Fullerene Derivatives Prevent Packaging of Viral Genomic RNA into HIV-1 Particles by Binding Nucleocapsid Protein
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34960720
PubMed Central
PMC8705927
DOI
10.3390/v13122451
PII: v13122451
Knihovny.cz E-zdroje
- Klíčová slova
- HIV-1, RNA packaging, fullerene, inhibition, nucleocapsid,
- MeSH
- fullereny metabolismus farmakologie MeSH
- genom virový účinky léků MeSH
- genové produkty gag - virus lidské imunodeficience metabolismus MeSH
- HEK293 buňky MeSH
- HIV-1 účinky léků genetika metabolismus fyziologie MeSH
- látky proti HIV metabolismus farmakologie MeSH
- lidé MeSH
- nukleokapsida - proteiny metabolismus MeSH
- reverzní transkripce MeSH
- RNA virová metabolismus MeSH
- svlékání virového obalu účinky léků MeSH
- vazba proteinů MeSH
- virion metabolismus MeSH
- zabalení virového genomu účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fullereny MeSH
- genové produkty gag - virus lidské imunodeficience MeSH
- látky proti HIV MeSH
- nukleokapsida - proteiny MeSH
- RNA virová MeSH
Fullerene derivatives with hydrophilic substituents have been shown to exhibit a range of biological activities, including antiviral ones. For a long time, the anti-HIV activity of fullerene derivatives was believed to be due to their binding into the hydrophobic pocket of HIV-1 protease, thereby blocking its activity. Recent work, however, brought new evidence of a novel, protease-independent mechanism of fullerene derivatives' action. We studied in more detail the mechanism of the anti-HIV-1 activity of N,N-dimethyl[70]fulleropyrrolidinium iodide fullerene derivatives. By using a combination of in vitro and cell-based approaches, we showed that these C70 derivatives inhibited neither HIV-1 protease nor HIV-1 maturation. Instead, our data indicate effects of fullerene C70 derivatives on viral genomic RNA packaging and HIV-1 cDNA synthesis during reverse transcription-without impairing reverse transcriptase activity though. Molecularly, this could be explained by a strong binding affinity of these fullerene derivatives to HIV-1 nucleocapsid domain, preventing its proper interaction with viral genomic RNA, thereby blocking reverse transcription and HIV-1 infectivity. Moreover, the fullerene derivatives' oxidative activity and fluorescence quenching, which could be one of the reasons for the inconsistency among reported anti-HIV-1 mechanisms, are discussed herein.
Zobrazit více v PubMed
Briggs J.A., Simon M.N., Gross I., Krausslich H.G., Fuller S.D., Vogt V.M., Johnson M.C. The stoichiometry of Gag protein in HIV-1. Nat. Struct. Mol. Biol. 2004;11:672–675. doi: 10.1038/nsmb785. PubMed DOI
Li S., Hill C.P., Sundquist W.I., Finch J.T. Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature. 2000;407:409–413. doi: 10.1038/35030177. PubMed DOI
Pornillos O., Ganser-Pornillos B.K., Yeager M. Atomic-level modelling of the HIV capsid. Nature. 2011;469:424–427. doi: 10.1038/nature09640. PubMed DOI PMC
Mattei S., Glass B., Hagen W.J., Krausslich H.G., Briggs J.A. The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science. 2016;354:1434–1437. doi: 10.1126/science.aah4972. PubMed DOI
Ganser B.K., Li S., Klishko V.Y., Finch J.T., Sundquist W.I. Assembly and analysis of conical models for the HIV-1 core. Science. 1999;283:80–83. doi: 10.1126/science.283.5398.80. PubMed DOI
