Spatiotemporal Mislocalization of Nuclear Membrane-Associated Proteins in γ-Irradiation-Induced Senescent Cells

. 2020 Apr 17 ; 9 (4) : . [epub] 20200417

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32316379

Cellular senescence, induced by genotoxic or replication stress, is accompanied by defects in nuclear morphology and nuclear membrane-heterochromatin disruption. In this work, we analyzed cytological and molecular changes in the linker of nucleoskeleton and cytoskeleton (LINC) complex proteins in senescence triggered by γ-irradiation. We used human mammary carcinoma and osteosarcoma cell lines, both original and shRNA knockdown clones targeting lamin B receptor (LBR) and leading to LBR and lamin B (LB1) reduction. The expression status and integrity of LINC complex proteins (nesprin-1, SUN1, SUN2), lamin A/C, and emerin were analyzed by immunodetection using confocal microscopy and Western blot. The results show frequent mislocalization of these proteins from the nuclear membrane to cytoplasm and micronuclei and, in some cases, their fragmentation and amplification. The timing of these changes clearly preceded the onset of senescence. The LBR deficiency triggered neither senescence nor changes in the LINC protein distribution before irradiation. However, the cytological changes following irradiation were more pronounced in shRNA knockdown cells compared to original cell lines. We conclude that mislocalization of LINC complex proteins is a significant characteristic of cellular senescence phenotypes and may influence complex events at the nuclear membrane, including trafficking and heterochromatin attachment.

Zobrazit více v PubMed

Zhang Q., Skepper J.N., Yang F., Davies J.D., Hegyi L., Roberts L.G., Weissberg P.L., Ellis J.A., Shanahan C.M. Nesprins: A novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J. Cell Sci. 2001;114:4485–4498. PubMed

Rajgor D., Mellad J.A., Autore F., Zhang Q., Shanahan C.M. Multiple novel nesprin-1and nesprin-2 variants act as versatile tissue-specific intracellular scaffolds. PLos ONE. 2012;7:e40098. doi: 10.1371/journal.pone.0040098. PubMed DOI PMC

Reigor D., Shanahan C.M. Nesprins: From the nuclear envelope and beyond. Expert Rev. Mol. Med. 2013;15 doi: 10.1017/em.2013.6. PubMed DOI PMC

Crisp M., Liu Q., Roux Q., Rattner J.B., Shanahan C., Burke B., Stahl P.D., Hodzic D. Coupling of the nucleus and the cytoplasm: Role of the LINC complex. J. Cell Biol. 2006;172:41–53. doi: 10.1083/jcb.200509124. PubMed DOI PMC

Zhou C., Li R., Shanahan C.M., Zhang Q. Nesprin-1/2: Roles in nuclear envelope organization, myogenesis and muscle disease. Biochem. Soc. Trans. 2018;46:311–320. doi: 10.1042/BST20170149. PubMed DOI

Dupin I., Etienne-Manneville S. Nuclear positioning mechanisms and functions. Int. J. Biochem. Cell Biol. 2011;42:1698–1707. doi: 10.1016/j.biocel.2011.09.004. PubMed DOI

Gundersen G.G., Worman H.J. Nuclear positioning. Cell. 2013;152:1376–1389. doi: 10.1016/j.cell.2013.02.031. PubMed DOI PMC

Shanahan C.M., Weissberg P.L., Metcalfe J.C. Isolation of gene markers differentiating and proliferating vascular smooth muscle cells. Circ. Res. 1993;73:193–204. doi: 10.1161/01.RES.73.1.193. PubMed DOI

Gotzman J., Foisner R.P. Madame Curie Bioscience Database. Volume 222 Landes Bioscience; Austin, TX, USA: 2013. Lamins and Emerin in muscular dystrophy: The nuclear envelope connection.

Zhang J., Felder A., Liu Y., Guo L.T., Lange S., Dalton N.D. Nesprin 1 is critical for nuclear positioning and anchorage. Hum. Mol. Genet. 2010;19:329–341. doi: 10.1093/hmg/ddp499. PubMed DOI PMC

Lee K.K., Haraguchi T., Lee R.S., Koujin T., Hiaoka Y., Wilson K.L. Distinct functional domains in emerin bind lamin A and DNA binding protein BAF. J. Cell. Sci. 2001;114:4567–4573. PubMed

Stierlé V., Couprie J., Ostlund C., Krimm I., Zinn-Justin S., Hossenlopp P. Worman, H.J.; Courvalin, J.C.; Duband-Goulet, I. The carboxyl-terminal region common to lamins A and C contains a DNA binding domain. Biochemistry. 2003;42:4819–4828. doi: 10.1021/bi020704g. PubMed DOI

