Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26912613
PubMed Central
PMC4836319
DOI
10.1128/jvi.03197-15
PII: JVI.03197-15
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- elektronová kryomikroskopie MeSH
- genom virový * MeSH
- genové produkty gag MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus fyziologie ultrastruktura MeSH
- mutace MeSH
- rekombinantní proteiny MeSH
- RNA virová metabolismus MeSH
- sekvence aminokyselin MeSH
- sestavení viru * genetika MeSH
- substituce aminokyselin MeSH
- transport proteinů MeSH
- vazba proteinů MeSH
- virové plášťové proteiny genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- genové produkty gag MeSH
- rekombinantní proteiny MeSH
- RNA virová MeSH
- virové plášťové proteiny MeSH
UNLABELLED: The Gag polyprotein of retroviruses drives immature virus assembly by forming hexameric protein lattices. The assembly is primarily mediated by protein-protein interactions between capsid (CA) domains and by interactions between nucleocapsid (NC) domains and RNA. Specific interactions between NC and the viral RNA are required for genome packaging. Previously reported cryoelectron microscopy analysis of immature Mason-Pfizer monkey virus (M-PMV) particles suggested that a basic region (residues RKK) in CA may serve as an additional binding site for nucleic acids. Here, we have introduced mutations into the RKK region in both bacterial and proviral M-PMV vectors and have assessed their impact on M-PMV assembly, structure, RNA binding, budding/release, nuclear trafficking, and infectivity using in vitro and in vivo systems. Our data indicate that the RKK region binds and structures nucleic acid that serves to promote virus particle assembly in the cytoplasm. Moreover, the RKK region appears to be important for recruitment of viral genomic RNA into Gag particles, and this function could be linked to changes in nuclear trafficking. Together these observations suggest that in M-PMV, direct interactions between CA and nucleic acid play important functions in the late stages of the viral life cycle. IMPORTANCE: Assembly of retrovirus particles is driven by the Gag polyprotein, which can self-assemble to form virus particles and interact with RNA to recruit the viral genome into the particles. Generally, the capsid domains of Gag contribute to essential protein-protein interactions during assembly, while the nucleocapsid domain interacts with RNA. The interactions between the nucleocapsid domain and RNA are important both for identifying the genome and for self-assembly of Gag molecules. Here, we show that a region of basic residues in the capsid protein of the betaretrovirus Mason-Pfizer monkey virus (M-PMV) contributes to interaction of Gag with nucleic acid. This interaction appears to provide a critical scaffolding function that promotes assembly of virus particles in the cytoplasm. It is also crucial for packaging the viral genome and thus for infectivity. These data indicate that, surprisingly, interactions between the capsid domain and RNA play an important role in the assembly of M-PMV.
Zobrazit více v PubMed
Choi G, Park S, Choi B, Hong S, Lee J, Hunter E, Rhee SS. 1999. Identification of a cytoplasmic targeting/retention signal in a retroviral Gag polyprotein. J Virol 73:5431–5437. PubMed PMC
Sfakianos JN, Hunter E. 2003. M-PMV capsid transport is mediated by Env/Gag interactions at the pericentriolar recycling endosome. Traffic 4:671–680. doi:10.1034/j.1600-0854.2003.00126.x. PubMed DOI
