A simple, high-throughput stabilization assay to test HIV-1 uncoating inhibitors
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31745222
PubMed Central
PMC6863892
DOI
10.1038/s41598-019-53483-w
PII: 10.1038/s41598-019-53483-w
Knihovny.cz E-zdroje
- MeSH
- HIV infekce farmakoterapie MeSH
- HIV-1 účinky léků fyziologie MeSH
- látky proti HIV chemie izolace a purifikace farmakologie MeSH
- lidé MeSH
- nukleokapsida analýza účinky léků MeSH
- proteiny virového jádra chemie genetika metabolismus MeSH
- RNA virová genetika MeSH
- rychlé screeningové testy MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- svlékání virového obalu účinky léků genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- látky proti HIV MeSH
- proteiny virového jádra MeSH
- RNA virová MeSH
Shortly after entering the cell, HIV-1 copies its genomic RNA into double-stranded DNA in a process known as reverse transcription. This process starts inside a core consisting of an enclosed lattice of capsid proteins that protect the viral RNA from cytosolic sensors and degradation pathways. To accomplish reverse transcription and integrate cDNA into the host cell genome, the capsid shell needs to be disassembled, or uncoated. Premature or delayed uncoating attenuates reverse transcription and blocks HIV-1 infectivity. Small molecules that bind to the capsid lattice of the HIV-1 core and either destabilize or stabilize its structure could thus function as effective HIV-1 inhibitors. To screen for such compounds, we modified our recently developed FAITH assay to allow direct assessment of the stability of in vitro preassembled HIV-1 capsid-nucleocapsid (CANC) tubular particles. This new assay is a high-throughput fluorescence method based on measuring the amount of nucleic acid released from CANC complexes under disassembly conditions. The amount of disassembled CANC particles and released nucleic acid is proportional to the fluorescence signal, from which the relative percentage of CANC stability can be calculated. We consider our assay a potentially powerful tool for in vitro screening for compounds that alter HIV disassembly.
Department of Biotechnology University of Chemistry and Technology Prague 166 28 Czech Republic
NMR Laboratory University of Chemistry and Technology Prague 166 28 Prague Czech Republic
Zobrazit více v PubMed
Yamauchi Y, Greber UF. Principles of Virus Uncoating: Cues and the Snooker Ball. Traffic. 2016;17:569–592. doi: 10.1111/tra.12387. PubMed DOI PMC
Bhargava A, Lahaye X, Manel N. Let me in: Control of HIV nuclear entry at the nuclear envelope. Cytokine Growth Factor Rev. 2018;40:59–67. doi: 10.1016/j.cytogfr.2018.02.006. PubMed DOI
Kilcher S, Mercer J. DNA virus uncoating. Virology. 2015;479:578–590. doi: 10.1016/j.virol.2015.01.024. PubMed DOI
Franke EK, Yuan HE, Luban J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature. 1994;372:359–362. doi: 10.1038/372359a0. PubMed DOI
Brass AL, et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science. 2008;319:921–926. doi: 10.1126/science.1152725. PubMed DOI
Krishnan L, et al. The requirement for cellular transportin 3 (TNPO3 or TRN-SR2) during infection maps to human immunodeficiency virus type 1 capsid and not integrase. J Virol. 2010;84:397–406. doi: 10.1128/JVI.01899-09. PubMed DOI PMC
Lee K, et al. Flexible Use of Nuclear Import Pathways by HIV-1. Cell Host Microbe. 2010;7:221–233. doi: 10.1016/j.chom.2010.02.007. PubMed DOI PMC
Price AJ, et al. CPSF6 defines a conserved capsid interface that modulates HIV-1 replication. PLoS pathogens. 2012;8:e1002896. doi: 10.1371/journal.ppat.1002896. PubMed DOI PMC
Bushman FD, et al. Host Cell Factors in HIV Replication: Meta-Analysis of Genome-Wide Studies. PLoS pathogens. 2009;5:e1000437. doi: 10.1371/journal.ppat.1000437. PubMed DOI PMC
Konig R, et al. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell. 2008;135:49–60. doi: 10.1016/j.cell.2008.07.032. PubMed DOI PMC
