In vitro assembly of virus-like particles of a gammaretrovirus, the murine leukemia virus XMRV
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 CA027834
NCI NIH HHS - United States
R37 CA027834
NCI NIH HHS - United States
CA 27834
NCI NIH HHS - United States
PubMed
22090120
PubMed Central
PMC3264384
DOI
10.1128/jvi.05564-11
PII: JVI.05564-11
Knihovny.cz E-zdroje
- MeSH
- DNA primery MeSH
- elektronová kryomikroskopie MeSH
- Escherichia coli ultrastruktura virologie MeSH
- Fourierova analýza MeSH
- molekulární sekvence - údaje MeSH
- polymerázová řetězová reakce MeSH
- proteolýza MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie aminokyselin MeSH
- sestavení viru * MeSH
- transmisní elektronová mikroskopie MeSH
- virion fyziologie MeSH
- virové proteiny chemie metabolismus MeSH
- virus myší leukemie fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA primery MeSH
- virové proteiny MeSH
Immature retroviral particles are assembled by self-association of the structural polyprotein precursor Gag. During maturation the Gag polyprotein is proteolytically cleaved, yielding mature structural proteins, matrix (MA), capsid (CA), and nucleocapsid (NC), that reassemble into a mature viral particle. Proteolytic cleavage causes the N terminus of CA to fold back to form a β-hairpin, anchored by an internal salt bridge between the N-terminal proline and the inner aspartate. Using an in vitro assembly system of capsid-nucleocapsid protein (CANC), we studied the formation of virus-like particles (VLP) of a gammaretrovirus, the xenotropic murine leukemia virus (MLV)-related virus (XMRV). We show here that, unlike other retroviruses, XMRV CA and CANC do not assemble tubular particles characteristic of mature assembly. The prevention of β-hairpin formation by the deletion of either the N-terminal proline or 10 initial amino acids enabled the assembly of ΔProCANC or Δ10CANC into immature-like spherical particles. Detailed three-dimensional (3D) structural analysis of these particles revealed that below a disordered N-terminal CA layer, the C terminus of CA assembles a typical immature lattice, which is linked by rod-like densities with the RNP.
Zobrazit více v PubMed
Accola MA, Hoglund S, Gottlinger HG. 1998. A putative alpha-helical structure which overlaps the capsid-p2 boundary in the human immunodeficiency virus type 1 Gag precursor is crucial for viral particle assembly. J. Virol. 72: 2072–2078 PubMed PMC
Accola MA, Strack B, Gottlinger HG. 2000. Efficient particle production by minimal gag constructs which retain the carboxy-terminal domain of human immunodeficiency virus type 1 capsid-p2 and a late assembly domain. J. Virol. 74: 5395–5402 PubMed PMC
Bohmova K, et al. 2010. Effect of dimerizing domains and basic residues on in vitro and in vivo assembly of Mason-Pfizer monkey virus and human immunodeficiency virus. J. Virol. 84: 1977–1988 PubMed PMC
Borsetti A, Ohagen A, Gottlinger HG. 1998. The C-terminal half of the human immunodeficiency virus type 1 Gag precursor is sufficient for efficient particle assembly. J. Virol. 72: 9313–9317 PubMed PMC
Briggs JA, Johnson MC, Simon MN, Fuller SD, Vogt VM. 2006. Cryo-electron microscopy reveals conserved and divergent features of gag packing in immature particles of Rous sarcoma virus and human immunodeficiency virus. J. Mol. Biol. 355: 157–168 PubMed
Briggs JA, et al. 2009. Structure and assembly of immature HIV. Proc. Natl. Acad. Sci. U. S. A. 106: 11090–11095 PubMed PMC
