Spatiotemporal Mislocalization of Nuclear Membrane-Associated Proteins in γ-Irradiation-Induced Senescent Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32316379
PubMed Central
PMC7227243
DOI
10.3390/cells9040999
PII: cells9040999
Knihovny.cz E-zdroje
- Klíčová slova
- LINC complex proteins, SUN1/2, heterochromatin-nuclear membrane disconnection, lamin B receptor, nesprin-1, γ-irradiation,
- MeSH
- časoprostorová analýza MeSH
- jaderný obal metabolismus MeSH
- lidé MeSH
- membránové proteiny metabolismus MeSH
- receptor laminu B MeSH
- receptory cytoplazmatické a nukleární genetika MeSH
- stárnutí buněk genetika MeSH
- záření gama terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- membránové proteiny MeSH
- receptory cytoplazmatické a nukleární MeSH
Cellular senescence, induced by genotoxic or replication stress, is accompanied by defects in nuclear morphology and nuclear membrane-heterochromatin disruption. In this work, we analyzed cytological and molecular changes in the linker of nucleoskeleton and cytoskeleton (LINC) complex proteins in senescence triggered by γ-irradiation. We used human mammary carcinoma and osteosarcoma cell lines, both original and shRNA knockdown clones targeting lamin B receptor (LBR) and leading to LBR and lamin B (LB1) reduction. The expression status and integrity of LINC complex proteins (nesprin-1, SUN1, SUN2), lamin A/C, and emerin were analyzed by immunodetection using confocal microscopy and Western blot. The results show frequent mislocalization of these proteins from the nuclear membrane to cytoplasm and micronuclei and, in some cases, their fragmentation and amplification. The timing of these changes clearly preceded the onset of senescence. The LBR deficiency triggered neither senescence nor changes in the LINC protein distribution before irradiation. However, the cytological changes following irradiation were more pronounced in shRNA knockdown cells compared to original cell lines. We conclude that mislocalization of LINC complex proteins is a significant characteristic of cellular senescence phenotypes and may influence complex events at the nuclear membrane, including trafficking and heterochromatin attachment.
Zobrazit více v PubMed
Zhang Q., Skepper J.N., Yang F., Davies J.D., Hegyi L., Roberts L.G., Weissberg P.L., Ellis J.A., Shanahan C.M. Nesprins: A novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J. Cell Sci. 2001;114:4485–4498. PubMed
Rajgor D., Mellad J.A., Autore F., Zhang Q., Shanahan C.M. Multiple novel nesprin-1and nesprin-2 variants act as versatile tissue-specific intracellular scaffolds. PLos ONE. 2012;7:e40098. doi: 10.1371/journal.pone.0040098. PubMed DOI PMC
Reigor D., Shanahan C.M. Nesprins: From the nuclear envelope and beyond. Expert Rev. Mol. Med. 2013;15 doi: 10.1017/em.2013.6. PubMed DOI PMC
Crisp M., Liu Q., Roux Q., Rattner J.B., Shanahan C., Burke B., Stahl P.D., Hodzic D. Coupling of the nucleus and the cytoplasm: Role of the LINC complex. J. Cell Biol. 2006;172:41–53. doi: 10.1083/jcb.200509124. PubMed DOI PMC
Zhou C., Li R., Shanahan C.M., Zhang Q. Nesprin-1/2: Roles in nuclear envelope organization, myogenesis and muscle disease. Biochem. Soc. Trans. 2018;46:311–320. doi: 10.1042/BST20170149. PubMed DOI
Dupin I., Etienne-Manneville S. Nuclear positioning mechanisms and functions. Int. J. Biochem. Cell Biol. 2011;42:1698–1707. doi: 10.1016/j.biocel.2011.09.004. PubMed DOI
Gundersen G.G., Worman H.J. Nuclear positioning. Cell. 2013;152:1376–1389. doi: 10.1016/j.cell.2013.02.031. PubMed DOI PMC
Shanahan C.M., Weissberg P.L., Metcalfe J.C. Isolation of gene markers differentiating and proliferating vascular smooth muscle cells. Circ. Res. 1993;73:193–204. doi: 10.1161/01.RES.73.1.193. PubMed DOI
Gotzman J., Foisner R.P. Madame Curie Bioscience Database. Volume 222 Landes Bioscience; Austin, TX, USA: 2013. Lamins and Emerin in muscular dystrophy: The nuclear envelope connection.