Sakalian M, Hunter E. 1999. Separate assembly and transport domains within the Gag precursor of Mason-Pfizer monkey virus. J Virol 73:8073–8082. PubMed PMC
Vlach J, Lipov J, Rumlová M, Veverka V, Lang J, Srb P, Knejzlík Z, Pichová I, Hunter E, Hrabal R, Ruml T. 2008. D-retrovirus morphogenetic switch driven by the targeting signal accessibility to Tctex-1 of dynein. Proc Natl Acad Sci U S A 105:10565–10570. doi:10.1073/pnas.0801765105. PubMed DOI PMC
Ulbrich P, Haubova S, Nermut MV, Hunter E, Rumlova M, Ruml T. 2006. Distinct roles for nucleic acid in in vitro assembly of purified Mason-Pfizer monkey virus CANC proteins. J Virol 80:7089–7099. doi:10.1128/JVI.02694-05. PubMed DOI PMC
Campbell S, Vogt VM. 1997. In vitro assembly of virus-like particles with Rous sarcoma virus Gag deletion mutants: identification of the p10 domain as a morphological determinant in the formation of spherical particles. J Virol 71:4425–4435. PubMed PMC
Gross I, Hohenberg H, Kräusslich HG. 1997. In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus. Eur J Biochem 249:592–600. doi:10.1111/j.1432-1033.1997.t01-1-00592.x. PubMed DOI
Hadravová R, de Marco A, Ulbrich P, Stokrová J, Dolezal M, Pichová I, Ruml T, Briggs JAG, Rumlová M. 2012. In vitro assembly of virus-like particles of a gammaretrovirus, the murine leukemia virus XMRV. J Virol 86:1297–1306. doi:10.1128/JVI.05564-11. PubMed DOI PMC
Ma YM, Vogt VM. 2004. Nucleic acid binding-induced Gag dimerization in the assembly of Rous sarcoma virus particles in vitro. J Virol 78:52–60. doi:10.1128/JVI.78.1.52-60.2004. PubMed DOI PMC
Pastré D, Hamon L, Landousy F, Sorel I, David M-O, Zozime A, Le Cam E, Piétrement O. 2006. Anionic polyelectrolyte adsorption on mica mediated by multivalent cations: a solution to DNA imaging by atomic force microscopy under high ionic strengths. Langmuir 22:6651–6660. doi:10.1021/la053387y. PubMed DOI
Datta SAK, Zuo X, Clark PK, Campbell SJ, Wang Y-X, Rein A. 2011. Solution properties of murine leukemia virus gag protein: differences from HIV-1 gag. J Virol 85:12733–12741. doi:10.1128/JVI.05889-11. PubMed DOI PMC
Rulli SJ, Hibbert CS, Mirro J, Pederson T, Biswal S, Rein A. 2007. Selective and nonselective packaging of cellular RNAs in retrovirus particles. J Virol 81:6623–6631. doi:10.1128/JVI.02833-06. PubMed DOI PMC
Jouvenet N, Simon SM, Bieniasz PD. 2009. Imaging the interaction of HIV-1 genomes and Gag during assembly of individual viral particles. Proc Natl Acad Sci U S A 106:19114–19119. doi:10.1073/pnas.0907364106. PubMed DOI PMC
Dorfman T, Luban J, Goff SP, Haseltine WA, Göttlinger HG. 1993. Mapping of functionally important residues of a cysteine-histidine box in the human immunodeficiency virus type 1 nucleocapsid protein. J Virol 67:6159–6169. PubMed PMC
Dannull J, Surovoy A, Jung G, Moelling K. 1994. Specific binding of HIV-1 nucleocapsid protein to PSI RNA in vitro requires N-terminal zinc finger and flanking basic amino acid residues. EMBO J 13:1525–1533. PubMed PMC
Aldovini A, Young RA. 1990. Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol 64:1920–1926. PubMed PMC
Gorelick RJ, Henderson LE, Hanser JP, Rein A. 1988. Point mutants of Moloney murine leukemia virus that fail to package viral RNA: evidence for specific RNA recognition by a “zinc finger-like” protein sequence. Proc Natl Acad Sci U S A 85:8420–8424. doi:10.1073/pnas.85.22.8420. PubMed DOI PMC
Alfadhli A, Still A, Barklis E. 2009. Analysis of human immunodeficiency virus type 1 matrix binding to membranes and nucleic acids. J Virol 83:12196–12203. doi:10.1128/JVI.01197-09. PubMed DOI PMC
