The G-patch domain of Mason-Pfizer monkey virus is a part of reverse transcriptase
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22171253
PubMed Central
PMC3302395
DOI
10.1128/jvi.06638-11
PII: JVI.06638-11
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus chemie enzymologie genetika MeSH
- polyproteiny chemie genetika metabolismus MeSH
- reverzní transkriptasa chemie genetika metabolismus MeSH
- terciární struktura proteinů MeSH
- virové proteiny chemie genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- polyproteiny MeSH
- reverzní transkriptasa MeSH
- virové proteiny MeSH
Mason-Pfizer monkey virus (M-PMV), like some other betaretroviruses, encodes a G-patch domain (GPD). This glycine-rich domain, which has been predicted to be an RNA binding module, is invariably localized at the 3' end of the pro gene upstream of the pro-pol ribosomal frameshift sequence of genomic RNAs of betaretroviruses. Following two ribosomal frameshift events and the translation of viral mRNA, the GPD is present in both Gag-Pro and Gag-Pro-Pol polyproteins. During the maturation of the Gag-Pro polyprotein, the GPD transiently remains a C-terminal part of the protease (PR), from which it is then detached by PR itself. The destiny of the Gag-Pro-Pol-encoded GPD remains to be determined. The function of the GPD in the retroviral life cycle is unknown. To elucidate the role of the GPD in the M-PMV replication cycle, alanine-scanning mutational analysis of its most highly conserved residues was performed. A series of individual mutations as well as the deletion of the entire GPD had no effect on M-PMV assembly, polyprotein processing, and RNA incorporation. However, a reduction of the reverse transcriptase (RT) activity, resulting in a drop in M-PMV infectivity, was determined for all GPD mutants. Immunoprecipitation experiments suggested that the GPD is a part of RT and participates in its function. These data indicate that the M-PMV GPD functions as a part of reverse transcriptase rather than protease.
Zobrazit více v PubMed
Aravind L, Koonin EV. 1999. G-patch: a new conserved domain in eukaryotic RNA-processing proteins and type D retroviral polyproteins. Trends Biochem. Sci. 24:342–344 PubMed
Bauerova-Zabranska H, et al. 2005. The RNA binding G-patch domain in retroviral protease is important for infectivity and D-type morphogenesis of Mason-Pfizer monkey virus. J. Biol. Chem. 280:42106–42112 PubMed
Bray M, et al. 1994. A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev-independent. Proc. Natl. Acad. Sci. U. S. A. 91:1256–1260 PubMed PMC
Brody BA, Hunter E. 1992. Mutations within the env gene of Mason-Pfizer monkey virus: effects on protein transport and SU-TM association. J. Virol. 66:3466–3475 PubMed PMC
Chopra HC, Mason MM. 1970. A new virus in a spontaneous mammary tumor of a rhesus monkey. Cancer Res. 30:2081–2086 PubMed
Daniel MD, et al. 1984. A new type D retrovirus isolated from macaques with an immunodeficiency syndrome. Science 223:602–605 PubMed
Dendouga N, Callebaut I, Tomavo S. 2002. A novel DNA repair enzyme containing RNA recognition, G-patch and specific splicing factor 45-like motifs in the protozoan parasite Toxoplasma gondii. Eur. J. Biochem. 269:3393–3401 PubMed
Entin-Meer M, Avidan O, Hizi A. 2003. The mature reverse transcriptase molecules in virions of mouse mammary tumor virus possess protease-derived sequences. Virology 310:157–162 PubMed
Ernst RK, Bray M, Rekosh D, Hammarskjold ML. 1997. A structured retroviral RNA element that mediates nucleocytoplasmic export of intron-containing RNA. Mol. Cell. Biol. 17:135–144 PubMed PMC
Fine DL, et al. 1975. Responses of infant rhesus monkeys to inoculation with Mason-Pfizer monkey virus materials. J. Natl. Cancer Inst. 54:651–658 PubMed
Frenal K, et al. 2006. Structural and functional characterization of the TgDRE multidomain protein, a DNA repair enzyme from Toxoplasma gondii. Biochemistry 45:4867–4874 PubMed
Gifford R, Kabat P, Martin J, Lynch C, Tristem M. 2005. Evolution and distribution of class II-related endogenous retroviruses. J. Virol. 79:6478–6486 PubMed PMC
Gunter P, et al. 1998. TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol. Cell 1:649–659 PubMed
