMed DOI

Sobczuk P., Bątruk H., Wójcik P., Iwaniak K., Kozak K., Rutkowski P. In Search of Effective Therapies: The Current Landscape of Phase II Trials in Patients with Advanced Soft Tissue Sarcoma. J. Cancer Res. Clin. Oncol. 2022 doi: 10.1007/s00432-022-04149-0. PubMed DOI PMC

Saerens M., Brusselaers N., Rottey S., Decruyenaere A., Creytens D., Lapeire L. Immune Checkpoint Inhibitors in Treatment of Soft-Tissue Sarcoma: A Systematic Review and Meta-Analysis. Eur. J. Cancer. 2021;152:165–182. doi: 10.1016/j.ejca.2021.04.034. PubMed DOI

Fridman W.H., Zitvogel L., Sautès-Fridman C., Kroemer G. The Immune Contexture in Cancer Prognosis and Treatment. Nat. Rev. Clin. Oncol. 2017;14:717–734. doi: 10.1038/nrclinonc.2017.101. PubMed DOI

Chibon F., Aurias A., Coindre J.-M. Sarcomas Genetics: From Point Mutation to Complex Karyotype, from Diagnosis to Therapies. In: Pfeffer U., editor. Cancer Genomics: Molecular Classification, Prognosis and Response Prediction. Springer; Dordrecht, The Netherlands: 2013. pp. 429–452.

Taylor B.S., Barretina J., Maki R.G., Antonescu C.R., Singer S., Ladanyi M. Advances in Sarcoma Genomics and New Therapeutic Targets. Nat. Rev. Cancer. 2011;11:541–557. doi: 10.1038/nrc3087. PubMed DOI PMC

Guillou L., Aurias A. Soft Tissue Sarcomas with Complex Genomic Profiles. Virchows Arch. 2010;456:201–217. doi: 10.1007/s00428-009-0853-4. PubMed DOI

Dancsok A.R., Setsu N., Gao D., Blay J.Y., Thomas D., Maki R.G., Nielsen T.O., Demicco E.G. Expression of Lymphocyte Immunoregulatory Biomarkers in Bone and Soft-Tissue Sarcomas. Mod. Pathol. 2019;32:1772–1785. doi: 10.1038/s41379-019-0312-y. PubMed DOI

Pollack S.M., He Q., Yearley J.H., Emerson R., Vignali M., Zhang Y., Redman M.W., Baker K.K., Cooper S., Donahue B., et al. T-Cell Infiltration and Clonality Correlate with Programmed Cell Death Protein 1 and Programmed Death-Ligand 1 Expression in Patients with Soft Tissue Sarcomas. Cancer. 2017;123:3291–3304. doi: 10.1002/cncr.30726. PubMed DOI PMC

Yan L., Wang Z., Cui C., Guan X., Dong B., Zhao M., Wu J., Tian X., Hao C. Comprehensive Immune Characterization and T-Cell Receptor Repertoire Heterogeneity of Retroperitoneal Liposarcoma. Cancer Sci. 2019;110:3038–3048. doi: 10.1111/cas.14161. PubMed DOI PMC

Oike N., Kawashima H., Ogose A., Hatano H., Ariizumi T., Yamagishi T., Murayama Y., Umezu H., Imai C., Hayashi M., et al. Human Leukocyte Antigen I Is Significantly Downregulated in Patients with Myxoid Liposarcomas. Cancer Immunol. Immunother. 2021;70:3489–3499. doi: 10.1007/s00262-021-02928-1. PubMed DOI PMC

Abeshouse A., Adebamowo C., Adebamowo S.N., Akbani R., Akeredolu T., Ally A., Anderson M.L., Anur P., Appelbaum E.L., Armenia J., et al. Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell. 2017;171:950–965.e28. doi: 10.1016/j.cell.2017.10.014. PubMed DOI PMC