Briggs JA, et al. 2004. The stoichiometry of Gag protein in HIV-1. Nat. Struct. Mol. Biol. 11: 672–675 PubMed
Campbell S, Vogt VM. 1995. Self-assembly in vitro of purified Ca-Nc proteins from Rous sarcoma virus and human immunodeficiency virus type 1. J. Virol. 69: 6487–6497 PubMed PMC
Cheslock SR, et al. 2003. Charged assembly helix motif in murine leukemia virus capsid: an important region for virus assembly and particle size determination. J. Virol. 77: 7058–7066 PubMed PMC
Cornilescu CC, Bouamr F, Yao X, Carter C, Tjandra N. 2001. Structural analysis of the N-terminal domain of the human T-cell leukemia virus capsid protein. J. Mol. Biol. 306: 783–797 PubMed
Datta SA, et al. 2011. Solution properties of murine leukemia virus Gag protein: differences from HIV-1 Gag. J. Virol. 85: 12733–12741 PubMed PMC
de Marco A, et al. 2010. Conserved and variable features of Gag structure and arrangement in immature retrovirus particles. J. Virol. 84: 11729–11736 PubMed PMC
de Marco A, et al. 2010. Structural analysis of HIV-1 maturation using cryo-electron tomography. PLoS Pathog. 6: e1001215. PubMed PMC
Ehrlich LS, Agresta BE, Carter CA. 1992. Assembly of recombinant human immunodeficiency virus type 1 capsid protein in vitro. J. Virol. 66: 4874–4883 PubMed PMC
Erlwein O, et al. 2011. Investigation into the presence of and serological response to XMRV in CFS patients. PLoS One 6: e17592. PubMed PMC
Fischer N, et al. 2008. Prevalence of human gammaretrovirus XMRV in sporadic prostate cancer. J. Clin. Virol. 43: 277–283 PubMed
Furuta RA, et al. 2011. No association of xenotropic murine leukemia virus-related virus with prostate cancer or chronic fatigue syndrome in Japan. Retrovirology 8: 20. PubMed PMC
Ganser BK, Li S, Klishko VY, Finch JT, Sundquist WI. 1999. Assembly and analysis of conical models for the HIV-1 core. Science 283: 80–83 PubMed
Ganser-Pornillos BK, Yeager M, Sundquist WI. 2008. The structural biology of HIV assembly. Curr. Opin. Struct. Biol. 18: 203–217 PubMed PMC
Gitti RK, et al. 1996. Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273: 231–235 PubMed
Gross I, Hohenberg H, Huckhagel C, Krausslich HG. 1998. N-terminal extension of human immunodeficiency virus capsid protein converts the in vitro assembly phenotype from tubular to spherical particles. J. Virol. 72: 4798–4810 PubMed PMC
Gross I, Hohenberg H, Krausslich HG. 1997. In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus. Eur. J. Biochem. 249: 592–600 PubMed
Gross I, et al. 2000. A conformational switch controlling HIV-1 morphogenesis. EMBO J. 19: 103–113 PubMed PMC
Hilditch L, et al. 2011. Ordered assembly of murine leukemia virus capsid protein on lipid nanotubes directs specific binding by the restriction factor, Fv1. Proc. Natl. Acad. Sci. U. S. A. 108: 5771–5776 PubMed PMC
Hohn O, et al. 2009. Lack of evidence for xenotropic murine leukemia virus-related virus(XMRV) in German prostate cancer patients. Retrovirology 6: 92. PubMed PMC
Hong P, Li J, Li Y. 2010. Failure to detect xenotropic murine leukaemia virus-related virus in Chinese patients with chronic fatigue syndrome. Virol. J. 7: 224. PubMed PMC
Johnson MC, Scobie HM, Vogt VM. 2001. PR domain of rous sarcoma virus Gag causes an assembly/budding defect in insect cells. J. Virol. 75: 4407–4412 PubMed PMC
Keller PW, Johnson MC, Vogt VM. 2008. Mutations in the spacer peptide and adjoining sequences in Rous sarcoma virus Gag lead to tubular budding. J. Virol. 82: 6788–6797 PubMed PMC