Herrmann G, et al. 2007. Conserved interactions of the splicing factor Ntr1/Spp382 with proteins involved in DNA double-strand break repair and telomere metabolism. Nucleic Acids Res. 35:2321–2332 PubMed PMC
Herschhorn A, Hizi A. 2010. Retroviral reverse transcriptases. Cell. Mol. Life Sci. 67:2717–2747 PubMed PMC
Hizi A, Herschhorn A. 2008. Retroviral reverse transcriptases (other than those of HIV-1 and murine leukemia virus): a comparison of their molecular and biochemical properties. Virus Res. 134:203–220 PubMed
Jensen EM, Zelljadt I, Chopra HC, Mason MM. 1970. Isolation and propagation of a virus from a spontaneous mammary carcinoma of a rhesus monkey. Cancer Res. 30:2388–2393 PubMed
Lebaron S, et al. 2009. The ATPase and helicase activities of Prp43p are stimulated by the G-patch protein Pfa1p during yeast ribosome biogenesis. EMBO J. 28:3808–3819 PubMed PMC
Lin ML, et al. 2009. Involvement of G-patch domain containing 2 overexpression in breast carcinogenesis. Cancer Sci. 100:1443–1450 PubMed PMC
Newman RM, et al. 2006. Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5alpha. Proc. Natl. Acad. Sci. U. S. A. 103:19134–19139 PubMed PMC
Perach M, Hizi A. 1999. Catalytic features of the recombinant reverse transcriptase of bovine leukemia virus expressed in bacteria. Virology 259:176–189 PubMed
Rhee SS, Hunter E. 1990. Structural role of the matrix protein of type D retroviruses in Gag polyprotein stability and capsid assembly. J. Virol. 64:4383–4389 PubMed PMC
Rumlova M, Benedikova J, Cubinkova R, Pichova I, Ruml T. 2001. Comparison of classical and affinity purification techniques of Mason-Pfizer monkey virus capsid protein: the alteration of the product by an affinity tag. Protein Expr. Purif. 23:75–83 PubMed
Silverman EJ, et al. 2004. Interaction between a G-patch protein and a spliceosomal DEXD/H-box ATPase that is critical for splicing. Mol. Cell. Biol. 24:10101–10110 PubMed PMC
Song C, Hunter E. 2003. Variable sensitivity to substitutions in the N-terminal heptad repeat of Mason-Pfizer monkey virus transmembrane protein. J. Virol. 77:7779–7785 PubMed PMC
Stansell E, et al. 2007. Basic residues in the Mason-Pfizer monkey virus Gag matrix domain regulate intracellular trafficking and capsid-membrane interactions. J. Virol. 81:8977–8988 PubMed PMC
Svec M, Bauerova H, Pichova I, Konvalinka J, Strisovsky K. 2004. Proteinases of betaretroviruses bind single-stranded nucleic acids through a novel interaction module, the G-patch. FEBS Lett. 576:271–276 PubMed
Tannukit S, et al. 2009. Identification of a novel nuclear localization signal and speckle-targeting sequence of tuftelin-interacting protein 11, a splicing factor involved in spliceosome disassembly. Biochem. Biophys. Res. Commun. 390:1044–1050 PubMed PMC
Taube R, Loya S, Avidan O, Perach M, Hizi A. 1998. Reverse transcriptase of mouse mammary tumour virus: expression in bacteria, purification and biochemical characterization. Biochem. J. 332(Pt 3):807–808 PubMed PMC
Vlach J, et al. 2008. D-retrovirus morphogenetic switch driven by the targeting signal accessibility to Tctex-1 of dynein. Proc. Natl. Acad. Sci. U. S. A. 105:10565–10570 PubMed PMC
Walbott H, et al. 2010. Prp43p contains a processive helicase structural architecture with a specific regulatory domain. EMBO J. 29:2194–2204 PubMed PMC
Yoshimoto R, Kataoka N, Okawa K, Ohno M. 2009. Isolation and characterization of post-splicing lariat-intron complexes. Nucleic Acids Res. 37:891–902 PubMed PMC
Zabranska H, et al. 2007. The role of the S-S bridge in retroviral protease function and virion maturation. J. Mol. Biol. 365:1493–1504 PubMed
Zabransky A, et al. 1998. Three active forms of aspartic proteinase from Mason-Pfizer monkey virus. Virology 245:250–256 PubMed
Unveiling the DHX15-G-patch interplay in retroviral RNA packaging
PF74 and Its Novel Derivatives Stabilize Hexameric Lattice of HIV-1 Mature-Like Particles
Does BCA3 Play a Role in the HIV-1 Replication Cycle?
Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging
Role of Mason-Pfizer monkey virus CA-NC spacer peptide-like domain in assembly of immature particles