Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
25363765
DOI
10.1038/nature13838
PII: nature13838
Knihovny.cz E-zdroje
- MeSH
- elektronová kryomikroskopie * MeSH
- HEK293 buňky MeSH
- HIV-1 chemie ultrastruktura MeSH
- kapsida chemie ultrastruktura MeSH
- konformace proteinů MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus chemie ultrastruktura MeSH
- molekulární modely MeSH
- multimerizace proteinu MeSH
- sestavení viru MeSH
- tomografie elektronová * MeSH
- virion chemie ultrastruktura MeSH
- virové plášťové proteiny chemie ultrastruktura MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- virové plášťové proteiny MeSH
Human immunodeficiency virus type 1 (HIV-1) assembly proceeds in two stages. First, the 55 kilodalton viral Gag polyprotein assembles into a hexameric protein lattice at the plasma membrane of the infected cell, inducing budding and release of an immature particle. Second, Gag is cleaved by the viral protease, leading to internal rearrangement of the virus into the mature, infectious form. Immature and mature HIV-1 particles are heterogeneous in size and morphology, preventing high-resolution analysis of their protein arrangement in situ by conventional structural biology methods. Here we apply cryo-electron tomography and sub-tomogram averaging methods to resolve the structure of the capsid lattice within intact immature HIV-1 particles at subnanometre resolution, allowing unambiguous positioning of all α-helices. The resulting model reveals tertiary and quaternary structural interactions that mediate HIV-1 assembly. Strikingly, these interactions differ from those predicted by the current model based on in vitro-assembled arrays of Gag-derived proteins from Mason-Pfizer monkey virus. To validate this difference, we solve the structure of the capsid lattice within intact immature Mason-Pfizer monkey virus particles. Comparison with the immature HIV-1 structure reveals that retroviral capsid proteins, while having conserved tertiary structures, adopt different quaternary arrangements during virus assembly. The approach demonstrated here should be applicable to determine structures of other proteins at subnanometre resolution within heterogeneous environments.
Zobrazit více v PubMed
Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4729-34 PubMed
Nature. 2012 Jul 19;487(7407):385-9 PubMed
Clin Ther. 2000 May;22(5):549-72 PubMed
J Mol Biol. 2003 Oct 31;333(4):721-45 PubMed
J Struct Biol. 2009 Dec;168(3):378-87 PubMed
Cell. 2009 Jun 26;137(7):1282-92 PubMed
Curr Opin Struct Biol. 2013 Apr;23(2):261-7 PubMed
J Mol Biol. 2011 Jul 22;410(4):491-500 PubMed
J Virol. 2003 May;77(9):5439-50 PubMed
J Struct Biol. 2008 Oct;164(1):161-5 PubMed
J Struct Biol. 2012 May;178(2):139-51 PubMed
J Struct Biol. 2005 Oct;152(1):36-51 PubMed
Nature. 1994 Nov 24;372(6504):359-62 PubMed
J Mol Biol. 2009 Sep 11;392(1):100-14 PubMed
Nature. 2004 Sep 23;431(7007):481-5 PubMed
Nat Struct Biol. 2002 Jul;9(7):537-43 PubMed
J Comput Chem. 2004 Oct;25(13):1605-12 PubMed
J Virol. 2012 Dec;86(24):13708-16 PubMed
J Mol Biol. 2000 Feb 18;296(2):633-49 PubMed
Cancer Res. 1970 Aug;30(8):2081-6 PubMed
J Comput Chem. 2005 Dec;26(16):1781-802 PubMed
Structure. 2000 Jun 15;8(6):617-28 PubMed
EMBO J. 1998 Mar 16;17(6):1555-68 PubMed
J Biol Chem. 2008 Nov 14;283(46):32024-33 PubMed
Trends Microbiol. 2013 Mar;21(3):136-44 PubMed
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8233-8 PubMed
Protein Sci. 2005 Feb;14(2):375-86 PubMed
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11090-5 PubMed
EMBO J. 2007 Apr 18;26(8):2218-26 PubMed
Structure. 2010 Nov 10;18(11):1483-91 PubMed
Methods. 2009 Oct;49(2):174-80 PubMed
J Virol. 1998 Mar;72(3):2072-8 PubMed
J Virol. 1999 Feb;73(2):1460-7 PubMed
Nature. 2013 May 30;497(7451):643-6 PubMed
J Struct Biol. 2005 Mar;149(3):227-34 PubMed
J Mol Biol. 2001 Mar 2;306(4):783-97 PubMed
J Virol. 1998 Nov;72(11):9313-7 PubMed
Nature. 2011 Jan 20;469(7330):424-7 PubMed
J Struct Biol. 2013 Dec;184(3):394-400 PubMed
J Biomol NMR. 1999 Jun;14(2):199-200 PubMed
FEBS Lett. 2004 Apr 9;563(1-3):113-8 PubMed
J Biomed Sci. 2006 Sep;13(5):645-56 PubMed
J Virol. 1994 Aug;68(8):4927-36 PubMed
Cold Spring Harb Perspect Med. 2012 Jul;2(7):a006924 PubMed
J Struct Biol. 1996 Jan-Feb;116(1):71-6 PubMed
Curr Biol. 1997 Oct 1;7(10):729-38 PubMed
Unveiling the DHX15-G-patch interplay in retroviral RNA packaging
The Present and Future of Virology in the Czech Republic-A New Phoenix Made of Ashes?
Targeting the Virus Capsid as a Tool to Fight RNA Viruses
Precursors of Viral Proteases as Distinct Drug Targets
Interaction Interface of Mason-Pfizer Monkey Virus Matrix and Envelope Proteins
PF74 and Its Novel Derivatives Stabilize Hexameric Lattice of HIV-1 Mature-Like Particles
Structure and architecture of immature and mature murine leukemia virus capsids
Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging