Conserved cysteines in Mason-Pfizer monkey virus capsid protein are essential for infectious mature particle formation

. 2018 Aug ; 521 () : 108-117. [epub] 20180612

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29906704

Grantová podpora
SC1 GM115240 NIGMS NIH HHS - United States

Odkazy

PubMed 29906704
PubMed Central PMC6379149
DOI 10.1016/j.virol.2018.06.001
PII: S0042-6822(18)30170-3
Knihovny.cz E-zdroje

Retrovirus assembly is driven mostly by Gag polyprotein oligomerization, which is mediated by inter and intra protein-protein interactions among its capsid (CA) domains. Mason-Pfizer monkey virus (M-PMV) CA contains three cysteines (C82, C193 and C213), where the latter two are highly conserved among most retroviruses. To determine the importance of these cysteines, we introduced mutations of these residues in both bacterial and proviral vectors and studied their impact on the M-PMV life cycle. These studies revealed that the presence of both conserved cysteines of M-PMV CA is necessary for both proper assembly and virus infectivity. Our findings suggest a crucial role of these cysteines in the formation of infectious mature particles.

Zobrazit více v PubMed

Abdurahman S, Youssefi M, Höglund S, Vahlne A, 2007. Characterization of the invariable residue 51 mutations of human immunodeficiency virus type 1 capsid protein on in vitro CA assembly and infectivity. Retrovirology 4, 69 10.1186/1742-4690-4-69. PubMed DOI PMC

Alfadhli A, Barklis RL, Barklis E, 2009. HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate. Virology 387, 466–472. 10.1016/j.virol.2009.02.048. PubMed DOI PMC

Bharat TAM, Davey NE, Ulbrich P, Riches JD, de Marco A, Rumlova M, Sachse C, Ruml T, Briggs JAG, 2012. Structure of the immature retroviral capsid at 8 A resolution by cryo-electron microscopy. Nature 487, 385–389. 10.1038/nature11169. PubMed DOI

Bohmová K, Hadravová R, Stokrová J, Turna R, Ruml T, Pichová I, Rumlová M, 2010. Effect of dimerizing domains and basic residues on in vitro and in vivo assembly of Mason-Pfizer monkey virus and human immunodeficiency virus. J. Virol. 84, 1977–1988. 10.1128/JVI.02022-09. PubMed DOI PMC

Briggs JAG, Kräusslich HG, 2011. The molecular architecture of HIV. J. Mol. Biol. 410, 491–500. 10.1016/j.jmb.2011.04.021. PubMed DOI

Brody BA, Kimball MG, Hunter E, 1994. Mutations within the transmembrane glycoprotein of Mason-Pfizer monkey virus: loss of SU-TM association and effects on infectivity. Virology 202, 673–683. 10.1006/viro.1994.1389. PubMed DOI

Burniston MT, Cimarelli A, Colgan J, Curtis SP, Luban J, 1999. Human immunodeficiency virus type 1 Gag polyprotein multimerization requires the nucleo-capsid domain and RNA and is promoted by the capsid-dimer interface and the basic region of matrix protein. J. Virol. 73, 8527–8540. PubMed PMC

Byeon I-JL, Meng X, Jung J, Zhao G, Yang R, Ahn J, Shi J, Concel J, Aiken C, Zhang P, Gronenborn AM, 2009. Structural convergence between Cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Cell 139, 780–790. 10.1016/j.cell.2009.10.010. PubMed DOI PMC

Campbell S, Vogt VM, 1997. In vitro assembly of virus-like particles with Rous sarcoma virus Gag deletion mutants: identification of the p10 domain as a morphological determinant in the formation of spherical particles. J. Virol. 71, 4425–4435. PubMed PMC

Campos-Olivas R, Newman JL, Summers MF, 2000. Solution structure and dynamics of the Rous sarcoma virus capsid protein and comparison with capsid proteins of other retroviruses. J. Mol. Biol. 296, 633–649. 10.1006/jmbi.1999.3475. PubMed DOI

Checkley MA, Luttge BG, Freed EO, 2011. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J. Mol. Biol. 410, 582–608. 10.1016/j.jmb.2011.04.042. PubMed DOI PMC