Duong N.T., Morris G.E., Lam L.T., Zhang Q., Sewry C.A., Shanahan C.M., Holt I. Nesprins: tissue-specific expression of epsilon and other short isoforms. PLoS ONE. 2014;9:e94380. doi: 10.1371/journal.pone.0094380. PubMed DOI PMC

Meinke P., Nguyen T.D., Wehnert M.S. The LINC complex and human disease. Biochem. Soc. Trans. 2011;39:1693–1697. doi: 10.1042/BST20110658. PubMed DOI

Zhang Q., Bethmann C., Worth N.F., Davies J.D., Wasner C., Feuer A., Ragnauth C.D., Yi Q., Mellad J.A., Warren D.T., et al. Nesprins-1 and -2 are involved in the pathogenesis of Emery-Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum. Mol. Genet. 2007;16:2816–2833. doi: 10.1093/hmg/ddm238. PubMed DOI

Rahajro W.H., Enarson P., Sullivan T., Stewart C.L., Burke B. Nuclear envelope defects associated with LMNA mutations cause dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. J. Cell Sci. 2001;114:4447–4457. PubMed

Puckelwartz M.J., Kessler E.J., Kim G., deWitt M.M., Zhang Y., Earley J.U., Depreux F.F., Holaska J., Mewborn S.K., Pytel P., et al. Neprin-1 mutations in human and murine cardiomyopathy. J. Mol. Cell Cardiol. 2010;48:600–608. doi: 10.1016/j.yjmcc.2009.11.006. PubMed DOI PMC

Li P., Meinke P., Huomg L.T.T., Wehnert M., Noegel A.A. Contribution of SUN1 mutations to the pathomechanism in muscular dystrophies. Hum. Mutat. 2014;35:452–461. doi: 10.1002/humu.22504. PubMed DOI

Meinke P., Mattioli E., Haque F., Antoku S., Columbaro M., Straatman K.R., Worman H.J., Gundersen G.G., Lattanzi G., Wehnert M., et al. Muscular dystrophy associated SUN1 and SUN2 variants disrupt nuclear-cytoskeletal connections and myonuclear organization. PLoS Genet. 2014;10:e1004114. doi: 10.1371/journal.pgen.1004605. PubMed DOI PMC

Razafsky D., Hodzic D. Binding KASH under SUN: The many faces of nucleo-skeletal connections. J. Cell Biol. 2009;186:461–472. doi: 10.1083/jcb.200906068. PubMed DOI PMC

Banerjee I., Zhang J., Moore-Morris T., Pfeiffer E., Buchholz K.S., Liu A., Ouyang K., Stroud M.J., Gerace L., Evans S.M., et al. Targeted ablation of nesprin 1 and nesprin 2 from murine myocardium results in cardiomyopathy, altered nuclear morphology and inhibition of biomechanical gene response. PLoS Genet. 2014;10:e1004114. doi: 10.1371/journal.pgen.1004114. PubMed DOI PMC

Stewart C.L., Burke B. The missing LINC: A mammalian KASH protein coupling meiotic chromosomes to the cytoskeleton. Nucleus 5. 2014 doi: 10.4161/nucl.27819. PubMed DOI PMC

Lukášová E., Kovařík A., Bačíková A., Falk M., Kozubek S. Loss of lamin B receptor is necessary to induce cellular senescence. Biochem. J. 2017;474:281–300. doi: 10.1042/BCJ20160459. PubMed DOI

Lukášová E., Řezáčová M., Bačíková A., Šebejová L., Vávrová J., Kozubek S. Distinct cellular responses to replication stress leading to apoptosis or senescence. FEBS Open Biol. 2019;9:870–890. doi: 10.1002/2211-5463.12632. PubMed DOI PMC

Hirano Y., Hizume K., Kimura H., Takeyasu K., Haraguchi T., Hiraoka Y. Lamin B receptor recognizes specific modifications of Histone 4 in heterochromatin formation. J. Biol. Chem. 2012;287:4265–42663. doi: 10.1074/jbc.M112.397950. PubMed DOI PMC

Solovei I., Wang A.S., Thanisch K., Schmidt C.S., Krebs S., Zwerger M., Cohen T.V., Devys D., Foisner R., Peichl L., et al. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell. 2013;152:584–598. doi: 10.1016/j.cell.2013.01.009. PubMed DOI

Campisi J., d’Adda di Fagagna F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007;8:729–740. doi: 10.1038/nrm2233. PubMed DOI

Fumagalli M., Rossiello F., Mondello C., d’Adda di Fagagna F. Stable cellular senescence is associated with persistent DDR activation. PLoS ONE. 2014 doi: 10.1371/journal.pone.0110969. PubMed DOI PMC