Khorasanizadeh S, Campos-Olivas R, Summers MF. 1999. Solution structure of the capsid protein from the human T-cell leukemia virus type-I. J. Mol. Biol. 291: 491–505 PubMed
Kingston RL, et al. 2000. Structure and self-association of the Rous sarcoma virus capsid protein. Structure 8: 617–628 PubMed
Klikova M, Rhee SS, Hunter E, Ruml T. 1995. Efficient in-vivo and in-vitro assembly of retroviral capsids from Gag precursor proteins expressed in bacteria. J. Virol. 69: 1093–1098 PubMed PMC
Knox K, et al. 2011. No evidence of murine-like gammaretroviruses in CFS patients previously identified as XMRV-infected. Science 333: 94–97 PubMed
Krausslich HG, Facke M, Heuser AM, Konvalinka J, Zentgraf H. 1995. The spacer peptide between human immunodeficiency virus capsid and nucleocapsid proteins is essential for ordered assembly and viral infectivity. J. Virol. 69: 3407–3419 PubMed PMC
Kremer JR, Mastronarde DN, McIntosh JR. 1996. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116: 71–76 PubMed
Kuznetsov YG, Ulbrich P, Haubova S, Ruml T, McPherson A. 2007. Atomic force microscopy investigation of Mason-Pfizer monkey virus and human immunodeficiency virus type 1 reassembled particles. Virology 360: 434–446 PubMed
Li S, Hill CP, Sundquist WI, Finch JT. 2000. Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature 407: 409–413 PubMed
Liang C, Hu J, Whitney JB, Kleiman L, Wainberg MA. 2003. A structurally disordered region at the C terminus of capsid plays essential roles in multimerization and membrane binding of the Gag protein of human immunodeficiency virus type 1. J. Virol. 77: 1772–1783 PubMed PMC
Lombardi VC, et al. 2009. Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome. Science 326: 585–589 PubMed
Ludtke SJ, Baldwin PR, Chiu W. 1999. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128: 82–97 PubMed
Ma YM, Vogt VM. 2002. Rous sarcoma virus Gag protein-oligonucleotide interaction suggests a critical role for protein dimer formation in assembly. J. Virol. 76: 5452–5462 PubMed PMC
Ma YM, Vogt VM. 2004. Nucleic acid binding-induced Gag dimerization in the assembly of Rous sarcoma virus particles in vitro. J. Virol. 78: 52–60 PubMed PMC
Macek P, et al. 2009. NMR structure of the N-terminal domain of capsid protein from the Mason-Pfizer monkey virus. J. Mol. Biol. 392: 100–114 PubMed
Mortuza GB, et al. 2008. Structure of B-MLV capsid amino-terminal domain reveals key features of viral tropism, gag assembly and core formation. J. Mol. Biol. 376: 1493–1508 PubMed
Mortuza GB, et al. 2004. High-resolution structure of a retroviral capsid hexameric amino-terminal domain. Nature 431: 481–485 PubMed
Paprotka T, et al. 2011. Recombinant origin of the retrovirus XMRV. Science 333: 97–101 PubMed PMC
Phillips JM, Murray PS, Murray D, Vogt VM. 2008. A molecular switch required for retrovirus assembly participates in the hexagonal immature lattice. EMBO J. 27: 1411–1420 PubMed PMC
Pornillos O, Ganser-Pornillos BK, Yeager M. 2011. Atomic-level modelling of the HIV capsid. Nature 469: 424–427 PubMed PMC
Raisch KP, et al. 2003. Molecular cloning, complete sequence, and biological characterization of a xenotropic murine leukemia virus constitutively released from the human B-lymphoblastoid cell line DG-75. Virology 308: 83–91 PubMed
Robinson MJ, Erlwein O, McClure MO. 2011. Xenotropic murine leukaemia virus-related virus (XMRV) does not cause chronic fatigue. Trends Microbiol. 19: 525–529 PubMed
