Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution

. 2015 Jan 22 ; 517 (7535) : 505-8. [epub] 20141102

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25363765

Human immunodeficiency virus type 1 (HIV-1) assembly proceeds in two stages. First, the 55 kilodalton viral Gag polyprotein assembles into a hexameric protein lattice at the plasma membrane of the infected cell, inducing budding and release of an immature particle. Second, Gag is cleaved by the viral protease, leading to internal rearrangement of the virus into the mature, infectious form. Immature and mature HIV-1 particles are heterogeneous in size and morphology, preventing high-resolution analysis of their protein arrangement in situ by conventional structural biology methods. Here we apply cryo-electron tomography and sub-tomogram averaging methods to resolve the structure of the capsid lattice within intact immature HIV-1 particles at subnanometre resolution, allowing unambiguous positioning of all α-helices. The resulting model reveals tertiary and quaternary structural interactions that mediate HIV-1 assembly. Strikingly, these interactions differ from those predicted by the current model based on in vitro-assembled arrays of Gag-derived proteins from Mason-Pfizer monkey virus. To validate this difference, we solve the structure of the capsid lattice within intact immature Mason-Pfizer monkey virus particles. Comparison with the immature HIV-1 structure reveals that retroviral capsid proteins, while having conserved tertiary structures, adopt different quaternary arrangements during virus assembly. The approach demonstrated here should be applicable to determine structures of other proteins at subnanometre resolution within heterogeneous environments.

Zobrazit více v PubMed

Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4729-34 PubMed

Nature. 2012 Jul 19;487(7407):385-9 PubMed

Clin Ther. 2000 May;22(5):549-72 PubMed

J Mol Biol. 2003 Oct 31;333(4):721-45 PubMed

J Struct Biol. 2009 Dec;168(3):378-87 PubMed

Cell. 2009 Jun 26;137(7):1282-92 PubMed

Curr Opin Struct Biol. 2013 Apr;23(2):261-7 PubMed

J Mol Biol. 2011 Jul 22;410(4):491-500 PubMed

J Virol. 2003 May;77(9):5439-50 PubMed

J Struct Biol. 2008 Oct;164(1):161-5 PubMed

J Struct Biol. 2012 May;178(2):139-51 PubMed

J Struct Biol. 2005 Oct;152(1):36-51 PubMed

Nature. 1994 Nov 24;372(6504):359-62 PubMed

J Mol Biol. 2009 Sep 11;392(1):100-14 PubMed

Nature. 2004 Sep 23;431(7007):481-5 PubMed

Nat Struct Biol. 2002 Jul;9(7):537-43 PubMed

J Comput Chem. 2004 Oct;25(13):1605-12 PubMed

J Virol. 2012 Dec;86(24):13708-16 PubMed

J Mol Biol. 2000 Feb 18;296(2):633-49 PubMed

Cancer Res. 1970 Aug;30(8):2081-6 PubMed

J Comput Chem. 2005 Dec;26(16):1781-802 PubMed

Structure. 2000 Jun 15;8(6):617-28 PubMed

EMBO J. 1998 Mar 16;17(6):1555-68 PubMed

J Biol Chem. 2008 Nov 14;283(46):32024-33 PubMed

Trends Microbiol. 2013 Mar;21(3):136-44 PubMed

Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8233-8 PubMed

Protein Sci. 2005 Feb;14(2):375-86 PubMed

Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11090-5 PubMed

EMBO J. 2007 Apr 18;26(8):2218-26 PubMed

Structure. 2010 Nov 10;18(11):1483-91 PubMed

Methods. 2009 Oct;49(2):174-80 PubMed

J Virol. 1998 Mar;72(3):2072-8 PubMed

J Virol. 1999 Feb;73(2):1460-7 PubMed

Nature. 2013 May 30;497(7451):643-6 PubMed

J Struct Biol. 2005 Mar;149(3):227-34 PubMed

J Mol Biol. 2001 Mar 2;306(4):783-97 PubMed

J Virol. 1998 Nov;72(11):9313-7 PubMed

Nature. 2011 Jan 20;469(7330):424-7 PubMed

J Struct Biol. 2013 Dec;184(3):394-400 PubMed

J Biomol NMR. 1999 Jun;14(2):199-200 PubMed

FEBS Lett. 2004 Apr 9;563(1-3):113-8 PubMed

J Biomed Sci. 2006 Sep;13(5):645-56 PubMed

J Virol. 1994 Aug;68(8):4927-36 PubMed

Cold Spring Harb Perspect Med. 2012 Jul;2(7):a006924 PubMed

J Struct Biol. 1996 Jan-Feb;116(1):71-6 PubMed

Curr Biol. 1997 Oct 1;7(10):729-38 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Unveiling the DHX15-G-patch interplay in retroviral RNA packaging

. 2024 Oct ; 121 (40) : e2407990121. [epub] 20240925

The Present and Future of Virology in the Czech Republic-A New Phoenix Made of Ashes?

. 2022 Jun 14 ; 14 (6) : . [epub] 20220614

Targeting the Virus Capsid as a Tool to Fight RNA Viruses

. 2022 Jan 18 ; 14 (2) : . [epub] 20220118

Precursors of Viral Proteases as Distinct Drug Targets

. 2021 Oct 02 ; 13 (10) : . [epub] 20211002

Effect of Small Polyanions on In Vitro Assembly of Selected Members of Alpha-, Beta- and Gammaretroviruses

. 2021 Jan 18 ; 13 (1) : . [epub] 20210118

Interaction Interface of Mason-Pfizer Monkey Virus Matrix and Envelope Proteins

. 2020 Sep 29 ; 94 (20) : . [epub] 20200929

In Vitro Quantification of the Effects of IP6 and Other Small Polyanions on Immature HIV-1 Particle Assembly and Core Stability

. 2020 Sep 29 ; 94 (20) : . [epub] 20200929

PF74 and Its Novel Derivatives Stabilize Hexameric Lattice of HIV-1 Mature-Like Particles

. 2020 Apr 20 ; 25 (8) : . [epub] 20200420

Structure and architecture of immature and mature murine leukemia virus capsids

. 2018 Dec 11 ; 115 (50) : E11751-E11760. [epub] 20181126

Conserved cysteines in Mason-Pfizer monkey virus capsid protein are essential for infectious mature particle formation

. 2018 Aug ; 521 () : 108-117. [epub] 20180612

Mutations in the Basic Region of the Mason-Pfizer Monkey Virus Nucleocapsid Protein Affect Reverse Transcription, Genomic RNA Packaging, and the Virus Assembly Site

. 2018 May 15 ; 92 (10) : . [epub] 20180427

Functional and Structural Characterization of Novel Type of Linker Connecting Capsid and Nucleocapsid Protein Domains in Murine Leukemia Virus

. 2016 Sep 23 ; 291 (39) : 20630-42. [epub] 20160811

Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging

. 2016 May ; 90 (9) : 4593-4603. [epub] 20160414

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...