Simon M., Mughal S.S., Horak P., Uhrig S., Buchloh J., Aybey B., Stenzinger A., Glimm H., Fröhling S., Brors B., et al. Deconvolution of Sarcoma Methylomes Reveals Varying Degrees of Immune Cell Infiltrates with Association to Genomic Aberrations. J. Transl. Med. 2021;19:204. doi: 10.1186/s12967-021-02858-7. PubMed DOI PMC

Orth M.F., Buecklein V.L., Kampmann E., Subklewe M., Noessner E., Cidre-Aranaz F., Romero-Pérez L., Wehweck F.S., Lindner L., Issels R., et al. A Comparative View on the Expression Patterns of PD-L1 and PD-1 in Soft Tissue Sarcomas. Cancer Immunol. Immunother. 2020;69:1353–1362. doi: 10.1007/s00262-020-02552-5. PubMed DOI PMC

Melake M., Smith H., Mansfield D., Davies E., Dillon M., Wilkins A., Patin E., Pedersen M., Buus R., Melcher A., et al. OX40 and 4-1BB Delineate Distinct Immune Profiles in Sarcoma. Oncoimmunology. 2022;11:2066050. doi: 10.1080/2162402x.2022.2066050. PubMed DOI PMC

Klaver Y., Rijnders M., Oostvogels A., Wijers R., Smid M., Grünhagen D., Verhoef K., Sleijfer S., Lamers C., Debets R. Differential Quantities of Immune Checkpoint-Expressing CD8 T Cells in Soft Tissue Sarcoma Subtypes. J. Immunother. Cancer. 2020;8:e000271. doi: 10.1136/jitc-2019-000271. PubMed DOI PMC

Smolle M.A., Herbsthofer L., Granegger B., Goda M., Brcic I., Bergovec M., Scheipl S., Prietl B., Pichler M., Gerger A., et al. T-Regulatory Cells Predict Clinical Outcome in Soft Tissue Sarcoma Patients: A Clinico-Pathological Study. Br. J. Cancer. 2021;125:717–724. doi: 10.1038/s41416-021-01456-0. PubMed DOI PMC

Smolle M.A., Herbsthofer L., Goda M., Granegger B., Brcic I., Bergovec M., Scheipl S., Prietl B., El-Heliebi A., Pichler M., et al. Influence of Tumor-Infiltrating Immune Cells on Local Control Rate, Distant Metastasis, and Survival in Patients with Soft Tissue Sarcoma. Oncoimmunology. 2021;10:1896658. doi: 10.1080/2162402X.2021.1896658. PubMed DOI PMC

Wunder J.S., Lee M.J., Nam J., Lau B.Y., Dickson B.C., Pinnaduwage D., Bull S.B., Ferguson P.C., Seto A., Gokgoz N., et al. Osteosarcoma and Soft-Tissue Sarcomas with an Immune Infiltrate Express PD-L1: Relation to Clinical Outcome and Th1 Pathway Activation. Oncoimmunology. 2020;9:1737385. doi: 10.1080/2162402X.2020.1737385. PubMed DOI PMC

Schroeder B.A., Lafranzo N.A., Lafleur B.J., Gittelman R.M., Vignali M., Zhang S., Flanagan K.C., Rytlewski J., Riolobos L., Schulte B.C., et al. CD4+ T Cell and M2 Macrophage Infiltration Predict Dedifferentiated Liposarcoma Patient Outcomes. J. Immunother. Cancer. 2021;9:e002812. doi: 10.1136/jitc-2021-002812. PubMed DOI PMC

Minopoli M., Sarno S., Cannella L., Tafuto S., Scognamiglio G., Gallo M., Fazioli F., Azzaro R., Apice G., de Angelis B., et al. Crosstalk between Macrophages and Myxoid Liposarcoma Cells Increases Spreading and Invasiveness of Tumor Cells. Cancers. 2021;13:3298. doi: 10.3390/cancers13133298. PubMed DOI PMC