Zhang J., Felder A., Liu Y., Guo L.T., Lange S., Dalton N.D. Nesprin 1 is critical for nuclear positioning and anchorage. Hum. Mol. Genet. 2010;19:329–341. doi: 10.1093/hmg/ddp499. PubMed DOI PMC
Lee K.K., Haraguchi T., Lee R.S., Koujin T., Hiaoka Y., Wilson K.L. Distinct functional domains in emerin bind lamin A and DNA binding protein BAF. J. Cell. Sci. 2001;114:4567–4573. PubMed
Stierlé V., Couprie J., Ostlund C., Krimm I., Zinn-Justin S., Hossenlopp P. Worman, H.J.; Courvalin, J.C.; Duband-Goulet, I. The carboxyl-terminal region common to lamins A and C contains a DNA binding domain. Biochemistry. 2003;42:4819–4828. doi: 10.1021/bi020704g. PubMed DOI
Duong N.T., Morris G.E., Lam L.T., Zhang Q., Sewry C.A., Shanahan C.M., Holt I. Nesprins: tissue-specific expression of epsilon and other short isoforms. PLoS ONE. 2014;9:e94380. doi: 10.1371/journal.pone.0094380. PubMed DOI PMC
Meinke P., Nguyen T.D., Wehnert M.S. The LINC complex and human disease. Biochem. Soc. Trans. 2011;39:1693–1697. doi: 10.1042/BST20110658. PubMed DOI
Zhang Q., Bethmann C., Worth N.F., Davies J.D., Wasner C., Feuer A., Ragnauth C.D., Yi Q., Mellad J.A., Warren D.T., et al. Nesprins-1 and -2 are involved in the pathogenesis of Emery-Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum. Mol. Genet. 2007;16:2816–2833. doi: 10.1093/hmg/ddm238. PubMed DOI
Rahajro W.H., Enarson P., Sullivan T., Stewart C.L., Burke B. Nuclear envelope defects associated with LMNA mutations cause dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. J. Cell Sci. 2001;114:4447–4457. PubMed
Puckelwartz M.J., Kessler E.J., Kim G., deWitt M.M., Zhang Y., Earley J.U., Depreux F.F., Holaska J., Mewborn S.K., Pytel P., et al. Neprin-1 mutations in human and murine cardiomyopathy. J. Mol. Cell Cardiol. 2010;48:600–608. doi: 10.1016/j.yjmcc.2009.11.006. PubMed DOI PMC
Li P., Meinke P., Huomg L.T.T., Wehnert M., Noegel A.A. Contribution of SUN1 mutations to the pathomechanism in muscular dystrophies. Hum. Mutat. 2014;35:452–461. doi: 10.1002/humu.22504. PubMed DOI
Meinke P., Mattioli E., Haque F., Antoku S., Columbaro M., Straatman K.R., Worman H.J., Gundersen G.G., Lattanzi G., Wehnert M., et al. Muscular dystrophy associated SUN1 and SUN2 variants disrupt nuclear-cytoskeletal connections and myonuclear organization. PLoS Genet. 2014;10:e1004114. doi: 10.1371/journal.pgen.1004605. PubMed DOI PMC
Razafsky D., Hodzic D. Binding KASH under SUN: The many faces of nucleo-skeletal connections. J. Cell Biol. 2009;186:461–472. doi: 10.1083/jcb.200906068. PubMed DOI PMC
Banerjee I., Zhang J., Moore-Morris T., Pfeiffer E., Buchholz K.S., Liu A., Ouyang K., Stroud M.J., Gerace L., Evans S.M., et al. Targeted ablation of nesprin 1 and nesprin 2 from murine myocardium results in cardiomyopathy, altered nuclear morphology and inhibition of biomechanical gene response. PLoS Genet. 2014;10:e1004114. doi: 10.1371/journal.pgen.1004114. PubMed DOI PMC
Stewart C.L., Burke B. The missing LINC: A mammalian KASH protein coupling meiotic chromosomes to the cytoskeleton. Nucleus 5. 2014 doi: 10.4161/nucl.27819. PubMed DOI PMC
Lukášová E., Kovařík A., Bačíková A., Falk M., Kozubek S. Loss of lamin B receptor is necessary to induce cellular senescence. Biochem. J. 2017;474:281–300. doi: 10.1042/BCJ20160459. PubMed DOI
Lukášová E., Řezáčová M., Bačíková A., Šebejová L., Vávrová J., Kozubek S. Distinct cellular responses to replication stress leading to apoptosis or senescence. FEBS Open Biol. 2019;9:870–890. doi: 10.1002/2211-5463.12632. PubMed DOI PMC
Hirano Y., Hizume K., Kimura H., Takeyasu K., Haraguchi T., Hiraoka Y. Lamin B receptor recognizes specific modifications of Histone 4 in heterochromatin formation. J. Biol. Chem. 2012;287:4265–42663. doi: 10.1074/jbc.M112.397950. PubMed DOI PMC
Solovei I., Wang A.S., Thanisch K., Schmidt C.S., Krebs S., Zwerger M., Cohen T.V., Devys D., Foisner R., Peichl L., et al. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell. 2013;152:584–598. doi: 10.1016/j.cell.2013.01.009. PubMed DOI