Campbell E.M., Hope T.J. HIV-1 capsid: The multifaceted key player in HIV-1 infection. Nat. Rev. Microbiol. 2015;13:471–483. doi: 10.1038/nrmicro3503. PubMed DOI PMC
Rasaiyaah J., Tan C.P., Fletcher A.J., Price A.J., Blondeau C., Hilditch L., Jacques D.A., Selwood D.L., James L.C., Noursadeghi M., et al. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature. 2013;503:402. doi: 10.1038/nature12769. PubMed DOI PMC
Francis A.C., Melikyan G.B. Single HIV-1 Imaging Reveals Progression of Infection through CA-Dependent Steps of Docking at the Nuclear Pore, Uncoating, and Nuclear Transport. Cell Host Microbe. 2018;23:536–548.e536. doi: 10.1016/j.chom.2018.03.009. PubMed DOI PMC
Burdick R.C., Delviks-Frankenberry K.A., Chen J., Janaka S.K., Sastri J., Hu W.S., Pathak V.K. Dynamics and regulation of nuclear import and nuclear movements of HIV-1 complexes. PLoS Pathog. 2017;13:e1006570. doi: 10.1371/journal.ppat.1006570. PubMed DOI PMC
Matreyek K.A., Engelman A. The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid. J. Virol. 2011;85:7818–7827. doi: 10.1128/JVI.00325-11. PubMed DOI PMC
Hilditch L., Towers G.J. A model for cofactor use during HIV-1 reverse transcription and nuclear entry. Curr. Opin. Virol. 2014;4:32–36. doi: 10.1016/j.coviro.2013.11.003. PubMed DOI PMC
Hulme A.E., Perez O., Hope T.J. Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription. Proc. Natl. Acad. Sci. USA. 2011;108:9975–9980. doi: 10.1073/pnas.1014522108. PubMed DOI PMC
Mamede J.I., Cianci G.C., Anderson M.R., Hope T.J. Early cytoplasmic uncoating is associated with infectivity of HIV-1. Proc. Natl. Acad. Sci. USA. 2017;114:E7169–E7178. doi: 10.1073/pnas.1706245114. PubMed DOI PMC
Lukic Z., Dharan A., Fricke T., Diaz-Griffero F., Campbell E.M. HIV-1 uncoating is facilitated by dynein and kinesin 1. J. Virol. 2014;88:13613–13625. doi: 10.1128/JVI.02219-14. PubMed DOI PMC
Yang Y., Fricke T., Diaz-Griffero F. Inhibition of reverse transcriptase activity increases stability of the HIV-1 core. J. Virol. 2013;87:683–687. doi: 10.1128/JVI.01228-12. PubMed DOI PMC
Cosnefroy O., Murray P.J., Bishop K.N. HIV-1 capsid uncoating initiates after the first strand transfer of reverse transcription. Retrovirology. 2016;13:58. doi: 10.1186/s12977-016-0292-7. PubMed DOI PMC
Novikova M., Zhang Y., Freed E.O., Peng K. Multiple Roles of HIV-1 Capsid during the Virus Replication Cycle. Virologica. Sinica. 2019;34:119–134. doi: 10.1007/s12250-019-00095-3. PubMed DOI PMC
Mori M., Kovalenko L., Lyonnais S., Antaki D., Torbett B.E., Botta M., Mirambeau G., Mely Y. Nucleocapsid Protein: A Desirable Target for Future Therapies Against HIV-1. Curr. Top. Microbiol. Immunol. 2015;389:53–92. doi: 10.1007/82_2015_433. PubMed DOI PMC
Thenin-Houssier S., Valente S.T. HIV-1 Capsid Inhibitors as Antiretroviral Agents. Curr. HIV Res. 2016;14:270–282. doi: 10.2174/1570162X14999160224103555. PubMed DOI PMC
Rumlova M., Ruml T. In vitro methods for testing antiviral drugs. Biotechnol. Adv. 2018;36:557–576. doi: 10.1016/j.biotechadv.2017.12.016. PubMed DOI PMC
Carnes S.K., Sheehan J.H., Aiken C. Inhibitors of the HIV-1 capsid, a target of opportunity. Curr. Opin. HIV AIDS. 2018;13:359–365. doi: 10.1097/COH.0000000000000472. PubMed DOI PMC