Sorbye S.W., Kilvaer T., Valkov A., Donnem T., Smeland E., Al-Shibli K., Bremnes R.M., Busund L.T. High Expression of CD20+ Lymphocytes in Soft Tissue Sarcomas Is a Positive Prognostic Indicator. Oncoimmunology. 2012;1:75–77. doi: 10.4161/onci.1.1.17825. PubMed DOI PMC

Judge S.J., Darrow M.A., Thorpe S.W., Gingrich A.A., O’Donnell E.F., Bellini A.R., Sturgill I.R., Vick L.V., Dunai C., Stoffel K.M., et al. Analysis of Tumor-Infiltrating NK and T Cells Highlights IL-15 Stimulation and TIGIT Blockade as a Combination Immunotherapy Strategy for Soft Tissue Sarcomas. J. Immunother. Cancer. 2020;8:e001355. doi: 10.1136/jitc-2020-001355. PubMed DOI PMC

D’Angelo S.P., Shoushtari A.N., Agaram N.P., Kuk D., Qin L.X., Carvajal R.D., Dickson M.A., Gounder M., Keohan M.L., Schwartz G.K., et al. Prevalence of Tumor-Infiltrating Lymphocytes and PD-L1 Expression in the Soft Tissue Sarcoma Microenvironment. Hum. Pathol. 2015;46:357–365. doi: 10.1016/j.humpath.2014.11.001. PubMed DOI PMC

Issels R.D., Noessner E., Lindner L.H., Schmidt M., Albertsmeier M., Blay J.Y., Stutz E., Xu Y., Buecklein V., Altendorf-Hofmann A., et al. Immune Infiltrates in Patients with Localised High-Risk Soft Tissue Sarcoma Treated with Neoadjuvant Chemotherapy without or with Regional Hyperthermia: A Translational Research Program of the EORTC 62961-ESHO 95 Randomised Clinical Trial. Eur. J. Cancer. 2021;158:123–132. doi: 10.1016/j.ejca.2021.09.015. PubMed DOI

Zhu N., Hou J. Assessing Immune Infiltration and the Tumor Microenvironment for the Diagnosis and Prognosis of Sarcoma. Cancer Cell Int. 2020;20:577. doi: 10.1186/s12935-020-01672-3. PubMed DOI PMC

Zhang L., Lin W., Zhou Y., Shao F., Gao Y., He J. A Complement-Related Gene Signature for Predicting Overall Survival and Immunotherapy Efficacy in Sarcoma Patients. Front. Cell Dev. Biol. 2022;10:765062. doi: 10.3389/fcell.2022.765062. PubMed DOI PMC

Li N., Yuan J., Tian W., Meng L., Liu Y. T-Cell Receptor Repertoire Analysis for the Diagnosis and Treatment of Solid Tumor: A Methodology and Clinical Applications. Cancer Commun. 2020;40:473–483. doi: 10.1002/cac2.12074. PubMed DOI PMC

Paijens S.T., Vledder A., de Bruyn M., Nijman H.W. Tumor-Infiltrating Lymphocytes in the Immunotherapy Era. Cell Mol. Immunol. 2021;18:842–859. doi: 10.1038/s41423-020-00565-9. PubMed DOI PMC

Tawbi H.A., Burgess M., Bolejack V., van Tine B.A., Schuetze S.M., Hu J., D’Angelo S., Attia S., Riedel R.F., Priebat D.A., et al. Pembrolizumab in Advanced Soft-Tissue Sarcoma and Bone Sarcoma (SARC028): A Multicentre, Two-Cohort, Single-Arm, Open-Label, Phase 2 Trial. Lancet Oncol. 2017;18:1493–1501. doi: 10.1016/S1470-2045(17)30624-1. PubMed DOI PMC

Chakravarthy A., Furness A., Joshi K., Ghorani E., Ford K., Ward M.J., King E.V., Lechner M., Marafioti T., Quezada S.A., et al. Pan-Cancer Deconvolution of Tumour Composition Using DNA Methylation. Nat. Commun. 2018;9:3220. doi: 10.1038/s41467-018-05570-1. PubMed DOI PMC

