Functional and Structural Characterization of Novel Type of Linker Connecting Capsid and Nucleocapsid Protein Domains in Murine Leukemia Virus
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27514744
PubMed Central
PMC5034055
DOI
10.1074/jbc.m116.746461
PII: S0021-9258(20)35933-0
Knihovny.cz E-zdroje
- Klíčová slova
- capsid protein (CA), charged assembly helix (CAH), circular dichroism (CD), electron microscopy (EM), murine leukemia virus (MLV), nuclear magnetic resonance (NMR), retrovirus, single alpha-helix (SAH), spacer peptide (SP), virus assembly,
- MeSH
- mutageneze MeSH
- myši MeSH
- proteinové domény MeSH
- sekundární struktura proteinů MeSH
- virové plášťové proteiny chemie genetika MeSH
- virus myší leukemie chemie genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- virové plášťové proteiny MeSH
The assembly of immature retroviral particles is initiated in the cytoplasm by the binding of the structural polyprotein precursor Gag with viral genomic RNA. The protein interactions necessary for assembly are mediated predominantly by the capsid (CA) and nucleocapsid (NC) domains, which have conserved structures. In contrast, the structural arrangement of the CA-NC connecting region differs between retroviral species. In HIV-1 and Rous sarcoma virus, this region forms a rod-like structure that separates the CA and NC domains, whereas in Mason-Pfizer monkey virus, this region is densely packed, thus holding the CA and NC domains in close proximity. Interestingly, the sequence connecting the CA and NC domains in gammaretroviruses, such as murine leukemia virus (MLV), is unique. The sequence is called a charged assembly helix (CAH) due to a high number of positively and negatively charged residues. Although both computational and deletion analyses suggested that the MLV CAH forms a helical conformation, no structural or biochemical data supporting this hypothesis have been published. Using an in vitro assembly assay, alanine scanning mutagenesis, and biophysical techniques (circular dichroism, NMR, microcalorimetry, and electrophoretic mobility shift assay), we have characterized the structure and function of the MLV CAH. We provide experimental evidence that the MLV CAH belongs to a group of charged, E(R/K)-rich, single α-helices. This is the first single α-helix motif identified in viral proteins.
Zobrazit více v PubMed
Accola M. A., Höglund S., and Göttlinger H. G. (1998) A putative α-helical structure which overlaps the capsid-p2 boundary in the human immunodeficiency virus type 1 Gag precursor is crucial for viral particle assembly. J. Virol. 72, 2072–2078 PubMed PMC
Kräusslich H. G., Fäcke M., Heuser A. M., Konvalinka J., and Zentgraf H. (1995) The spacer peptide between human immunodeficiency virus capsid and nucleocapsid proteins is essential for ordered assembly and viral infectivity. J. Virol. 69, 3407–3419 PubMed PMC
Bohmová K., Hadravová R., Stokrová J., Tuma R., Ruml T., Pichová I., and Rumlová M. (2010) Effect of dimerizing domains and basic residues on in vitro and in vivo assembly of Mason-Pfizer monkey virus and human immunodeficiency virus. J. Virol. 84, 1977–1988 PubMed PMC
Strohalmová-Bohmová K., Spiwok V., Lepšík M., Hadravová R., Křížová I., Ulbrich P., Pichová I., Bednárová L., Ruml T., and Rumlová M. (2014) Role of Mason-Pfizer monkey virus CA-NC spacer peptide-like domain in assembly of immature particles. J. Virol. 88, 14148–14160 PubMed PMC
Cheslock S. R., Poon D. T., Fu W., Rhodes T. D., Henderson L. E., Nagashima K., McGrath C. F., and Hu W. S. (2003) Charged assembly helix motif in murine leukemia virus capsid: an important region for virus assembly and particle size determination. J. Virol. 77, 7058–7066 PubMed PMC
Wang M. Q., and Goff S. P. (2003) Defects in virion production caused by mutations affecting the C-terminal portion of the Moloney murine leukemia virus capsid protein. J. Virol. 77, 3339–3344 PubMed PMC
Bharat T. A. M., Castillo Menendez L. R., Hagen W. J. H., Lux V., Igonet S., Schorb M., Schur F. K. M., Kräusslich H.-G., and Briggs J. A. G. (2014) Cryo-electron microscopy of tubular arrays of HIV-1 Gag resolves structures essential for immature virus assembly. Proc. Natl. Acad. Sci. U.S.A. 111, 8233–8238 PubMed PMC