Rumlova-Klikova M, Hunter E, Nermut MV, Pichova I, Ruml T. 2000. Analysis of Mason-Pfizer monkey virus Gag domains required for capsid assembly in bacteria: role of the N-terminal proline residue of CA in directing particle shape. J. Virol. 74: 8452–8459 PubMed PMC
Satterfield BC, et al. 2011. Serologic and PCR testing of persons with chronic fatigue syndrome in the United States shows no association with xenotropic or polytropic murine leukemia virus-related viruses. Retrovirology 8: 12. PubMed PMC
Schutzer SE, Rounds MA, Natelson BH, Ecker DJ, Eshoo MW. 2011. Analysis of cerebrospinal fluid from chronic fatigue syndrome patients for multiple human ubiquitous viruses and xenotropic murine leukemia-related virus. Ann. Neurol. 69: 735–738 PubMed
Sfanos KS, et al. 2008. A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 68: 306–320 PubMed
Shin CH, et al. 2011. Absence of XMRV retrovirus and other murine leukemia virus-related viruses in patients with chronic fatigue syndrome. J. Virol. 85: 7195–7202 PubMed PMC
Still A, Huseby D, Barklis E. 2011. Analysis of the N-terminal region of the murine leukemia virus nucleocapsid protein. Virus Res. 155: 181–188 PubMed PMC
Switzer WM, et al. 2010. Absence of evidence of xenotropic murine leukemia virus-related virus infection in persons with chronic fatigue syndrome and healthy controls in the United States. Retrovirology 7: 57. PubMed PMC
Ulbrich P, et al. 2006. Distinct roles for nucleic acid in in vitro assembly of purified Mason-Pfizer monkey virus CANC proteins. J. Virol. 80: 7089–7099 PubMed PMC
Urisman A, et al. 2006. Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog. 2: e25. PubMed PMC
van Heel M, Harauz G, Orlova EV, Schmidt R, Schatz M. 1996. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116: 17–24 PubMed
Verhaegh GW, et al. 2011. Prevalence of human xenotropic murine leukemia virus-related gammaretrovirus (XMRV) in Dutch prostate cancer patients. Prostate 71: 415–420 PubMed
von Schwedler UK, et al. 1998. Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J. 17: 1555–1568 PubMed PMC
von Schwedler UK, Stray KM, Garrus JE, Sundquist WI. 2003. Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J. Virol. 77: 5439–5450 PubMed PMC
Wang MQ, Goff SP. 2003. Defects in virion production caused by mutations affecting the C-terminal portion of the Moloney murine leukemia virus capsid protein. J. Virol. 77: 3339–3344 PubMed PMC
Wildova M, et al. 2008. The effect of point mutations within the N-terminal domain of Mason-Pfizer monkey virus capsid protein on virus core assembly and infectivity. Virology 380: 157–163 PubMed PMC
Wilk T, et al. 2001. Organization of immature human immunodeficiency virus type 1. J. Virol. 75: 759–771 PubMed PMC
Wright ER, et al. 2007. Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. EMBO J. 26: 2218–2226 PubMed PMC
Yeager M, Wilson-Kubalek EM, Weiner SG, Brown PO, Rein A. 1998. Supramolecular organization of immature and mature murine leukemia virus revealed by electron cryo-microscopy: implications for retroviral assembly mechanisms. Proc. Natl. Acad. Sci. U. S. A. 95: 7299–7304 PubMed PMC
Yu F, et al. 2001. Characterization of Rous sarcoma virus Gag particles assembled in vitro. J. Virol. 75: 2753–2764 PubMed PMC
Unveiling the DHX15-G-patch interplay in retroviral RNA packaging
In vitro methods for testing antiviral drugs
Structure and architecture of immature and mature murine leukemia virus capsids
Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging
Role of Mason-Pfizer monkey virus CA-NC spacer peptide-like domain in assembly of immature particles