Galon J., Bruni D. Approaches to Treat Immune Hot, Altered and Cold Tumours with Combination Immunotherapies. Nat. Rev. Drug Discov. 2019;18:197–218. doi: 10.1038/s41573-018-0007-y. PubMed DOI

Sharma A., Bode B., Studer G., Moch H., Okoniewski M., Knuth A., von Boehmer L., van den Broek M. Radiotherapy of Human Sarcoma Promotes an Intratumoral Immune Effector Signature. Clin. Cancer Res. 2013;19:4843–4853. doi: 10.1158/1078-0432.CCR-13-0352. PubMed DOI

Snow H., Mitchell C., Hendry S., McKinley M., Byrne D., Ngan S., Chander S., Chu J., Desai J., Bae S., et al. Characterising the Immune Microenvironment in Liposarcoma, Its Impact on Prognosis and the Impact of Radiotherapy. J. Surg. Oncol. 2021;123:117–126. doi: 10.1002/jso.26261. PubMed DOI

Zhang S., Kohli K., Graeme Black R., Yao L., Spadinger S.M., He Q., Pillarisetty V.G., Cranmer L.D., van Tine B.A., Yee C., et al. Systemic Interferon-g Increases MHC Class I Expression and T-Cell Infiltration in Cold Tumors: Results of a Phase 0 Clinical Trial. Cancer Immunol. Res. 2019;7:1237–1243. doi: 10.1158/2326-6066.CIR-18-0940. PubMed DOI PMC

Italiano A., Bessede A., Pulido M., Bompas E., Piperno-Neumann S., Chevreau C., Penel N., Bertucci F., Toulmonde M., Bellera C., et al. Pembrolizumab in Soft-Tissue Sarcomas with Tertiary Lymphoid Structures: A Phase 2 PEMBROSARC Trial Cohort. Nat. Med. 2022;28:1199–1206. doi: 10.1038/s41591-022-01821-3. PubMed DOI

Sharonov G.V., Serebrovskaya E.O., Yuzhakova D.V., Britanova O.V., Chudakov D.M. B Cells, Plasma Cells and Antibody Repertoires in the Tumour Microenvironment. Nat. Rev. Immunol. 2020;20:294–307. doi: 10.1038/s41577-019-0257-x. PubMed DOI

Sautès-Fridman C., Petitprez F., Calderaro J., Fridman W.H. Tertiary Lymphoid Structures in the Era of Cancer Immunotherapy. Nat. Rev. Cancer. 2019;19:307–325. doi: 10.1038/s41568-019-0144-6. PubMed DOI

Tsagozis P., Augsten M., Zhang Y., Li T., Hesla A., Bergh J., Haglund F., Tobin N.P., Ehnman M. An Immunosuppressive Macrophage Profile Attenuates the Prognostic Impact of CD20-Positive B Cells in Human Soft Tissue Sarcoma. Cancer Immunol. Immunother. 2019;68:927–936. doi: 10.1007/s00262-019-02322-y. PubMed DOI PMC

Tseng W.W., Malu S., Zhang M., Chen J., Sim G.C., Wei W., Ingram D., Somaiah N., Lev D.C., Pollock R.E., et al. Analysis of the Intratumoral Adaptive Immune Response in Well Differentiated and Dedifferentiated Retroperitoneal Liposarcoma. Sarcoma. 2015;2015:547460. doi: 10.1155/2015/547460. PubMed DOI PMC

Cózar B., Greppi M., Carpentier S., Narni-Mancinelli E., Chiossone L., Vivier E. Tumor-Infiltrating Natural Killer Cells. Cancer Discov. 2021;11:34–44. doi: 10.1158/2159-8290.CD-20-0655. PubMed DOI PMC

Pan Y., Yu Y., Wang X., Zhang T. Tumor-Associated Macrophages in Tumor Immunity. Front. Immunol. 2020;11:583084. doi: 10.3389/fimmu.2020.583084. PubMed DOI PMC

