Unveiling the DHX15-G-patch interplay in retroviral RNA packaging
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5103
Ministerstvo Školství, Mládeže a Tělovýchovy (MŠMT)
90254
Ministerstvo Školství, Mládeže a Tělovýchovy (MŠMT)
PubMed
39320912
PubMed Central
PMC11459146
DOI
10.1073/pnas.2407990121
Knihovny.cz E-zdroje
- Klíčová slova
- DEAH-box RNA helicase, DHX15, G-patch, gRNA packaging, retrovirus,
- MeSH
- buněčné jádro metabolismus virologie MeSH
- DEAD-box RNA-helikasy metabolismus genetika MeSH
- genom virový MeSH
- HEK293 buňky MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus * genetika metabolismus fyziologie MeSH
- replikace viru genetika fyziologie MeSH
- RNA virová * metabolismus genetika MeSH
- RNA-helikasy metabolismus genetika MeSH
- sestavení viru * genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DEAD-box RNA-helikasy MeSH
- DHX15 protein, human MeSH Prohlížeč
- RNA virová * MeSH
- RNA-helikasy MeSH
We explored how a simple retrovirus, Mason-Pfizer monkey virus (M-PMV) to facilitate its replication process, utilizes DHX15, a cellular RNA helicase, typically engaged in RNA processing. Through advanced genetic engineering techniques, we showed that M-PMV recruits DHX15 by mimicking cellular mechanisms, relocating it from the nucleus to the cytoplasm to aid in viral assembly. This interaction is essential for the correct packaging of the viral genome and critical for its infectivity. Our findings offer unique insights into the mechanisms of viral manipulation of host cellular processes, highlighting a sophisticated strategy that viruses employ to leverage cellular machinery for their replication. This study adds valuable knowledge to the understanding of viral-host interactions but also suggests a common evolutionary history between cellular processes and viral mechanisms. This finding opens a unique perspective on the export mechanism of intron-retaining mRNAs in the packaging of viral genetic information and potentially develop ways to stop it.
Department of Biotechnology University of Chemistry and Technology 166 28 Prague Czech Republic
Institute of Molecular Genetics Czech Academy of Sciences 142 20 Prague Czech Republic
Zobrazit více v PubMed
Bourgeois C. F., Mortreux F., Auboeuf D., The multiple functions of RNA helicases as drivers and regulators of gene expression. Nat. Rev. Mol. Cell Biol. 17, 426–438 (2016). PubMed
Marecki J. C., Belachew B., Gao J., Raney K. D., RNA helicases required for viral propagation in humans. Enzymes 50, 335–367 (2021). PubMed PMC
Fairman-Williams M. E., Guenther U.-P., Jankowsky E., SF1 and SF2 helicases: Family matters. Curr. Opin. Struct. Biol. 20, 313–324 (2010). PubMed PMC
Singleton M. R., Dillingham M. S., Wigley D. B., Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50 (2007). PubMed
Pyle A. M., Translocation and unwinding mechanisms of RNA and DNA helicases. Ann. Rev. Biophys. 37, 317–336 (2008). PubMed
Robert-Paganin J., et al. , Functional link between DEAH/RHA helicase Prp43 activation and ATP base binding. Nucleic Acids Res. 45, 1539–1552 (2017). PubMed PMC
Robert-Paganin J., Rety S., Leulliot N., Regulation of DEAH/RHA helicases by G-patch proteins. BioMed Res. Int. 2015, 931857 (2015). PubMed PMC
Tauchert M. J., Fourmann J.-B., Lührmann R., Ficner R., Structural insights into the mechanism of the DEAH-box RNA helicase Prp43. eLife 6, e21510 (2017). PubMed PMC
Hamann F., Enders M., Ficner R., Structural basis for RNA translocation by DEAH-box ATPases. Nucleic Acids Res. 47, 4349–4362 (2019). PubMed PMC
Bohnsack K. E., Ficner R., Bohnsack M. T., Jonas S., Regulation of DEAH-box RNA helicases by G-patch proteins. Biol. Chem. 402, 561–579 (2021). PubMed
De Bortoli F., Espinosa S., Zhao R., DEAH-box RNA helicases in pre-mRNA splicing. Trends Biochem. Sci. 46, 225–238 (2021). PubMed PMC
Linder P., Jankowsky E., From unwinding to clamping—The DEAD box RNA helicase family. Nat. Rev. Mol. Cell Biol. 12, 505–516 (2011). PubMed
Jarmoskaite I., Russell R., RNA helicase proteins as chaperones and remodelers. Annu. Rev. Biochem. 83, 697–725 (2014). PubMed PMC