Campisi J., d’Adda di Fagagna F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007;8:729–740. doi: 10.1038/nrm2233. PubMed DOI
Fumagalli M., Rossiello F., Mondello C., d’Adda di Fagagna F. Stable cellular senescence is associated with persistent DDR activation. PLoS ONE. 2014 doi: 10.1371/journal.pone.0110969. PubMed DOI PMC
Kosar M., Bartkova J., Hubackova S., Hodny Z., Lukas J., Bartek J. Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner, and follow expression of p16ink4a. Cell Cycle. 2011;10:457–468. doi: 10.4161/cc.10.3.14707. PubMed DOI
Matula P.A., Danek O., Maska M., Vinkler M., Kozubek M. Acquiarium: Free software for acquisition and analysis of 3D images of cells Fluoresence Microscopy; Proceedings of the IEEE International Symposium on Biomedical Imaging; Boston, MA, USA. 28 June–1 July 2009; DOI
Dimri G.P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E.E., Linskens M., Rubelj I., Pereira-Smith O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA. 1995;92:9363–9367. doi: 10.1073/pnas.92.20.9363. PubMed DOI PMC
Franek E., Haluzík M., Canecki-Varzic S., Sargin M., Macura S., Zacho J., Christiansen J.S. Twice-daily insulin degludec/insulin as part provides superior fasting plasma glucose control and a reduced rate of hypoglycemia compared with basic insulin aspart 30 in insulin-naïve adults with Type 2 diabetes. Diabet. Med. 2016;33:497–505. doi: 10.1111/dme.12982. PubMed DOI PMC
Feringa F.M., Raajimakers M.A., Hadders C., Vaarting L., Macurek L., Heiting L., Krenning L., Medema R.H. Persistent repair intermediates induce senescence. Nat. Com. 2018;2923 doi: 10.1038/s41467-018-06308-9. PubMed DOI PMC
Stixová L., Komůrková D., Svobodová Kovaříková A., Bártová E. UVA irradiation strengthened an interaction between UBF1/2 proteins and H4K20 di-/tri-methylation. Chromosome Res. 2019;27:41–55. doi: 10.1007/s10577-018-9596-x. PubMed DOI
Mellad J.A., Warren D.T., Shanahan C.M. Nesprins LINC the nucleus and cytoskeleton. Curr. Oppin. Cell Biol. 2011;23:47–54. doi: 10.1016/j.ceb.2010.11.006. PubMed DOI
Lei K.L., Zhu R., Xu C., Shao T., Xu Y., Zhuang Y., Han M. Inner nuclear envelope proteins SUN1 and SUN2 play a prominent role in the DNA damage response. Curr. Biol. 2012;22:1609–1615. doi: 10.1016/j.cub.2012.06.043. PubMed DOI PMC
Schwartz R.K., Rodriguez E.C., King M.C. A role for nuclear envelope-bridging complexes in homology-directed repair. Mol. Biol. Cell. 2014;25:2461–2471. doi: 10.1091/mbc.e13-10-0569. PubMed DOI PMC
Sur I., Neumann S., Noegel A.A. Nesprin-1 role in DNA damage response. Nucleus. 2014;5:173–191. doi: 10.4161/nucl.29023. PubMed DOI PMC
Lottersberger F., Karssemeijer R.A., Dimitrova N., de Lange E. 53BP1 and LINC complex promote microtubule-dependent DSB mobility and DNA repair. Cell. 2015;163:880–893. doi: 10.1016/j.cell.2015.09.057. PubMed DOI PMC
Yang W., Zheng H., Wang Y., Lian F., Hu Z., Xue S. Nesprin-1 plays an important role in the proliferation and apoptosis of mesenchymal stem cells. Int. J. Mol. Med. 2013;32:805–813. doi: 10.3892/ijmm.2013.1445. PubMed DOI
Muchir A., van Engelen B.G., Lammens M., Mislow J.M., McNally E., Schwartz K., Bonne G. Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene. Exp. Cell Res. 2003;291:352–362. doi: 10.1016/j.yexcr.2003.07.002. PubMed DOI
Lammerding J., Hsiao J., Schulze P.C., Kozlov S., Stewart C.L., Lee R.T. Abnormal nuclear shape and impaired mechanotransduction in emerin deficient cells. J. Cell Biol. 2005;170:781–791. doi: 10.1083/jcb.200502148. PubMed DOI PMC
Zhou C., Li C., Zhou B., Sun H., Koullourou V., Holt I., Puckelwartz M.J., Warren D.T., Hayward R., Lin Z., et al. Novel nesprin-1 mutations associated with dilated cardiomyopathy cause nuclear envelope disruption and defects in myogenesis. Hum. Mol. Genet. 2017;26:2258–2276. doi: 10.1093/hmg/ddx116. PubMed DOI PMC
Ognibene A., Sabatelli T., Petrini S., Squarzoni S., Riccio M., Santi S., Villanova M., Palmeri S., Merlini L., Maraldi M.N. Nuclear changes in a case of X-linked Emery-Dreifuss muscular dystrophy. Muscle Nerve. 1999;22:864–869. doi: 10.1002/(SICI)1097-4598(199907)22:7<864::AID-MUS8>3.0.CO;2-G. PubMed DOI