Dancsok A.R., Gao D., Lee A.F., Steigen S.E., Blay J.Y., Thomas D.M., Maki R.G., Nielsen T.O., Demicco E.G. Tumor-Associated Macrophages and Macrophage-Related Immune Checkpoint Expression in Sarcomas. Oncoimmunology. 2020;9:1747340. doi: 10.1080/2162402X.2020.1747340. PubMed DOI PMC

Nabeshima A., Matsumoto Y., Fukushi J., Iura K., Matsunobu T., Endo M., Fujiwara T., Iida K., Fujiwara Y., Hatano M., et al. Tumour-Associated Macrophages Correlate with Poor Prognosis in Myxoid Liposarcoma and Promote Cell Motility and Invasion via the HB-EGF-EGFR-PI3K/Akt Pathways. Br. J. Cancer. 2015;112:547–555. doi: 10.1038/bjc.2014.637. PubMed DOI PMC

Sorbye S.W., Kilvaer T.K., Valkov A., Donnem T., Smeland E., Al-Shibli K., Bremnes R.M., Busund L.T. Prognostic Impact of CD57, CD68, M-CSF, CSF-1R, Ki67 and TGF-Beta in Soft Tissue Sarcomas. BMC Clin. Pathol. 2012;12:7. doi: 10.1186/1472-6890-12-7. PubMed DOI PMC

Keung E.Z., Tsai J.W., Ali A.M., Cormier J.N., Bishop A.J., Guadagnolo B.A., Torres K.E., Somaiah N., Hunt K.K., Wargo J.A., et al. Analysis of the Immune Infiltrate in Undifferentiated Pleomorphic Sarcoma of the Extremity and Trunk in Response to Radiotherapy: Rationale for Combination Neoadjuvant Immune Checkpoint Inhibition and Radiotherapy. Oncoimmunology. 2018;7:e1385689. doi: 10.1080/2162402X.2017.1385689. PubMed DOI PMC

Rutkowski P., Kaminska J., Kowalska M., Ruka W., Steffen J. Cytokine Serum Levels in Soft Tissue Sarcoma Patients: Correlations with Clinico-Pathological Features and Prognosis. Int. J. Cancer. 2002;100:463–471. doi: 10.1002/ijc.10496. PubMed DOI

Hagi T., Nakamura T., Iino T., Matsubara T., Asanuma K., Matsumine A., Sudo A. The Diagnostic and Prognostic Value of Interleukin-6 in Patients with Soft Tissue Sarcomas. Sci. Rep. 2017;7:9640. doi: 10.1038/s41598-017-08781-6. PubMed DOI PMC

Nakamura K., Nakamura T., Iino T., Hagi T., Kita K., Asanuma K., Sudo A. Expression of Interleukin-6 and the Interleukin-6 Receptor Predicts the Clinical Outcomes of Patients with Soft Tissue Sarcomas. Cancers. 2020;12:585. doi: 10.3390/cancers12030585. PubMed DOI PMC

Casadei L., Calore F., Creighton C.J., Guescini M., Batte K., Iwenofu O.H., Zewdu A., Braggio D.A., Bill K.L., Fadda P., et al. Exosome-Derived MiR-25-3p and MiR-92a-3p Stimulate Liposarcoma Progression. Cancer Res. 2017;77:3846–3856. doi: 10.1158/0008-5472.CAN-16-2984. PubMed DOI PMC

Kampan N.C., Xiang S.D., McNally O.M., Stephens A.N., Quinn M.A., Plebanski M. Immunotherapeutic Interleukin-6 or Interleukin-6 Receptor Blockade in Cancer: Challenges and Opportunities. Curr. Med. Chem. 2018;25:4785–4806. doi: 10.2174/0929867324666170712160621. PubMed DOI

Mazzu Y.Z., Hu Y., Shen Y., Tuschl T., Singer S. MiR-193b Regulates Tumorigenesis in Liposarcoma Cells via PDGFR, TGFβ, and Wnt Signaling. Sci. Rep. 2019;9:3197. doi: 10.1038/s41598-019-39560-0. PubMed DOI PMC