Ott DE, Coren LV, Gagliardi TD. 2005. Redundant roles for nucleocapsid and matrix RNA-binding sequences in human immunodeficiency virus type 1 assembly. J Virol 79:13839–13847. doi:10.1128/JVI.79.22.13839-13847.2005. PubMed DOI PMC
Fritz CC, Green MR. 1996. HIV Rev uses a conserved cellular protein export pathway for the nucleocytoplasmic transport of viral RNAs. Curr Biol 6:848–854. doi:10.1016/S0960-9822(02)00608-5. PubMed DOI
Butterfield-Gerson KL, Scheifele LZ, Ryan EP, Hopper AK, Parent LJ. 2006. Importin-beta family members mediate alpharetrovirus gag nuclear entry via interactions with matrix and nucleocapsid. J Virol 80:1798–1806. doi:10.1128/JVI.80.4.1798-1806.2006. PubMed DOI PMC
Baluyot MF, Grosse SA, Lyddon TD, Janaka SK, Johnson MC. 2012. CRM1-dependent trafficking of retroviral Gag proteins revisited. J Virol 86:4696–4700. doi:10.1128/JVI.07199-11. PubMed DOI PMC
Lochmann TL, Bann DV, Ryan EP, Beyer AR, Mao A, Cochrane A, Parent LJ. 2013. NC-mediated nucleolar localization of retroviral gag proteins. Virus Res 171:304–318. doi:10.1016/j.virusres.2012.09.011. PubMed DOI PMC
Garbitt-Hirst R, Kenney SP, Parent LJ. 2009. Genetic evidence for a connection between Rous sarcoma virus gag nuclear trafficking and genomic RNA packaging. J Virol 83:6790–6797. doi:10.1128/JVI.00101-09. PubMed DOI PMC
Gudleski N, Flanagan JM, Ryan EP, Bewley MC, Parent LJ. 2010. Directionality of nucleocytoplasmic transport of the retroviral Gag protein depends on sequential binding of karyopherins and viral RNA. Proc Natl Acad Sci U S A 107:9358–9363. doi:10.1073/pnas.1000304107. PubMed DOI PMC
Kemler I, Saenz D, Poeschla E. 2012. Feline Immunodeficiency Virus Gag Is a Nuclear Shuttling Protein. J Virol 86:8402–8411. doi:10.1128/JVI.00692-12. PubMed DOI PMC
Tabernero C, Zolotukhin AS, Valentin A, Pavlakis GN, Felber BK. 1996. The posttranscriptional control element of the simian retrovirus type 1 forms an extensive RNA secondary structure necessary for its function. J Virol 70:5998–6011. PubMed PMC
Ernst RK, Bray M, Rekosh D, Hammarskjöld ML. 1997. A structured retroviral RNA element that mediates nucleocytoplasmic export of intron-containing RNA. Mol Cell Biol 17:135–144. doi:10.1128/MCB.17.1.135. PubMed DOI PMC
Grüter P, Tabernero C, von Kobbe C, Schmitt C, Saavedra C, Bachi A, Wilm M, Felber BK, Izaurralde E. 1998. TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell 1:649–659. doi:10.1016/S1097-2765(00)80065-9. PubMed DOI
de Marco A, Davey NE, Ulbrich P, Phillips JM, Lux V, Riches JD, Fuzik T, Ruml T, Kräusslich H-G, Vogt VM, Briggs JAG. 2010. Conserved and variable features of Gag structure and arrangement in immature retrovirus particles. J Virol 84:11729–11736. doi:10.1128/JVI.01423-10. PubMed DOI PMC
Bharat TAM, Davey NE, Ulbrich P, Riches JD, de Marco A, Rumlova M, Sachse C, Ruml T, Briggs JAG. 2012. Structure of the immature retroviral capsid at 8 Å resolution by cryo-electron microscopy. Nature 487:385–389. doi:10.1038/nature11169. PubMed DOI
Schur FKM, Hagen WJH, de Marco A, Briggs JAG. 2013. Determination of protein structure at 8.5Å resolution using cryo-electron tomography and sub-tomogram averaging. J Struct Biol 184:394–400. doi:10.1016/j.jsb.2013.10.015. PubMed DOI
Schur FK, Hagen WJ, Rumlová M, Ruml T, Müller B, Kräusslich HG, Briggs JAG. 2014. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution. Nature 517:505–508. doi:10.1038/nature13838. PubMed DOI