Kroto H.W., Heath J.R., O’Brien S.C., Curl R.F., Smalley R.E. C60: Buckminsterfullerene. Nature. 1985;318:162–163. doi: 10.1038/318162a0. DOI
Nakamura S., Mashino T. Water-soluble fullerene derivatives for drug discovery. J. Nippon Med. Sch. 2012;79:248–254. doi: 10.1272/jnms.79.248. PubMed DOI
Castro E., Hernandez Garcia A., Zavala G., Echegoyen L. Fullerenes in Biology and Medicine. J. Mater. Chem. B. 2017;5:6523–6535. doi: 10.1039/C7TB00855D. PubMed DOI PMC
Yasuno T., Ohe T., Kataoka H., Hashimoto K., Ishikawa Y., Furukawa K., Tateishi Y., Kobayashi T., Takahashi K., Nakamura S., et al. Fullerene derivatives as dual inhibitors of HIV-1 reverse transcriptase and protease. Bioorg. Med. Chem. Lett. 2021;31:127675. doi: 10.1016/j.bmcl.2020.127675. PubMed DOI
Bosi S., Da Ros T., Spalluto G., Prato M. Fullerene derivatives: An attractive tool for biological applications. Eur. J. Med. Chem. 2003;38:913–923. doi: 10.1016/j.ejmech.2003.09.005. PubMed DOI
Kazemzadeh H., Mozafari M. Fullerene-based delivery systems. Drug Discov. Today. 2019;24:898–905. doi: 10.1016/j.drudis.2019.01.013. PubMed DOI
Mashino T., Shimotohno K., Ikegami N., Nishikawa D., Okuda K., Takahashi K., Nakamura S., Mochizuki M. Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg. Med. Chem. Lett. 2005;15:1107–1109. doi: 10.1016/j.bmcl.2004.12.030. PubMed DOI
Kataoka H., Ohe T., Takahashi K., Nakamura S., Mashino T. Novel fullerene derivatives as dual inhibitors of Hepatitis C virus NS5B polymerase and NS3/4A protease. Bioorg. Med. Chem. Lett. 2016;26:4565–4567. doi: 10.1016/j.bmcl.2016.08.086. PubMed DOI
Muñoz A., Sigwalt D., Illescas B.M., Luczkowiak J., Rodríguez-Pérez L., Nierengarten I., Holler M., Remy J.-S., Buffet K., Vincent S.P., et al. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection. Nat. Chem. 2015;8:50. doi: 10.1038/nchem.2387. PubMed DOI
Luczkowiak J., Muñoz A., Sánchez-Navarro M., Ribeiro-Viana R., Ginieis A., Illescas B.M., Martín N., Delgado R., Rojo J. Glycofullerenes Inhibit Viral Infection. Biomacromolecules. 2013;14:431–437. doi: 10.1021/bm3016658. PubMed DOI
Yasuno T., Ohe T., Takahashi K., Nakamura S., Mashino T. The human immunodeficiency virus-reverse transcriptase inhibition activity of novel pyridine/pyridinium-type fullerene derivatives. Bioorg. Med. Chem. Lett. 2015;25:3226–3229. doi: 10.1016/j.bmcl.2015.05.086. PubMed DOI
Friedman S.H., Decamp D.L., Sijbesma R.P., Srdanov G., Wudl F., Kenyon G.L. Inhibition of the Hiv-1 Protease by Fullerene Derivatives-Model-Building Studies and Experimental-Verification. J. Am. Chem. Soc. 1993;115:6506–6509. doi: 10.1021/ja00068a005. DOI
Sijbesma R., Srdanov G., Wudl F., Castoro J.A., Wilkins C., Friedman S.H., Decamp D.L., Kenyon G.L. Synthesis of a Fullerene Derivative for the Inhibition of HIV Enzymes. J. Am. Chem. Soc. 1993;115:6510–6512. doi: 10.1021/ja00068a006. DOI
Martinez Z.S., Castro E., Seong C.S., Ceron M.R., Echegoyen L., Llano M. Fullerene Derivatives Strongly Inhibit HIV-1 Replication by Affecting Virus Maturation without Impairing Protease Activity. Antimicrob. Agents Chemother. 2016;60:5731–5741. doi: 10.1128/AAC.00341-16. PubMed DOI PMC