Campbell EM, Hope TJ. HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat Rev Microbiol. 2015;13:471–483. doi: 10.1038/nrmicro3503. PubMed DOI PMC
Stremlau M, et al. The cytoplasmic body component TRIM5 alpha restricts HIV-1 infection in Old World monkeys. Nature. 2004;427:848–853. doi: 10.1038/nature02343. PubMed DOI
Stremlau M, et al. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5 alpha restriction factor. Proceedings of the National Academy of Sciences of the United States of America. 2006;103:5514–5519. doi: 10.1073/pnas.0509996103. PubMed DOI PMC
Price AJ, et al. Host cofactors and pharmacologic ligands share an essential interface in HIV-1 capsid that is lost upon disassembly. PLoS pathogens. 2014;10:e1004459. doi: 10.1371/journal.ppat.1004459. PubMed DOI PMC
Rasaiyaah J, et al. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature. 2013;503:402. doi: 10.1038/nature12769. PubMed DOI PMC
Francis AC, Melikyan GB. Single HIV-1 Imaging Reveals Progression of Infection through CA-Dependent Steps of Docking at the Nuclear Pore, Uncoating, and Nuclear Transport. Cell Host Microbe. 2018;23:536–548.e536. doi: 10.1016/j.chom.2018.03.009. PubMed DOI PMC
Burdick RC, et al. Dynamics and regulation of nuclear import and nuclear movements of HIV-1 complexes. PLoS pathogens. 2017;13:e1006570. doi: 10.1371/journal.ppat.1006570. PubMed DOI PMC
Matreyek KA, Engelman A. The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid. J Virol. 2011;85:7818–7827. doi: 10.1128/JVI.00325-11. PubMed DOI PMC
Hilditch L, Towers GJ. A model for cofactor use during HIV-1 reverse transcription and nuclear entry. Current opinion in virology. 2014;4:32–36. doi: 10.1016/j.coviro.2013.11.003. PubMed DOI PMC
Hulme AE, Perez O, Hope TJ. Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription. Proc Natl Acad Sci USA. 2011;108:9975–9980. doi: 10.1073/pnas.1014522108. PubMed DOI PMC
Mamede JI, Cianci GC, Anderson MR, Hope TJ. Early cytoplasmic uncoating is associated with infectivity of HIV-1. Proc Natl Acad Sci USA. 2017;114:E7169–E7178. doi: 10.1073/pnas.1706245114. PubMed DOI PMC
Lukic Z, Dharan A, Fricke T, Diaz-Griffero F, Campbell EM. HIV-1 uncoating is facilitated by dynein and kinesin 1. J Virol. 2014;88:13613–13625. doi: 10.1128/JVI.02219-14. PubMed DOI PMC
Perez-Caballero D, Hatziioannou T, Zhang F, Cowan S, Bieniasz PD. Restriction of human immunodeficiency virus type 1 by TRIM-CypA occurs with rapid kinetics and independently of cytoplasmic bodies, ubiquitin, and proteasome activity. J Virol. 2005;79:15567–15572. doi: 10.1128/JVI.79.24.15567-15572.2005. PubMed DOI PMC
Xu H, et al. Evidence for biphasic uncoating during HIV-1 infection from a novel imaging assay. Retrovirology. 2013;10:70. doi: 10.1186/1742-4690-10-70. PubMed DOI PMC
Dick RA, Mallery DL, Vogt VM, James LC. IP6 Regulation of HIV Capsid Assembly, Stability, and Uncoating. Viruses. 2018;10:640. doi: 10.3390/v10110640. PubMed DOI PMC
Dick RA, et al. Inositol phosphates are assembly co-factors for HIV-1. Nature. 2018;560:509–512. doi: 10.1038/s41586-018-0396-4. PubMed DOI PMC
Mallery, D. L. et al. IP6 is an HIV pocket factor that prevents capsid collapse and promotes DNA synthesis. Elife7, 10.7554/eLife.35335 (2018). PubMed PMC
Ambrose Z, Aiken C. HIV-1 uncoating: connection to nuclear entry and regulation by host proteins. Virology. 2014;454-455:371–379. doi: 10.1016/j.virol.2014.02.004. PubMed DOI PMC
Rumlova, M. & Ruml, T. In vitro methods for testing antiviral drugs. Biotechnol Adv, 10.1016/j.biotechadv.2017.12.016 (2017). PubMed PMC
Forshey BM, von Schwedler U, Sundquist WI, Aiken C. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol. 2002;76:5667–5677. doi: 10.1128/JVI.76.11.5667-5677.2002. PubMed DOI PMC
Shah, V. B. & Aiken, C. In vitro uncoating of HIV-1 cores. J Vis Exp, 10.3791/3384 (2011). PubMed PMC