Chiu J, March PE, Lee R, Tillett D, 2004. Site-directed, Ligase-Independent Mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4h. Nucleic Acids Res. 32, e174 10.1093/nar/gnh172. PubMed DOI PMC

Chu HH, Chang YF, Wang CT, 2006. Mutations in the a-helix directly C-terminal to the major homology region of human immunodeficiency virus type 1 capsid protein disrupt Gag multimerization and markedly impair virus particle production. J. Biomed. Sci. 13, 645–656. 10.1007/s11373-006-9094-6. PubMed DOI

Coffin JM, Hughes SH, Varmus HE, 1997. Retroviruses. CSHL Press, Cold Spring Harbor, NY, USA. PubMed

Datta SAK, Temeselew LG, Crist RM, Soheilian F, Kamata A, Mirro J, Harvin D, Nagashima K, Cachau RE, Rein A, 2011. On the role of the SP1 domain in HIV-1 particle assembly: a molecular switch? J. Virol. 85, 4111–4121. 10.1128/JVI.00006-11. PubMed DOI PMC

del Álamo M, Rivas G, Mateu MG, 2005. Effect of macromolecular crowding agents on human immunodeficiency virus type 1 capsid protein assembly in vitro. J. Virol. 79, 14271–14281. 10.1128/JVI.79.22.14271. PubMed DOI PMC

Dostálková A, Kaufman F, Kíízová I, Kultová A, Strohalmová K, Hadravová R, Ruml T, Rumlová M, 2018. Mutations in the basic region of the Mason-Pfizer monkey virus nucleocapsid protein affect reverse transcription, gRNA packaging and the site of viral assembly. J. Virol. 10.1128/JVI.00106-18. PubMed DOI PMC

Fitzon T, Leschonsky B, Bieler K, Paulus C, Schröder J, Wolf H, Wagner R, 2000. Proline residues in the HIV-1 NH2-terminal capsid domain: structure determinants for proper core assembly and subsequent steps of early replication. Virology 268, 294–307. 10.1006/viro.1999.0178. PubMed DOI

Forshey BM, von Schwedler U, Sundquist WI, Aiken C, 2002. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J. Virol. 76, 5667–5677. 10.1128/JVI.76.11.5667. PubMed DOI PMC

Füzik T, Ulbrich P, Ruml T, 2014. Efficient mutagenesis independent of ligation (EMILI). J. Microbiol. Methods 106, 67–71. 10.1016/j.mimet.2014.08.003. PubMed DOI

Füzik T, Píchalová R, Schur FKM, Strohalmová K, Kíízová I, Hadravová R, Rumlová M, Briggs JAG, Ulbrich P, Ruml T, 2016. Nucleic acid binding by Mason-Pfizer monkey virus CA promotes virus assembly and genome packaging. J. Virol. 90, 4593–4603. 10.1128/JVI.03197-15. PubMed DOI PMC

Gamble TR, Yoo S, Vajdos FF, von Schwedler UK, Worthylake DK, Wang H, McCutcheon JP, Sundquist WI, Hill CP, 1997. Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 278, 849–853. PubMed

Gitti RK, Lee BM, Walker J, Summers MF, Yoo S, Sundquist WI, 1996. Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273, 231–235. PubMed

Gross I, Hohenberg H, Kräusslich HG, 1997. In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus. Eur. J. Biochem. 249, 592–600. 10.1111/iM432-1033.1997.t01-1-00592.x. PubMed DOI

Gross I, Hohenberg H, Huckhagel C, Kräusslich HG, 1998. N-terminal extension of human immunodeficiency virus capsid protein converts the in vitro assembly phenotype from tubular to spherical particles. J. Virol. 72, 4798–4810. PubMed PMC

Hadravová R, de Marco A, Ulbrich P, Stokrová J, Dolezal M, Pichová I, Ruml T, Briggs JAG, Rumlová M, 2012. In vitro assembly of virus-like particles of a gammaretrovirus, the murine leukemia virus XMRV. J. Virol. 86, 1297–1306. 10.1128/JVI.05564-11. PubMed DOI PMC