Jiang Y., Chen M., Nie H., Yuan Y. PD-1 and PD-L1 in Cancer Immunotherapy: Clinical Implications and Future Considerations. Hum. Vaccin. Immunother. 2019;15:1111–1122. doi: 10.1080/21645515.2019.1571892. PubMed DOI PMC

Puhr H.C., Ilhan-Mutlu A. New Emerging Targets in Cancer Immunotherapy: The Role of LAG3. ESMO Open. 2019;4:e000482. doi: 10.1136/esmoopen-2018-000482. PubMed DOI PMC

He Y., Cao J., Zhao C., Li X., Zhou C., Hirsch F.R. TIM-3, a Promising Target for Cancer Immunotherapy. Onco Targets Ther. 2018;11:7005–7009. doi: 10.2147/OTT.S170385. PubMed DOI PMC

Shiravand Y., Khodadadi F., Kashani S.M.A., Hosseini-Fard S.R., Hosseini S., Sadeghirad H., Ladwa R., O’Byrne K., Kulasinghe A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022;29:3044–3060. doi: 10.3390/curroncol29050247. PubMed DOI PMC

Movva S., Wen W., Chen W., Millis S.Z., Gatalica Z., Reddy S., von Mehren M., van Tine B.A. Multi-Platform Profiling of over 2000 Sarcomas: Identification of Biomarkers and Novel Therapeutic Targets. Oncotarget. 2015;6:12234–12247. doi: 10.18632/oncotarget.3498. PubMed DOI PMC

Torabi A., Amaya C.N., Wians F.H., Bryan B.A. PD-1 and PD-L1 Expression in Bone and Soft Tissue Sarcomas. Pathology. 2017;49:506–513. doi: 10.1016/j.pathol.2017.05.003. PubMed DOI

Kim J.R., Moon Y.J., Kwon K.S., Bae J.S., Wagle S., Kim K.M., Park H.S., Lee H., Moon W.S., Chung M.J., et al. Tumor Infiltrating PD1-Positive Lymphocytes and the Expression of PD-L1 Predict Poor Prognosis of Soft Tissue Sarcomas. PLoS ONE. 2013;8:e82870. doi: 10.1371/journal.pone.0082870. PubMed DOI PMC

Miyake M., Oda Y., Nishimura N., Morizawa Y., Ohnishi S., Hatakeyama K., Fujii T., Hori S., Gotoh D., Nakai Y., et al. Integrative Assessment of Clinicopathological Parameters and the Expression of PD-L1, PD-L2 and PD-1 in Tumor Cells of Retroperitoneal Sarcoma. Oncol. Lett. 2020;20:190. doi: 10.3892/ol.2020.12052. PubMed DOI PMC

. FDA Approves Anti-LAG3 Checkpoint. Nat. Biotechnol. 2022;40:625. doi: 10.1038/s41587-022-01331-0. PubMed DOI

Que Y., Fang Z., Guan Y., Xiao W., Xu B., Zhao J., Chen H., Zhang X., Zeng M., Liang Y., et al. LAG-3 Expression on Tumor-Infiltrating T Cells in Soft Tissue Sarcoma Correlates with Poor Survival. Cancer Biol. Med. 2019;16:331–340. doi: 10.20892/j.issn.2095-3941.2018.0306. PubMed DOI PMC

Dufresne A., Lesluyes T., Ménétrier-Caux C., Brahmi M., Darbo E., Toulmonde M., Italiano A., Mir O., le Cesne A., le Guellec S., et al. Specific Immune Landscapes and Immune Checkpoint Expressions in Histotypes and Molecular Subtypes of Sarcoma. Oncoimmunology. 2020;9:1792036. doi: 10.1080/2162402X.2020.1792036. PubMed DOI PMC

Que Y., Xiao W., Guan Y.X., Liang Y., Yan S.M., Chen H.Y., Li Q.Q., Xu B.S., Zhou Z.W., Zhang X. PD-L1 Expression Is Associated with FOXP3+ Regulatory T-Cell Infiltration of Soft Tissue Sarcoma and Poor Patient Prognosis. J. Cancer. 2017;8:2018–2025. doi: 10.7150/jca.18683. PubMed DOI PMC