Kosar M., Bartkova J., Hubackova S., Hodny Z., Lukas J., Bartek J. Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner, and follow expression of p16ink4a. Cell Cycle. 2011;10:457–468. doi: 10.4161/cc.10.3.14707. PubMed DOI

Matula P.A., Danek O., Maska M., Vinkler M., Kozubek M. Acquiarium: Free software for acquisition and analysis of 3D images of cells Fluoresence Microscopy; Proceedings of the IEEE International Symposium on Biomedical Imaging; Boston, MA, USA. 28 June–1 July 2009; DOI

Dimri G.P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E.E., Linskens M., Rubelj I., Pereira-Smith O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA. 1995;92:9363–9367. doi: 10.1073/pnas.92.20.9363. PubMed DOI PMC

Franek E., Haluzík M., Canecki-Varzic S., Sargin M., Macura S., Zacho J., Christiansen J.S. Twice-daily insulin degludec/insulin as part provides superior fasting plasma glucose control and a reduced rate of hypoglycemia compared with basic insulin aspart 30 in insulin-naïve adults with Type 2 diabetes. Diabet. Med. 2016;33:497–505. doi: 10.1111/dme.12982. PubMed DOI PMC

Feringa F.M., Raajimakers M.A., Hadders C., Vaarting L., Macurek L., Heiting L., Krenning L., Medema R.H. Persistent repair intermediates induce senescence. Nat. Com. 2018;2923 doi: 10.1038/s41467-018-06308-9. PubMed DOI PMC

Stixová L., Komůrková D., Svobodová Kovaříková A., Bártová E. UVA irradiation strengthened an interaction between UBF1/2 proteins and H4K20 di-/tri-methylation. Chromosome Res. 2019;27:41–55. doi: 10.1007/s10577-018-9596-x. PubMed DOI

Mellad J.A., Warren D.T., Shanahan C.M. Nesprins LINC the nucleus and cytoskeleton. Curr. Oppin. Cell Biol. 2011;23:47–54. doi: 10.1016/j.ceb.2010.11.006. PubMed DOI

Lei K.L., Zhu R., Xu C., Shao T., Xu Y., Zhuang Y., Han M. Inner nuclear envelope proteins SUN1 and SUN2 play a prominent role in the DNA damage response. Curr. Biol. 2012;22:1609–1615. doi: 10.1016/j.cub.2012.06.043. PubMed DOI PMC

Schwartz R.K., Rodriguez E.C., King M.C. A role for nuclear envelope-bridging complexes in homology-directed repair. Mol. Biol. Cell. 2014;25:2461–2471. doi: 10.1091/mbc.e13-10-0569. PubMed DOI PMC

Sur I., Neumann S., Noegel A.A. Nesprin-1 role in DNA damage response. Nucleus. 2014;5:173–191. doi: 10.4161/nucl.29023. PubMed DOI PMC

Lottersberger F., Karssemeijer R.A., Dimitrova N., de Lange E. 53BP1 and LINC complex promote microtubule-dependent DSB mobility and DNA repair. Cell. 2015;163:880–893. doi: 10.1016/j.cell.2015.09.057. PubMed DOI PMC

Yang W., Zheng H., Wang Y., Lian F., Hu Z., Xue S. Nesprin-1 plays an important role in the proliferation and apoptosis of mesenchymal stem cells. Int. J. Mol. Med. 2013;32:805–813. doi: 10.3892/ijmm.2013.1445. PubMed DOI

Muchir A., van Engelen B.G., Lammens M., Mislow J.M., McNally E., Schwartz K., Bonne G. Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene. Exp. Cell Res. 2003;291:352–362. doi: 10.1016/j.yexcr.2003.07.002. PubMed DOI

Lammerding J., Hsiao J., Schulze P.C., Kozlov S., Stewart C.L., Lee R.T. Abnormal nuclear shape and impaired mechanotransduction in emerin deficient cells. J. Cell Biol. 2005;170:781–791. doi: 10.1083/jcb.200502148. PubMed DOI PMC

Zhou C., Li C., Zhou B., Sun H., Koullourou V., Holt I., Puckelwartz M.J., Warren D.T., Hayward R., Lin Z., et al. Novel nesprin-1 mutations associated with dilated cardiomyopathy cause nuclear envelope disruption and defects in myogenesis. Hum. Mol. Genet. 2017;26:2258–2276. doi: 10.1093/hmg/ddx116. PubMed DOI PMC

Ognibene A., Sabatelli T., Petrini S., Squarzoni S., Riccio M., Santi S., Villanova M., Palmeri S., Merlini L., Maraldi M.N. Nuclear changes in a case of X-linked Emery-Dreifuss muscular dystrophy. Muscle Nerve. 1999;22:864–869. doi: 10.1002/(SICI)1097-4598(199907)22:7<864::AID-MUS8>3.0.CO;2-G. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...