Castro E., Martinez Z.S., Seong C.-S., Cabrera-Espinoza A., Ruiz M., Hernandez Garcia A., Valdez F., Llano M., Echegoyen L. Characterization of New Cationic N,N-Dimethyl[70]fulleropyrrolidinium Iodide Derivatives as Potent HIV-1 Maturation Inhibitors. J. Med. Chem. 2016;59:10963–10973. doi: 10.1021/acs.jmedchem.6b00994. PubMed DOI
Wilson S.R., Lu Q. 1,3-Dipolar Cycloaddition of N-Methylazomethine Ylide to C70. J. Org. Chem. 1995;60:6496–6498. doi: 10.1021/jo00125a040. DOI
Tian C., Castro E., Wang T., Betancourt-Solis G., Rodriguez G., Echegoyen L. Improved Performance and Stability of Inverted Planar Perovskite Solar Cells Using Fulleropyrrolidine Layers. ACS Appl. Mater. Interfaces. 2016;8:31426–31432. doi: 10.1021/acsami.6b10668. PubMed DOI
Dostalkova A., Skach K., Kaufman F., Krizova I., Hadravova R., Flegel M., Ruml T., Hrabal R., Rumlova M. PF74 and Its Novel Derivatives Stabilize Hexameric Lattice of HIV-1 Mature-like Particles. Molecules. 2020;25:1895. doi: 10.3390/molecules25081895. PubMed DOI PMC
Křížová I., Hadravová R., Štokrová J., Günterová J., Doležal M., Ruml T., Rumlová M., Pichová I. The G-Patch Domain of Mason-Pfizer Monkey Virus Is a Part of Reverse Transcriptase. J. Virol. 2012;86:1988–1998. doi: 10.1128/JVI.06638-11. PubMed DOI PMC
Pichalova R., Fuzik T., Vokata B., Rumlova M., Llano M., Dostalkova A., Krizova I., Ruml T., Ulbrich P. Conserved cysteines in Mason-Pfizer monkey virus capsid protein are essential for infectious mature particle formation. Virology. 2018;521:108–117. doi: 10.1016/j.virol.2018.06.001. PubMed DOI PMC
Wildova M., Hadravova R., Stokrova J., Krizova I., Ruml T., Hunter E., Pichova I., Rumlova M. The effect of point mutations within the N-terminal domain of Mason-Pfizer monkey virus capsid protein on virus core assembly and infectivity. Virology. 2008;380:157–163. doi: 10.1016/j.virol.2008.07.021. PubMed DOI PMC
Barabás O., Rumlová M., Erdei A., Pongrácz V., Pichová I., Vértessy B.G. dUTPase and nucleocapsid polypeptides of the Mason-Pfizer monkey virus form a fusion protein in the virion with homotrimeric organization and low catalytic efficiency. J. Bio. Chem. 2003;278:38803–38812. doi: 10.1074/jbc.M306967200. PubMed DOI
Mbisa J.L., Delviks-Frankenberry K.A., Thomas J.A., Gorelick R.J., Pathak V.K. Real-time PCR analysis of HIV-1 replication post-entry events. Methods Mol. Biol. 2009;485:55–72. doi: 10.1007/978-1-59745-170-3_5. PubMed DOI PMC
Dostalkova A., Kaufman F., Krizova I., Kultova A., Strohalmova K., Hadravova R., Ruml T., Rumlova M. Mutations in the basic region of the Mason-Pfizer monkey virus nucleocapsid protein affect reverse transcription, gRNA packaging and the site of viral assembly. J. Virol. 2018;92:e00106-18. doi: 10.1128/JVI.00106-18. PubMed DOI PMC
Hulme A.E., Hope T.J. The cyclosporin A washout assay to detect HIV-1 uncoating in infected cells. Methods Mol. Biol. 2014;1087:37–46. doi: 10.1007/978-1-62703-670-2_4. PubMed DOI PMC
Fuzik T., Pichalova R., Schur F.K.M., Strohalmova K., Krizova I., Hadravova R., Rumlova M., Briggs J.A.G., Ulbrich P., Ruml T. Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging. J. Virol. 2016;90:4593–4603. doi: 10.1128/JVI.03197-15. PubMed DOI PMC
Korb O., Stützle T., Exner T.E. PLANTS: Application of Ant Colony Optimization to Structure-Based Drug Design; Proceedings of the Ant Colony Optimization and Swarm Intelligence; Berlin, Heidelberg. 4–7 September 2006; pp. 247–258.