Zheng B., Wang J., Cai W., Lao I., Shi Y., Luo X., Yan W. Changes in the Tumor Immune Microenvironment in Resected Recurrent Soft Tissue Sarcomas. Ann. Transl. Med. 2019;7:387. doi: 10.21037/atm.2019.07.43. PubMed DOI PMC

Budczies J., Mechtersheimer G., Denkert C., Klauschen F., Mughal S.S., Chudasama P., Bockmayr M., Jöhrens K., Endris V., Lier A., et al. PD-L1 (CD274) Copy Number Gain, Expression, and Immune Cell Infiltration as Candidate Predictors for Response to Immune Checkpoint Inhibitors in Soft-Tissue Sarcoma. Oncoimmunology. 2017;6:e1279777. doi: 10.1080/2162402X.2017.1279777. PubMed DOI PMC

Roulleaux Dugage M., Nassif E.F., Italiano A., Bahleda R. Improving Immunotherapy Efficacy in Soft-Tissue Sarcomas: A Biomarker Driven and Histotype Tailored Review. Front. Immunol. 2021;12:775761. doi: 10.3389/fimmu.2021.775761. PubMed DOI PMC

Tan A.C., Bagley S.J., Wen P.Y., Lim M., Platten M., Colman H., Ashley D.M., Wick W., Chang S.M., Galanis E., et al. Systematic Review of Combinations of Targeted or Immunotherapy in Advanced Solid Tumors. J. Immunother. Cancer. 2021;9:e002459. doi: 10.1136/jitc-2021-002459. PubMed DOI PMC

Sadeghi Rad H., Monkman J., Warkiani M.E., Ladwa R., O’Byrne K., Rezaei N., Kulasinghe A. Understanding the Tumor Microenvironment for Effective Immunotherapy. Med. Res. Rev. 2021;41:1474–1498. doi: 10.1002/med.21765. PubMed DOI PMC

Ozaniak A., Vachtenheim J., Lischke R., Bartunkova J., Strizova Z. Novel Insights into the Immunotherapy of Soft Tissue Sarcomas: Do We Need a Change of Perspective? Biomedicines. 2021;9:935. doi: 10.3390/biomedicines9080935. PubMed DOI PMC

Mizukoshi E., Kaneko S. Telomerase-Targeted Cancer Immunotherapy. Int. J. Mol. Sci. 2019;20:1823. doi: 10.3390/ijms20081823. PubMed DOI PMC

Parkhurst M.R., Riley J.P., Igarashi T., Li Y., Robbins P.F., Rosenberg S.A. Immunization of Patients with the HTERT:540-548 Peptide Induces Peptide-Reactive T Lymphocytes That Do Not Recognize Tumors Endogenously Expressing Telomerase. Clin. Cancer Res. 2004;10:4688–4698. doi: 10.1158/1078-0432.CCR-04-0325. PubMed DOI PMC

Vafaei S., Zekiy A.O., Khanamir R.A., Zaman B.A., Ghayourvahdat A., Azimizonuzi H., Zamani M. Combination Therapy with Immune Checkpoint Inhibitors (ICIs); a New Frontier. Cancer Cell Int. 2022;22:2. doi: 10.1186/s12935-021-02407-8. PubMed DOI PMC

D’Angelo S.P., Mahoney M.R., van Tine B.A., Atkins J., Milhem M.M., Jahagirdar B.N., Antonescu C.R., Horvath E., Tap W.D., Schwartz G.K., et al. Nivolumab with or without Ipilimumab Treatment for Metastatic Sarcoma (Alliance A091401): Two Open-Label, Non-Comparative, Randomised, Phase 2 Trials. Lancet Oncol. 2018;19:416–426. doi: 10.1016/S1470-2045(18)30006-8. PubMed DOI PMC