Yang Y, Luban J, Diaz-Griffero F. The fate of HIV-1 capsid: a biochemical assay for HIV-1 uncoating. Methods Mol Biol. 2014;1087:29–36. doi: 10.1007/978-1-62703-670-2_3. PubMed DOI PMC
Fricke T, Diaz-Griffero F. HIV-1 Capsid Stabilization Assay. Methods Mol Biol. 2016;1354:39–47. doi: 10.1007/978-1-4939-3046-3_3. PubMed DOI PMC
Fricke T, Brandariz-Nunez A, Wang X, Smith AB, III, Diaz-Griffero F. Human cytosolic extracts stabilize the HIV-1 core. J Virol. 2013;87:10587–10597. doi: 10.1128/JVI.01705-13. PubMed DOI PMC
Bharat, T. A. M. et al. Cryo-electron microscopy of tubular arrays of HIV-1 Gag resolves structures essential for immature virus assembly. Proceedings of the National Academy of Sciences, 10.1073/pnas.1401455111 (2014). PubMed PMC
Hadravova R, Rumlova M, Ruml T. FAITH - Fast Assembly Inhibitor Test for HIV. Virology. 2015;486:78–87. doi: 10.1016/j.virol.2015.08.029. PubMed DOI
Ulbrich P, et al. Distinct roles for nucleic acid in in vitro assembly of purified Mason-Pfizer monkey virus CANC proteins. J Virol. 2006;80:7089–7099. doi: 10.1128/JVI.02694-05. PubMed DOI PMC
Campbell S, Vogt VM. Self-Assembly In-Vitro of Purified Ca-Nc Proteins from Rous-Sarcoma Virus and Human-Immunodeficiency-Virus Type-1. Journal of Virology. 1995;69:6487–6497. PubMed PMC
von Schwedler UK, Stray KM, Garrus JE, Sundquist WI. Functional Surfaces of the Human Immunodeficiency Virus Type 1 Capsid Protein. J Virol. 2003;77:5439–5450. doi: 10.1128/JVI.77.9.5439-5450.2003. PubMed DOI PMC
Fuzik T, Ulbrich P, Ruml T. Efficient Mutagenesis Independent of Ligation (EMILI) J Microbiol Methods. 2014;106:67–71. doi: 10.1016/j.mimet.2014.08.003. PubMed DOI
Blair WS, et al. HIV capsid is a tractable target for small molecule therapeutic intervention. PLoS pathogens. 2010;6:e1001220. doi: 10.1371/journal.ppat.1001220. PubMed DOI PMC
Bhattacharya A, et al. Structural basis of HIV-1 capsid recognition by PF74 and CPSF6. Proc Natl Acad Sci USA. 2014;111:18625–18630. doi: 10.1073/pnas.1419945112. PubMed DOI PMC
Shi J, Zhou J, Shah VB, Aiken C, Whitby K. Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization. J Virol. 2011;85:542–549. doi: 10.1128/JVI.01406-10. PubMed DOI PMC
Gross I, Hohenberg H, Krausslich HG. In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus. Eur.J.Biochem. 1997;249:592–600. doi: 10.1111/j.1432-1033.1997.t01-1-00592.x. PubMed DOI
Fricke T, Buffone C, Opp S, Valle-Casuso J, Diaz-Griffero F. BI-2 destabilizes HIV-1 cores during infection and Prevents Binding of CPSF6 to the HIV-1 Capsid. Retrovirology. 2014;11:120. doi: 10.1186/s12977-014-0120-x. PubMed DOI PMC
Rankovic, S., Ramalho, R., Aiken, C. & Rousso, I. PF74 Reinforces the HIV-1 Capsid To Impair Reverse Transcription-Induced Uncoating. J Virol92, 10.1128/JVI.00845-18 (2018). PubMed PMC
Singh K, et al. GS-CA Compounds: First-In-Class HIV-1 Capsid Inhibitors Covering Multiple Grounds. Front Microbiol. 2019;10:1227. doi: 10.3389/fmicb.2019.01227. PubMed DOI PMC
Rumlova, M., Krizova, I., Zelenka, J., Weber, J. & Ruml, T. Does BCA3 Play a Role in the HIV-1 Replication Cycle? Viruses10, 10.3390/v10040212 (2018). PubMed PMC
Dostalkova, A. et al. Mutations in the basic region of the Mason-Pfizer monkey virus nucleocapsid protein affect reverse transcription, gRNA packaging and the site of viral assembly. J Virol, 10.1128/JVI.00106-18 (2018). PubMed PMC
Humpolickova J, Mejdrova I, Matousova M, Nencka R, Boura E. Fluorescent Inhibitors as Tools To Characterize Enzymes: Case Study of the Lipid Kinase Phosphatidylinositol 4-Kinase IIIbeta (PI4KB) J Med Chem. 2017;60:119–127. doi: 10.1021/acs.jmedchem.6b01466. PubMed DOI
The Present and Future of Virology in the Czech Republic-A New Phoenix Made of Ashes?
Targeting the Virus Capsid as a Tool to Fight RNA Viruses
PF74 and Its Novel Derivatives Stabilize Hexameric Lattice of HIV-1 Mature-Like Particles