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Martin D.E., Salzwedel K., Allaway G.P. Bevirimat: A novel maturation inhibitor for the treatment of HIV-1 infection. Antivir. Chem. Chemother. 2008;19:107–113. doi: 10.1177/095632020801900301. PubMed DOI
Rumlova M., Krizova I., Keprova A., Hadravova R., Dolezal M., Strohalmova K., Pichova I., Hajek M., Ruml T. HIV-1 protease-induced apoptosis. Retrovirology. 2014;11:37. doi: 10.1186/1742-4690-11-37. PubMed DOI PMC
Hadravova R., Rumlova M., Ruml T. FAITH-Fast Assembly Inhibitor Test for HIV. Virology. 2015;486:78–87. doi: 10.1016/j.virol.2015.08.029. PubMed DOI
Dostalkova A., Hadravova R., Kaufman F., Krizova I., Skach K., Flegel M., Hrabal R., Ruml T., Rumlova M. A simple, high-throughput stabilization assay to test HIV-1 uncoating inhibitors. Sci. Rep. 2019;9:17076. doi: 10.1038/s41598-019-53483-w. PubMed DOI PMC
Sticht J., Humbert M., Findlow S., Bodem J., Müller B., Dietrich U., Werner J., Kräusslich H.-G. A peptide inhibitor of HIV-1 assembly in vitro. Nat. Struct. Mol. Biol. 2005;12:671–677. doi: 10.1038/nsmb964. PubMed DOI
Forshey B.M., von Schwedler U., Sundquist W.I., Aiken C. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J. Virol. 2002;76:5667–5677. doi: 10.1128/JVI.76.11.5667-5677.2002. PubMed DOI PMC
Hulme A.E., Kelley Z., Okocha E.A., Hope T.J. Identification of Capsid Mutations That Alter the Rate of HIV-1 Uncoating in Infected Cells. J. Virol. 2015;89:643. doi: 10.1128/JVI.03043-14. PubMed DOI PMC
Blair W.S., Pickford C., Irving S.L., Brown D.G., Anderson M., Bazin R., Cao J., Ciaramella G., Isaacson J., Jackson L., et al. HIV capsid is a tractable target for small molecule therapeutic intervention. PLoS Pathog. 2010;6:e1001220. doi: 10.1371/journal.ppat.1001220. PubMed DOI PMC
Shi J., Zhou J., Shah V.B., Aiken C., Whitby K. Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization. J. Virol. 2011;85:542–549. doi: 10.1128/JVI.01406-10. PubMed DOI PMC
Rankovic S., Ramalho R., Aiken C., Rousso I. PF74 Reinforces the HIV-1 Capsid to Impair Reverse Transcription-Induced Uncoating. J. Virol. 2018;92:e00845-18. doi: 10.1128/JVI.00845-18. PubMed DOI PMC
Amarasinghe G.K., De Guzman R.N., Turner R.B., Chancellor K.J., Wu Z.R., Summers M.F. NMR structure of the HIV-1 nucleocapsid protein bound to stem-loop SL2 of the psi-RNA packaging signal. Implications for genome recognition. J. Mol. Biol. 2000;301:491–511. doi: 10.1006/jmbi.2000.3979. PubMed DOI
De Guzman R.N., Wu Z.R., Stalling C.C., Pappalardo L., Borer P.N., Summers M.F. Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. Science. 1998;279:384–388. doi: 10.1126/science.279.5349.384. PubMed DOI