Bohnsack K. E., Kanwal N., Bohnsack M. T., Prp43/DHX15 exemplify RNA helicase multifunctionality in the gene expression network. Nucleic Acids Res. 50, 9012–9022 (2022). PubMed PMC
Sloan K. E., Bohnsack M. T., Unravelling the mechanisms of RNA helicase regulation. Trends Biochem. Sci. 43, 237–250 (2018). PubMed
Fairman M. E., et al. , Protein displacement by DExH/D “RNA helicases” without duplex unwinding. Science 304, 730–734 (2004). PubMed
Jankowsky E., Gross C. H., Shuman S., Pyle A. M., Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science 291, 121–125 (2001). PubMed
Aravind L., Koonin E. V., G-patch: A new conserved domain in eukaryotic RNA-processing proteins and type D retroviral polyproteins. Trends Biochem. Sci. 24, 342–344 (1999). PubMed
Bolinger C., Sharma A., Singh D., Yu L., Boris-Lawrie K., RNA helicase A modulates translation of HIV-1 and infectivity of progeny virions. Nucleic Acids Res. 38, 1686–1696 (2010). PubMed PMC
Studer M. K., Ivanovic L., Weber M. E., Marti S., Jonas S., Structural basis for DEAH-helicase activation by G-patch proteins. Proc. Natl. Acad. Sci. U.S.A. 117, 7159–7170 (2020). PubMed PMC
Hamann F., et al. , Structural analysis of the intrinsically disordered splicing factor Spp2 and its binding to the DEAH-box ATPase Prp2. Proc. Natl. Acad. Sci. U.S.A. 117, 2948–2956 (2020). PubMed PMC
Jeang K.-T., Yedavalli V., Role of RNA helicases in HIV-1 replication. Nucleic Acids Res. 34, 4198–4205 (2006). PubMed PMC
Singh G., Heng X., Boris-Lawrie K., “Chapter 7—Cellular RNA helicases support early and late events in retroviral replication” in Retrovirus-Cell Interactions, Parent L. J., Ed. (Academic Press, 2018), pp. 253–271, 10.1016/B978-0-12-811185-7.00007-8. DOI
Heaton S. M., Gorry P. R., Borg N. A., DExD/H-box helicases in HIV-1 replication and their inhibition. Trends Microbiol. 31, 393–404 (2023). PubMed
Chen C.-Y., Liu X., Boris-Lawrie K., Sharma A., Jeang K.-T., Cellular RNA helicases and HIV-1: Insights from genome-wide, proteomic, and molecular studies. Virus Res. 171, 357–365 (2013). PubMed PMC
Kohoutova Z., et al. , The impact of altered polyprotein ratios on the assembly and infectivity of Mason-Pfizer monkey virus. Virology 384, 59–68 (2009). PubMed PMC
Zabransky A., et al. , Three active forms of aspartic proteinase from Mason-Pfizer monkey virus. Virology 245, 250–256 (1998). PubMed
Rumlova-Klikova M., Hunter E., Nermut M. V., Pichova I., Ruml T., Analysis of Mason-Pfizer monkey virus gag domains required for capsid assembly in bacteria: Role of the N-terminal proline residue of CA in directing particle shape. J. Virol. 74, 8452–8459 (2000). PubMed PMC
Barabas O., et al. , dUTPase and nucleocapsid polypeptides of the Mason-Pfizer monkey virus form a fusion protein in the virion with homotrimeric organization and low catalytic efficiency. J. Biol. Chem. 278, 38803–38812 (2003). PubMed
Bauerova-Zabranska H., et al. , The RNA binding G-patch domain in retroviral protease is important for infectivity and D-type morphogenesis of Mason-Pfizer monkey virus. J. Biol. Chem. 280, 42106–42112 (2005). PubMed
Křížová I., et al. , The G-patch domain of Mason-Pfizer monkey virus is a part of reverse transcriptase. J. Virol. 86, 1988–1998 (2012). PubMed PMC
Roy B. B., et al. , Association of RNA helicase a with human immunodeficiency virus type 1 particles. J. Biol. Chem. 281, 12625–12635 (2006). PubMed
Schur F. K., et al. , Structure of the immature HIV-1 capsid in intact virus particles at 8.8 A resolution. Nature 517, 505–508 (2015). PubMed
Memet I., Doebele C., Sloan K. E., Bohnsack M. T., The G-patch protein NF-kappaB-repressing factor mediates the recruitment of the exonuclease XRN2 and activation of the RNA helicase DHX15 in human ribosome biogenesis. Nucleic Acids Res. 45, 5359–5374 (2017). PubMed PMC
Niu Z., Jin W., Zhang L., Li X., Tumor suppressor RBM5 directly interacts with the DExD/H-box protein DHX15 and stimulates its helicase activity. FEBS Lett. 586, 977–983 (2012). PubMed
Yoshimoto R., Kataoka N., Okawa K., Ohno M., