Conserved cysteines in Mason-Pfizer monkey virus capsid protein are essential for infectious mature particle formation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
SC1 GM115240
NIGMS NIH HHS - United States
PubMed
29906704
PubMed Central
PMC6379149
DOI
10.1016/j.virol.2018.06.001
PII: S0042-6822(18)30170-3
Knihovny.cz E-zdroje
- Klíčová slova
- Cysteine mutagenesis, M-PMV capsid, M-PMV infectivity, Retrovirus assembly, Virus core stability,
- MeSH
- buněčné linie MeSH
- cystein genetika MeSH
- genetické vektory MeSH
- HEK293 buňky MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus genetika fyziologie MeSH
- mutace MeSH
- proviry genetika MeSH
- sestavení viru * MeSH
- virion fyziologie MeSH
- virové plášťové proteiny chemie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- cystein MeSH
- virové plášťové proteiny MeSH
Retrovirus assembly is driven mostly by Gag polyprotein oligomerization, which is mediated by inter and intra protein-protein interactions among its capsid (CA) domains. Mason-Pfizer monkey virus (M-PMV) CA contains three cysteines (C82, C193 and C213), where the latter two are highly conserved among most retroviruses. To determine the importance of these cysteines, we introduced mutations of these residues in both bacterial and proviral vectors and studied their impact on the M-PMV life cycle. These studies revealed that the presence of both conserved cysteines of M-PMV CA is necessary for both proper assembly and virus infectivity. Our findings suggest a crucial role of these cysteines in the formation of infectious mature particles.
Zobrazit více v PubMed
Abdurahman S, Youssefi M, Höglund S, Vahlne A, 2007. Characterization of the invariable residue 51 mutations of human immunodeficiency virus type 1 capsid protein on in vitro CA assembly and infectivity. Retrovirology 4, 69 10.1186/1742-4690-4-69. PubMed DOI PMC
Alfadhli A, Barklis RL, Barklis E, 2009. HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate. Virology 387, 466–472. 10.1016/j.virol.2009.02.048. PubMed DOI PMC
Bharat TAM, Davey NE, Ulbrich P, Riches JD, de Marco A, Rumlova M, Sachse C, Ruml T, Briggs JAG, 2012. Structure of the immature retroviral capsid at 8 A resolution by cryo-electron microscopy. Nature 487, 385–389. 10.1038/nature11169. PubMed DOI
Bohmová K, Hadravová R, Stokrová J, Turna R, Ruml T, Pichová I, Rumlová M, 2010. Effect of dimerizing domains and basic residues on in vitro and in vivo assembly of Mason-Pfizer monkey virus and human immunodeficiency virus. J. Virol. 84, 1977–1988. 10.1128/JVI.02022-09. PubMed DOI PMC
Briggs JAG, Kräusslich HG, 2011. The molecular architecture of HIV. J. Mol. Biol. 410, 491–500. 10.1016/j.jmb.2011.04.021. PubMed DOI
Brody BA, Kimball MG, Hunter E, 1994. Mutations within the transmembrane glycoprotein of Mason-Pfizer monkey virus: loss of SU-TM association and effects on infectivity. Virology 202, 673–683. 10.1006/viro.1994.1389. PubMed DOI
Burniston MT, Cimarelli A, Colgan J, Curtis SP, Luban J, 1999. Human immunodeficiency virus type 1 Gag polyprotein multimerization requires the nucleo-capsid domain and RNA and is promoted by the capsid-dimer interface and the basic region of matrix protein. J. Virol. 73, 8527–8540. PubMed PMC
Byeon I-JL, Meng X, Jung J, Zhao G, Yang R, Ahn J, Shi J, Concel J, Aiken C, Zhang P, Gronenborn AM, 2009. Structural convergence between Cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Cell 139, 780–790. 10.1016/j.cell.2009.10.010. PubMed DOI PMC
Campbell S, Vogt VM, 1997. In vitro assembly of virus-like particles with Rous sarcoma virus Gag deletion mutants: identification of the p10 domain as a morphological determinant in the formation of spherical particles. J. Virol. 71, 4425–4435. PubMed PMC
Campos-Olivas R, Newman JL, Summers MF, 2000. Solution structure and dynamics of the Rous sarcoma virus capsid protein and comparison with capsid proteins of other retroviruses. J. Mol. Biol. 296, 633–649. 10.1006/jmbi.1999.3475. PubMed DOI
Checkley MA, Luttge BG, Freed EO, 2011. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J. Mol. Biol. 410, 582–608. 10.1016/j.jmb.2011.04.042. PubMed DOI PMC
Chiu J, March PE, Lee R, Tillett D, 2004. Site-directed, Ligase-Independent Mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4h. Nucleic Acids Res. 32, e174 10.1093/nar/gnh172. PubMed DOI PMC
Chu HH, Chang YF, Wang CT, 2006. Mutations in the a-helix directly C-terminal to the major homology region of human immunodeficiency virus type 1 capsid protein disrupt Gag multimerization and markedly impair virus particle production. J. Biomed. Sci. 13, 645–656. 10.1007/s11373-006-9094-6. PubMed DOI
Coffin JM, Hughes SH, Varmus HE, 1997. Retroviruses. CSHL Press, Cold Spring Harbor, NY, USA. PubMed
Datta SAK, Temeselew LG, Crist RM, Soheilian F, Kamata A, Mirro J, Harvin D, Nagashima K, Cachau RE, Rein A, 2011. On the role of the SP1 domain in HIV-1 particle assembly: a molecular switch? J. Virol. 85, 4111–4121. 10.1128/JVI.00006-11. PubMed DOI PMC
del Álamo M, Rivas G, Mateu MG, 2005. Effect of macromolecular crowding agents on human immunodeficiency virus type 1 capsid protein assembly in vitro. J. Virol. 79, 14271–14281. 10.1128/JVI.79.22.14271. PubMed DOI PMC
Dostálková A, Kaufman F, Kíízová I, Kultová A, Strohalmová K, Hadravová R, Ruml T, Rumlová M, 2018. Mutations in the basic region of the Mason-Pfizer monkey virus nucleocapsid protein affect reverse transcription, gRNA packaging and the site of viral assembly. J. Virol. 10.1128/JVI.00106-18. PubMed DOI PMC
Fitzon T, Leschonsky B, Bieler K, Paulus C, Schröder J, Wolf H, Wagner R, 2000. Proline residues in the HIV-1 NH2-terminal capsid domain: structure determinants for proper core assembly and subsequent steps of early replication. Virology 268, 294–307. 10.1006/viro.1999.0178. PubMed DOI
Forshey BM, von Schwedler U, Sundquist WI, Aiken C, 2002. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J. Virol. 76, 5667–5677. 10.1128/JVI.76.11.5667. PubMed DOI PMC
Füzik T, Ulbrich P, Ruml T, 2014. Efficient mutagenesis independent of ligation (EMILI). J. Microbiol. Methods 106, 67–71. 10.1016/j.mimet.2014.08.003. PubMed DOI
Füzik T, Píchalová R, Schur FKM, Strohalmová K, Kíízová I, Hadravová R, Rumlová M, Briggs JAG, Ulbrich P, Ruml T, 2016. Nucleic acid binding by Mason-Pfizer monkey virus CA promotes virus assembly and genome packaging. J. Virol. 90, 4593–4603. 10.1128/JVI.03197-15. PubMed DOI PMC
Gamble TR, Yoo S, Vajdos FF, von Schwedler UK, Worthylake DK, Wang H, McCutcheon JP, Sundquist WI, Hill CP, 1997. Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 278, 849–853. PubMed
Gitti RK, Lee BM, Walker J, Summers MF, Yoo S, Sundquist WI, 1996. Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273, 231–235. PubMed
Gross I, Hohenberg H, Kräusslich HG, 1997. In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus. Eur. J. Biochem. 249, 592–600. 10.1111/iM432-1033.1997.t01-1-00592.x. PubMed DOI
Gross I, Hohenberg H, Huckhagel C, Kräusslich HG, 1998. N-terminal extension of human immunodeficiency virus capsid protein converts the in vitro assembly phenotype from tubular to spherical particles. J. Virol. 72, 4798–4810. PubMed PMC
Hadravová R, de Marco A, Ulbrich P, Stokrová J, Dolezal M, Pichová I, Ruml T, Briggs JAG, Rumlová M, 2012. In vitro assembly of virus-like particles of a gammaretrovirus, the murine leukemia virus XMRV. J. Virol. 86, 1297–1306. 10.1128/JVI.05564-11. PubMed DOI PMC
Jin Z, Jin L, Peterson DL, Lawson CL, 1999. Model for lentivirus capsid core assembly based on crystal dimers of EIAV p26. J. Mol. Biol. 286, 83–93. 10.1006/jmbi.1998.2443. PubMed DOI
Kafaie J, Song R, Abrahamyan L, Mouland AJ, Laughrea M, 2008. Mapping of nucleocapsid residues important for HIV-1 genomic RNA dimerization and packaging. Virology 375, 592–610. 10.1016/j.virol.2008.02.001. PubMed DOI
Khorasanizadeh S, Campos-Olivas R, Summers MF, 1999. Solution structure of the capsid protein from the human T-cell leukemia virus type-I. J. Mol. Biol. 291, 491–505. 10.1006/jmbi.1999.2986. PubMed DOI
Kíízová I, Hadravová R, Stokrová J, Gunterová J, Dolezal M, Ruml T, Rumlová M, Pichová I, 2012. The G-patch domain of Mason-Pfizer monkey virus is a part of reverse transcriptase. J. Virol. 86, 1988–1998. 10.1128/JVI.06638-11. PubMed DOI PMC
Kuznetsov YG, Ulbrich P, Haubova S, Ruml T, McPherson A, 2007. Atomic force microscopy investigation of Mason-Pfizer monkey virus and human immunodeficiency virus type 1 reassembled particles. Virology 360, 434–446. 10.1016/j.virol.2006.10.015. PubMed DOI
Lee C-D, Sun H-C, Hu S-M, Chiu C-F, Homhuan A, Liang S-M, Leng C-H, Wang T-F, 2008. An improved SUMO fusion protein system for effective production of native proteins. Protein Sci. 17, 1241–1248. 10.1110/ps.035188.108. PubMed DOI PMC
Macek P, Chmelik J, Krizova I, Kaderavek P, Padrta P, Zidek L, Wildova M, Hadravova R, Chaloupkova R, Pichova I, Ruml T, Rumlova M, Sklenar V, 2009. NMR structure of the N-terminal domain of capsid protein from the Mason-Pfizer monkey virus. J. Mol. Biol. 392, 100–114. 10.1016/j.jmb.2009.06.029. PubMed DOI
Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR, 2004. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J. Struct. Funct. Genom. 5, 75–86. 10.1023/B:JSFG.0000029237.70316.52. PubMed DOI
Mammano F, Ohagen A, Höglund S, Göttlinger HG, 1994. Role of the major homology region of human immunodeficiency virus type 1 in virion morphogenesis. J. Virol. 68, 4927–4936. PubMed PMC
de Marco A, Müller B, Glass B, Riches JD, Kräusslich HG, Briggs JAG, 2010. Structural analysis of HIV-1 maturation using cryo-electron tomography. PLoS Pathog 6 10.1371/journal.ppat.1001215. PubMed DOI PMC
Mateu MG, 2002. Conformational stability of dimeric and monomeric forms of the C-terminal domain of human immunodeficiency virus-1 capsid protein. J. Mol. Biol. 318, 519–531. 10.1016/S0022-2836(02)00091-8. PubMed DOI
McDermott J, Farrell L, Ross R, Barklis E, 1996. Structural analysis of human immunodeficiency virus type 1 Gag protein interactions, using cysteine-specific reagents. J. Virol. 70, 5106–5114. PubMed PMC
Mortuza GB, Goldstone DC, Pashley C, Haire LF, Palmarini M, Taylor WR, Stoye JP, Taylor IA, 2009. Structure of the capsid amino-terminal domain from the Betaretrovirus, Jaagsiekte sheep retrovirus. J. Mol. Biol. 386, 1179–1192. 10.1016/j.jmb.2008.10.066. PubMed DOI
Mossessova E, Lima CD, 2000. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865–876. 10.1016/S1097-2765(00)80326-3. PubMed DOI
Murray PS, Li Z, Wang J, Tang CL, Honig B, Murray D, 2005. Retroviral matrix domains share electrostatic homology: models for membrane binding function throughout the viral life cycle. Structure 13, 1521–1531. 10.1016/j.str.2005.07.010. PubMed DOI
Nath MD, Peterson DL, 2001. In vitro assembly of Feline immunodeficiency virus capsid protein: biological role of conserved cysteines. Arch. Biochem. Biophys. 392, 287–294. 10.1006/abbi.2001.2449. PubMed DOI
Newman RM, Hall L, Connole M, Chen G-L, Sato S, Yuste E, Diehl W, Hunter E, Kaur A, Miller GM, Johnson WE, 2006. Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5alpha. Proc. Natl. Acad. Sci. USA 103, 19134–19139. 10.1073/pnas.0605838103. PubMed DOI PMC
Obr M, Hadravova R, Dolezal M, Krizova I, Papouskova V, Zidek L, Hrabal R, Ruml T, Rumlova M, 2014. Stabilization of the ß-hairpin in Mason-Pfizer monkey virus capsid protein- a critical step for infectivity. Retrovirology 11, 1–14. 10.1186/s12977-014-0094-8. PubMed DOI PMC
Rumlová-Kliková M, Hunter E, Nermut MV, Pichova I, Ruml T, 2000. Analysis of Mason-Pfizer monkey virus Gag domains required for capsid assembly in bacteria: role of the N-terminal proline residue of CA in directing particle shape. J. Virol. 74, 8452–8459. PubMed PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A, 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. 10.1038/nmeth.2019. PubMed DOI PMC
Schur FKM, Dick RA, Hagen WJH, Vogt VM, Briggs JAG, 2015a. The structure of immature virus-like rous sarcoma virus Gag particles reveals a structural role for the p10 domain in assembly. J. Virol. 89, 10294–10302. 10.1128/JVI.01502-15. PubMed DOI PMC
Schur FKM, Hagen WJH, Rumlova M, Ruml T, Müller B, Kräusslich H-G, Briggs JAG, 2015b. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Ä resolution. Nature 517, 505–508. 10.1038/nature13838. PubMed DOI
von Schwedler UK, Stray KM, Garrus JE, Sundquist WI, 2003. Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J. Virol. 77, 5439–5450. 10.1128/JVI.77.9.5439. PubMed DOI PMC
Ulbrich P, Haubova S, Nermut MV, Hunter E, Rumlova M, Ruml T, 2006. Distinct roles for nucleic acid in in vitro assembly of purified Mason-Pfizer monkey virus CANC proteins. J. Virol. 80, 7089–7099. 10.1128/JVI.02694-05. PubMed DOI PMC
von Schwedler UK, Stemmler TL, Klishko VY, Li S, Albertine KH, Davis DR, Sundquist WI, 1998. Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J. 17, 1555–1568. 10.1093/emboj/17.6.1555. PubMed DOI PMC
Vorackova I, Suchanova S, Ulbrich P, Diehl WE, Ruml T, 2011. Purification of proteins containing zinc finger domains using immobilized metal ion affinity chromatography. Protein Expr. Purif. 79, 88–95. 10.1016/j.pep.2011.04.022. PubMed DOI PMC
Welker R, Hohenberg H, Tessmer U, Huckhagel C, Krausslich HG, 2000. Biochemical and structural analysis of isolated mature cores of human IMMUNODEFICIENCY virus type 1. J. Virol. 74, 1168–1177. PubMed PMC
Wildova M, Hadravova R, Stokrova J, Krizova I, Ruml T, Hunter E, Pichova I, Rumlova M, 2008. The effect of point mutations within the N-terminal domain of Mason-Pfizer monkey virus capsid protein on virus core assembly and infectivity. Virology 380, 157–163. 10.1016/j.virol.2008.07.021. PubMed DOI PMC
Worthylake DK, Wang H, Yoo S, Sundquist WI, Hill CP, 1999. Structures of the HIV-1 capsid protein dimerization domain at 2.6 A resolution. Acta Crystallogr. D. Biol. Crystallogr. 55, 85–92. 10.1107/S0907444998007689. PubMed DOI
Zhang Y, Barklis E, 1995. Nucleocapsid protein effects on the specificity of retrovirus RNA encapsidation. J. Virol. 69, 5716–5722. PubMed PMC