Márquez-Rodas I., Longo F., Rodriguez-Ruiz M.E., Calles A., Ponce S., Jove M., Rubio-Viqueira B., Perez-Gracia J.L., Gómez-Rueda A., López-Tarruella S., et al. Intratumoral Nanoplexed Poly I:C BO-112 in Combination with Systemic Anti-PD-1 for Patients with Anti-PD-1-Refractory Tumors. Sci. Transl. Med. 2020;12:eabb0391. doi: 10.1126/scitranslmed.abb0391. PubMed DOI

Wagner M.J., Zhang Y., Cranmer L.D., Loggers E.T., Black G., McDonnell S., Maxwell S., Johnson R., Moore R., de Viveiros P.H., et al. A Phase 1/2 Trial Combining Avelumab and Trabectedin for Advanced Liposarcoma and Leiomyosarcoma. Clin. Cancer Res. 2022;28:2306–2312. doi: 10.1158/1078-0432.CCR-22-0240. PubMed DOI PMC

Smith B.D., Kaufman M.D., Wise S.C., Ahn Y.M., Caldwell T.M., Leary C.B., Lu W.P., Tan G., Vogeti L., Vogeti S., et al. Vimseltinib: A Precision CSF1R Therapy for Tenosynovial Giant Cell Tumors and Diseases Promoted by Macrophages. Mol. Cancer Ther. 2021;20:2098–2109. doi: 10.1158/1535-7163.MCT-21-0361. PubMed DOI PMC

Chawla S.P., van Tine B.A., Pollack S.M., Ganjoo K.N., Elias A.D., Riedel R.F., Attia S., Choy E., Okuno S.H., Agulnik M., et al. Phase II Randomized Study of CMB305 and Atezolizumab Compared with Atezolizumab Alone in Soft-Tissue Sarcomas Expressing NY-ESO-1. J. Clin. Oncol. 2022;40:1291–1300. doi: 10.1200/JCO.20.03452. PubMed DOI

Osgood C.L., Chuk M.K., Theoret M.R., Huang L., He K., Her L., Keegan P., Pazdur R. FDA Approval Summary: Eribulin for Patients with Unresectable or Metastatic Liposarcoma Who Have Received a Prior Anthracycline-Containing Regimen. Clin. Cancer Res. 2017;23:6384–6389. doi: 10.1158/1078-0432.CCR-16-2422. PubMed DOI PMC

Pollack S.M., Jungbluth A.A., Hoch B.L., Farrar E.A., Bleakley M., Schneider D.J., Loggers E.T., Rodler E., Eary J.F., Conrad E.U., et al. NY-ESO-1 Is a Ubiquitous Immunotherapeutic Target Antigen for Patients with Myxoid/Round Cell Liposarcoma. Cancer. 2012;118:4564–4570. doi: 10.1002/cncr.27446. PubMed DOI PMC

Iura K., Kohashi K., Ishii T., Maekawa A., Bekki H., Otsuka H., Yamada Y., Yamamoto H., Matsumoto Y., Iwamoto Y., et al. MAGEA4 Expression in Bone and Soft Tissue Tumors: Its Utility as a Target for Immunotherapy and Diagnostic Marker Combined with NY-ESO-1. Virchows Arch. 2017;471:383–392. doi: 10.1007/s00428-017-2206-z. PubMed DOI

Jo U., Roh J., Song M.J., Cho K.-J., Kim W., Song J.S. NY-ESO-1 as a Diagnostic and Prognostic Marker for Myxoid Liposarcoma. Am. J. Transl. Res. 2022;14:1268–1278. PubMed PMC

Jiang Z., Jiang X., Chen S., Lai Y., Wei X., Li B., Lin S., Wang S., Wu Q., Liang Q., et al. Anti-GPC3-CAR T Cells Suppress the Growth of Tumor Cells in Patient-Derived Xenografts of Hepatocellular Carcinoma. Front. Immunol. 2017;7:690. doi: 10.3389/fimmu.2016.00690. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...