Schur F. K., Hagen W. J., Rumlová M., Ruml T., Müller B., Kräusslich H. G., and Briggs J. A. (2015) Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution. Nature 517, 505–508 PubMed
Bharat T. A., Davey N. E., Ulbrich P., Riches J. D., de Marco A., Rumlova M., Sachse C., Ruml T., and Briggs J. A. (2012) Structure of the immature retroviral capsid at 8 Å resolution by cryo-electron microscopy. Nature 487, 385–389 PubMed
Wright E. R., Schooler J. B., Ding H. J., Kieffer C., Fillmore C., Sundquist W. I., and Jensen G. J. (2007) Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. EMBO J. 26, 2218–2226 PubMed PMC
de Marco A., Davey N. E., Ulbrich P., Phillips J. M., Lux V., Riches J. D., Fuzik T., Ruml T., Kräusslich H. G., Vogt V. M., and Briggs J. A. (2010) Conserved and variable features of Gag structure and arrangement in immature retrovirus particles. J. Virol. 84, 11729–11736 PubMed PMC
Hadravová R., de Marco A., Ulbrich P., Stokrová J., Dolezal M., Pichová I., Ruml T., Briggs J. A., and Rumlová M. (2012) In vitro assembly of virus-like particles of a gammaretrovirus, the murine leukemia virus XMRV. J. Virol. 86, 1297–1306 PubMed PMC
Schur F. K. M., Obr M., Hagen W. J. H., Wan W., Jakobi A. J., Kirkpatrick J. M., Sachse C., Kräusslich H.-G., and Briggs J. A. G. (2016) An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353, 506–508 PubMed
Keller P. W., Johnson M. C., and Vogt V. M. (2008) Mutations in the spacer peptide and adjoining sequences in Rous sarcoma virus Gag lead to tubular budding. J. Virol. 82, 6788–6797 PubMed PMC
Pettit S. C., Moody M. D., Wehbie R. S., Kaplan A. H., Nantermet P. V., Klein C. A., and Swanstrom R. (1994) The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J. Virol. 68, 8017–8027 PubMed PMC
Melamed D., Mark-Danieli M., Kenan-Eichler M., Kraus O., Castiel A., Laham N., Pupko T., Glaser F., Ben-Tal N., and Bacharach E. (2004) The conserved carboxy terminus of the capsid domain of human immunodeficiency virus type 1 Gag protein is important for virion assembly and release. J. Virol. 78, 9675–9688 PubMed PMC
Bush D. L., Monroe E. B., Bedwell G. J., Prevelige P. E. Jr, Phillips J. M., and Vogt V. M. (2014) Higher-order structure of the Rous sarcoma virus SP assembly domain. J. Virol. 88, 5617–5629 PubMed PMC
Morellet N., Druillennec S., Lenoir C., Bouaziz S., and Roques B. P. (2005) Helical structure determined by NMR of the HIV-1 (345–392)Gag sequence, surrounding p2: implications for particle assembly and RNA packaging. Protein Sci. 14, 375–386 PubMed PMC
Han Y., Hou G., Suiter C. L., Ahn J., Byeon I. J., Lipton A. S., Burton S., Hung I., Gor'kov P. L., Gan Z., Brey W., Rice D., Gronenborn A. M., and Polenova T. (2013) Magic angle spinning NMR reveals sequence-dependent structural plasticity, dynamics, and the spacer peptide 1 conformation in HIV-1 capsid protein assemblies. J. Am. Chem. Soc. 135, 17793–17803 PubMed PMC
Datta S. A., Temeselew L. G., Crist R. M., Soheilian F., Kamata A., Mirro J., Harvin D., Nagashima K., Cachau R. E., and Rein A. (2011) On the role of the SP1 domain in HIV-1 particle assembly: a molecular switch? J. Virol. 85, 4111–4121 PubMed PMC
Knight P. J., Thirumurugan K., Xu Y., Wang F., Kalverda A. P., Stafford W. F. 3rd, Sellers J. R., and Peckham M. (2005) The predicted coiled-coil domain of myosin 10 forms a novel elongated domain that lengthens the head. J. Biol. Chem. 280, 34702–34708 PubMed
Sivaramakrishnan S., Spink B. J., Sim A. Y., Doniach S., and Spudich J. A. (2008) Dynamic charge interactions create surprising rigidity in the ER/K α-helical protein motif. Proc. Natl. Acad. Sci. U.S.A. 105, 13356–13361 PubMed PMC
Süveges D., Gáspári Z., Tóth G., and Nyitray L. (2009) Charged single α-helix: a versatile protein structural motif. Proteins 74, 905–916 PubMed
Swanson C. J., and Sivaramakrishnan S. (2014) Harnessing the unique structural properties of isolated α-helices. J. Biol. Chem. 289, 25460–25467 PubMed PMC
Baker E. G., Bartlett G. J., Crump M. P., Sessions R. B., Linden N., Faul C. F., and Woolfson D. N. (2015) Local and macroscopic electrostatic interactions in single α-helices. Nat. Chem. Biol. 11, 221–228 PubMed PMC