Rumlova-Klikova M, Hunter E, Nermut MV, Pichova I, Ruml T. 2000. Analysis of Mason-Pfizer monkey virus Gag domains required for capsid assembly in bacteria: role of the N-terminal proline residue of CA in directing particle shape. J Virol 74:8452–8459. doi:10.1128/JVI.74.18.8452-8459.2000. PubMed DOI PMC
Chiu J, March PE, Lee R, Tillett D. 2004. Site-directed, ligase-independent mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic Acids Res 32:e174. doi:10.1093/nar/gnh172. PubMed DOI PMC
Song C, Hunter E. 2003. Variable sensitivity to substitutions in the N-terminal heptad repeat of Mason-Pfizer monkey virus transmembrane protein. J Virol 77:7779–7785. doi:10.1128/JVI.77.14.7779-7785.2003. PubMed DOI PMC
Křízová I, Hadravová R, Štokrová J, Günterová J, Doležal M, Ruml T, Rumlová M, Pichová I. 2012. The G-patch domain of Mason-Pfizer monkey virus is a part of reverse transcriptase. J Virol 86:1988–1998. doi:10.1128/JVI.06638-11. PubMed DOI PMC
Bohmová K, Hadravová R, Stokrová J, Tuma R, Ruml T, Pichová I, Rumlová M. 2010. Effect of dimerizing domains and basic residues on in vitro and in vivo assembly of Mason-Pfizer monkey virus and human immunodeficiency virus. J Virol 84:1977–1988. doi:10.1128/JVI.02022-09. PubMed DOI PMC
Brody BA, Kimball MG, Hunter E. 1994. Mutations within the transmembrane glycoprotein of Mason-Pfizer monkey virus: loss of SU-TM association and effects on infectivity. Virology 202:673–683. doi:10.1006/viro.1994.1389. PubMed DOI
Newman RM, Hall L, Connole M, Chen G-L, Sato S, Yuste E, Diehl W, Hunter E, Kaur A, Miller GM, Johnson WE. 2006. Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5α. Proc Natl Acad Sci U S A 103:19134–19139. doi:10.1073/pnas.0605838103. PubMed DOI PMC
Rumlová M, Benedíková J, Cubínková R, Pichová I, Ruml T. 2001. Comparison of classical and affinity purification techniques of Mason-Pfizer monkey virus capsid protein: the alteration of the product by an affinity tag. Protein Expr Purif 23:75–83. doi:10.1006/prep.2001.1488. PubMed DOI
Voráčková I, Suchanová S, Ulbrich P, Diehl WE, Ruml T. 2011. Purification of proteins containing zinc finger domains using immobilized metal ion affinity chromatography. Protein Expr Purif 79:88–95. doi:10.1016/j.pep.2011.04.022. PubMed DOI PMC
Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG. 2004. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333. doi:10.1002/elps.200305844. PubMed DOI
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019. PubMed DOI PMC
Klikova M, Rhee SS, Hunter E, Ruml T. 1995. Efficient in vivo and in vitro assembly of retroviral capsids from Gag precursor proteins expressed in bacteria. J Virol 69:1093–1098. PubMed PMC
Stansell E, Apkarian R, Haubova S, Diehl WE, Tytler EM, Hunter E. 2007. Basic residues in the Mason-Pfizer monkey virus gag matrix domain regulate intracellular trafficking and capsid-membrane interactions. J Virol 81:8977–8988. doi:10.1128/JVI.00657-07. PubMed DOI PMC
Mastronarde DN. 2005. Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51. doi:10.1016/j.jsb.2005.07.007. PubMed DOI
Kremer JR, Mastronarde DN, McIntosh JR. 1996. Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76. doi:10.1006/jsbi.1996.0013. PubMed DOI
Nickell S, Förster F, Linaroudis A, Del Net W, Beck F, Hegerl R, Baumeister W, Plitzko JM. 2005. TOM software toolbox: acquisition and analysis for electron tomography. J Struct Biol 149:227–234. doi:10.1016/j.jsb.2004.10.006. PubMed DOI