Jin Z, Jin L, Peterson DL, Lawson CL, 1999. Model for lentivirus capsid core assembly based on crystal dimers of EIAV p26. J. Mol. Biol. 286, 83–93. 10.1006/jmbi.1998.2443. PubMed DOI

Kafaie J, Song R, Abrahamyan L, Mouland AJ, Laughrea M, 2008. Mapping of nucleocapsid residues important for HIV-1 genomic RNA dimerization and packaging. Virology 375, 592–610. 10.1016/j.virol.2008.02.001. PubMed DOI

Khorasanizadeh S, Campos-Olivas R, Summers MF, 1999. Solution structure of the capsid protein from the human T-cell leukemia virus type-I. J. Mol. Biol. 291, 491–505. 10.1006/jmbi.1999.2986. PubMed DOI

Kíízová I, Hadravová R, Stokrová J, Gunterová J, Dolezal M, Ruml T, Rumlová M, Pichová I, 2012. The G-patch domain of Mason-Pfizer monkey virus is a part of reverse transcriptase. J. Virol. 86, 1988–1998. 10.1128/JVI.06638-11. PubMed DOI PMC

Kuznetsov YG, Ulbrich P, Haubova S, Ruml T, McPherson A, 2007. Atomic force microscopy investigation of Mason-Pfizer monkey virus and human immunodeficiency virus type 1 reassembled particles. Virology 360, 434–446. 10.1016/j.virol.2006.10.015. PubMed DOI

Lee C-D, Sun H-C, Hu S-M, Chiu C-F, Homhuan A, Liang S-M, Leng C-H, Wang T-F, 2008. An improved SUMO fusion protein system for effective production of native proteins. Protein Sci. 17, 1241–1248. 10.1110/ps.035188.108. PubMed DOI PMC

Macek P, Chmelik J, Krizova I, Kaderavek P, Padrta P, Zidek L, Wildova M, Hadravova R, Chaloupkova R, Pichova I, Ruml T, Rumlova M, Sklenar V, 2009. NMR structure of the N-terminal domain of capsid protein from the Mason-Pfizer monkey virus. J. Mol. Biol. 392, 100–114. 10.1016/j.jmb.2009.06.029. PubMed DOI

Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR, 2004. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J. Struct. Funct. Genom. 5, 75–86. 10.1023/B:JSFG.0000029237.70316.52. PubMed DOI

Mammano F, Ohagen A, Höglund S, Göttlinger HG, 1994. Role of the major homology region of human immunodeficiency virus type 1 in virion morphogenesis. J. Virol. 68, 4927–4936. PubMed PMC

de Marco A, Müller B, Glass B, Riches JD, Kräusslich HG, Briggs JAG, 2010. Structural analysis of HIV-1 maturation using cryo-electron tomography. PLoS Pathog 6 10.1371/journal.ppat.1001215. PubMed DOI PMC

Mateu MG, 2002. Conformational stability of dimeric and monomeric forms of the C-terminal domain of human immunodeficiency virus-1 capsid protein. J. Mol. Biol. 318, 519–531. 10.1016/S0022-2836(02)00091-8. PubMed DOI

McDermott J, Farrell L, Ross R, Barklis E, 1996. Structural analysis of human immunodeficiency virus type 1 Gag protein interactions, using cysteine-specific reagents. J. Virol. 70, 5106–5114. PubMed PMC

Mortuza GB, Goldstone DC, Pashley C, Haire LF, Palmarini M, Taylor WR, Stoye JP, Taylor IA, 2009. Structure of the capsid amino-terminal domain from the Betaretrovirus, Jaagsiekte sheep retrovirus. J. Mol. Biol. 386, 1179–1192. 10.1016/j.jmb.2008.10.066. PubMed DOI

Mossessova E, Lima CD, 2000. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865–876. 10.1016/S1097-2765(00)80326-3. PubMed DOI

Murray PS, Li Z, Wang J, Tang CL, Honig B, Murray D, 2005. Retroviral matrix domains share electrostatic homology: models for membrane binding function throughout the viral life cycle. Structure 13, 1521–1531. 10.1016/j.str.2005.07.010. PubMed DOI