Wang C. L., Chalovich J. M., Graceffa P., Lu R. C., Mabuchi K., and Stafford W. F. (1991) A long helix from the central region of smooth muscle caldesmon. J. Biol. Chem. 266, 13958–13963 PubMed PMC
Spink B. J., Sivaramakrishnan S., Lipfert J., Doniach S., and Spudich J. A. (2008) Long single α-helical tail domains bridge the gap between structure and function of myosin VI. Nat. Struct. Mol. Biol. 15, 591–597 PubMed PMC
Yang Y., Baboolal T. G., Siththanandan V., Chen M., Walker M. L., Knight P. J., Peckham M., and Sellers J. R. (2009) A FERM domain autoregulates Drosophila myosin 7a activity. Proc. Natl. Acad. Sci. U.S.A. 106, 4189–4194 PubMed PMC
Gáspári Z., Süveges D., Perczel A., Nyitray L., and Tóth G. (2012) Charged single α-helices in proteomes revealed by a consensus prediction approach. Biochim. Biophys. Acta 1824, 637–646 PubMed
Peckham M., and Knight P. J. (2009) When a predicted coiled coil is really a single [alpha]-helix, in myosins and other proteins. Soft Matter 5, 2493–2503
Baboolal T. G., Sakamoto T., Forgacs E., White H. D., Jackson S. M., Takagi Y., Farrow R. E., Molloy J. E., Knight P. J., Sellers J. R., and Peckham M. (2009) The SAH domain extends the functional length of the myosin lever. Proc. Natl. Acad. Sci. U.S.A. 106, 22193–22198 PubMed PMC
Wolny M., Batchelor M., Knight P. J., Paci E., Dougan L., and Peckham M. (2014) Stable single α-helices are constant force springs in proteins. J. Biol. Chem. 289, 27825–27835 PubMed PMC
Füzik T., Píchalová R., Schur F. K., Strohalmová K., Křížová I., Hadravová R., Rumlová M., Briggs J. A., Ulbrich P., and Ruml T. (2016) Nucleic acid binding by Mason-Pfizer monkey virus CA promotes virus assembly and genome packaging. J. Virol. 90, 4593–4603 PubMed PMC
Machara A., Lux V., Kožíšek M., Grantz Šašková K., Štěpánek O., Kotora M., Parkan K., Pávová M., Glass B., Sehr P., Lewis J., Müller B., Kräusslich H. G., and Konvalinka J. (2016) Specific inhibitors of HIV capsid assembly binding to the C-terminal domain of the capsid protein: evaluation of 2-arylquinazolines as potential antiviral compounds. J. Med. Chem. 59, 545–558 PubMed
Wiegers K., Rutter G., Kottler H., Tessmer U., Hohenberg H., and Kräusslich H. G. (1998) Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J. Virol. 72, 2846–2854 PubMed PMC
Noviello C. M., López C. S., Kukull B., McNett H., Still A., Eccles J., Sloan R., and Barklis E. (2011) Second-site compensatory mutations of HIV-1 capsid mutations. J. Virol. 85, 4730–4738 PubMed PMC
Bowzard J. B., Wills J. W., and Craven R. C. (2001) Second-site suppressors of Rous sarcoma virus CA mutations: evidence for interdomain interactions. J. Virol. 75, 6850–6856 PubMed PMC
England M. R., Purdy J. G., Ropson I. J., Dalessio P. M., and Craven R. C. (2014) Potential role for CA-SP in nucleating retroviral capsid maturation. J. Virol. 88, 7170–7177 PubMed PMC
Rumlová M., Ruml T., Pohl J., and Pichová I. (2003) Specific in vitro cleavage of Mason-Pfizer monkey virus capsid protein: evidence for a potential role of retroviral protease in early stages of infection. Virology 310, 310–318 PubMed
Johnson W. C. (1999) Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins 35, 307–312 PubMed
Sreerama N., and Woody R. W. (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 287, 252–260 PubMed
Greenfield N. J. (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat. Protocols 1, 2876–2890 PubMed PMC
Wishart D. S., Bigam C. G., Yao J., Abildgaard F., Dyson H. J., Oldfield E., Markley J. L., and Sykes B. D. (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J. Biomol NMR 6, 135–140 PubMed
Vranken W. F., Boucher W., Stevens T. J., Fogh R. H., Pajon A., Llinas M., Ulrich E. L., Markley J. L., Ionides J., and Laue E. D. (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 PubMed
Shen Y., Delaglio F., Cornilescu G., and Bax A. (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol NMR 44, 213–223 PubMed PMC
In vitro methods for testing antiviral drugs
Structure and architecture of immature and mature murine leukemia virus capsids