Förster F, Medalia O, Zauberman N, Baumeister W, Fass D. 2005. Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc Natl Acad Sci U S A 102:4729–4734. doi:10.1073/pnas.0409178102. PubMed DOI PMC
Castaño-Díez D, Kudryashev M, Arheit M, Stahlberg H. 2012. Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. J Struct Biol 178:139–151. doi:10.1016/j.jsb.2011.12.017. PubMed DOI
Xiong Q, Morphew MK, Schwartz CL, Hoenger AH, Mastronarde DN. 2009. CTF determination and correction for low dose tomographic tilt series. J Struct Biol 168:378–387. doi:10.1016/j.jsb.2009.08.016. PubMed DOI PMC
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF Chimera: a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi:10.1002/jcc.20084. PubMed DOI
Pruggnaller S, Mayr M, Frangakis AS. 2008. A visualization and segmentation toolbox for electron microscopy. J Struct Biol 164:161–165. doi:10.1016/j.jsb.2008.05.003. PubMed DOI
Strohalmová-Bohmová K, Spiwok V, Lepšík M, Hadravová R, Křížová I, Ulbrich P, Pichová I, Bednárová L, Ruml T, Rumlová M. 2014. Role of Mason-Pfizer monkey virus CA-NC spacer peptide-like domain in assembly of immature particles. J Virol 88:14148–14160. doi:10.1128/JVI.02286-14. PubMed DOI PMC
Bohl CR, Brown SM, Weldon RA. 2005. The pp24 phosphoprotein of Mason-Pfizer monkey virus contributes to viral genome packaging. Retrovirology 2:68. doi:10.1186/1742-4690-2-68. PubMed DOI PMC
Peng K, Muranyi W, Glass B, Laketa V, Yant SR, Tsai L, Cihlar T, Müller B, Kräusslich H-G. 2014. Quantitative microscopy of functional HIV post-entry complexes reveals association of replication with the viral capsid. eLife 4:1–21. doi:10.7554/eLife.04114. PubMed DOI PMC
Zhou L, Sokolskaja E, Jolly C, James W, Cowley SA, Fassati A. 2011. Transportin 3 promotes a nuclear maturation step required for efficient HIV-1 integration. PLoS Pathog 7:e1002194. doi:10.1371/journal.ppat.1002194. PubMed DOI PMC
Sfakianos JN, LaCasse RA, Hunter E. 2003. The M-PMV cytoplasmic targeting-retention signal directs nascent Gag polypeptides to a pericentriolar region of the cell. Traffic 4:660–670. doi:10.1034/j.1600-0854.2003.00125.x. PubMed DOI
Kräusslich HG, Fäcke M, Heuser AM, Konvalinka J, Zentgraf H. 1995. The spacer peptide between human immunodeficiency virus capsid and nucleocapsid proteins is essential for ordered assembly and viral infectivity. J Virol 69:3407–3419. PubMed PMC
Liang C, Hu J, Whitney JB, Kleiman L, Wainberg MA. 2003. A structurally disordered region at the C terminus of capsid plays essential roles in multimerization and membrane binding of the gag protein of human immunodeficiency virus type 1. J Virol 77:1772–1783. doi:10.1128/JVI.77.3.1772-1783.2003. PubMed DOI PMC
Fisher RJ, Rein A, Fivash M, Urbaneja MA, Casas-Finet JR, Medaglia M, Henderson LE. 1998. Sequence-specific binding of human immunodeficiency virus type 1 nucleocapsid protein to short oligonucleotides. J Virol 72:1902–1909. PubMed PMC
Avilov SV, Godet J, Piemont E, Mély Y. 2009. Site-specific characterization of HIV-1 nucleocapsid protein binding to oligonucleotides with two binding sites. Biochemistry 48:2422–2430. doi:10.1021/bi8022366. PubMed DOI
Houzet L, Morichaud Z, Didierlaurent L, Muriaux D, Darlix J-L, Mougel M. 2008. Nucleocapsid mutations turn HIV-1 into a DNA-containing virus. Nucleic Acids Res 36:2311–2319. doi:10.1093/nar/gkn069. PubMed DOI PMC
Kenney SP, Lochmann TL, Schmid CL, Parent LJ. 2008. Intermolecular interactions between retroviral Gag proteins in the nucleus. J Virol 82:683–691. doi:10.1128/JVI.02049-07. PubMed DOI PMC