Nath MD, Peterson DL, 2001. In vitro assembly of Feline immunodeficiency virus capsid protein: biological role of conserved cysteines. Arch. Biochem. Biophys. 392, 287–294. 10.1006/abbi.2001.2449. PubMed DOI

Newman RM, Hall L, Connole M, Chen G-L, Sato S, Yuste E, Diehl W, Hunter E, Kaur A, Miller GM, Johnson WE, 2006. Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5alpha. Proc. Natl. Acad. Sci. USA 103, 19134–19139. 10.1073/pnas.0605838103. PubMed DOI PMC

Obr M, Hadravova R, Dolezal M, Krizova I, Papouskova V, Zidek L, Hrabal R, Ruml T, Rumlova M, 2014. Stabilization of the ß-hairpin in Mason-Pfizer monkey virus capsid protein- a critical step for infectivity. Retrovirology 11, 1–14. 10.1186/s12977-014-0094-8. PubMed DOI PMC

Rumlová-Kliková M, Hunter E, Nermut MV, Pichova I, Ruml T, 2000. Analysis of Mason-Pfizer monkey virus Gag domains required for capsid assembly in bacteria: role of the N-terminal proline residue of CA in directing particle shape. J. Virol. 74, 8452–8459. PubMed PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A, 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. 10.1038/nmeth.2019. PubMed DOI PMC

Schur FKM, Dick RA, Hagen WJH, Vogt VM, Briggs JAG, 2015a. The structure of immature virus-like rous sarcoma virus Gag particles reveals a structural role for the p10 domain in assembly. J. Virol. 89, 10294–10302. 10.1128/JVI.01502-15. PubMed DOI PMC

Schur FKM, Hagen WJH, Rumlova M, Ruml T, Müller B, Kräusslich H-G, Briggs JAG, 2015b. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Ä resolution. Nature 517, 505–508. 10.1038/nature13838. PubMed DOI

von Schwedler UK, Stray KM, Garrus JE, Sundquist WI, 2003. Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J. Virol. 77, 5439–5450. 10.1128/JVI.77.9.5439. PubMed DOI PMC

Ulbrich P, Haubova S, Nermut MV, Hunter E, Rumlova M, Ruml T, 2006. Distinct roles for nucleic acid in in vitro assembly of purified Mason-Pfizer monkey virus CANC proteins. J. Virol. 80, 7089–7099. 10.1128/JVI.02694-05. PubMed DOI PMC

von Schwedler UK, Stemmler TL, Klishko VY, Li S, Albertine KH, Davis DR, Sundquist WI, 1998. Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J. 17, 1555–1568. 10.1093/emboj/17.6.1555. PubMed DOI PMC

Vorackova I, Suchanova S, Ulbrich P, Diehl WE, Ruml T, 2011. Purification of proteins containing zinc finger domains using immobilized metal ion affinity chromatography. Protein Expr. Purif. 79, 88–95. 10.1016/j.pep.2011.04.022. PubMed DOI PMC

Welker R, Hohenberg H, Tessmer U, Huckhagel C, Krausslich HG, 2000. Biochemical and structural analysis of isolated mature cores of human IMMUNODEFICIENCY virus type 1. J. Virol. 74, 1168–1177. PubMed PMC

Wildova M, Hadravova R, Stokrova J, Krizova I, Ruml T, Hunter E, Pichova I, Rumlova M, 2008. The effect of point mutations within the N-terminal domain of Mason-Pfizer monkey virus capsid protein on virus core assembly and infectivity. Virology 380, 157–163. 10.1016/j.virol.2008.07.021. PubMed DOI PMC

Worthylake DK, Wang H, Yoo S, Sundquist WI, Hill CP, 1999. Structures of the HIV-1 capsid protein dimerization domain at 2.6 A resolution. Acta Crystallogr. D. Biol. Crystallogr. 55, 85–92. 10.1107/S0907444998007689. PubMed DOI

Zhang Y, Barklis E, 1995. Nucleocapsid protein effects on the specificity of retrovirus RNA encapsidation. J. Virol. 69, 5716–5722. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...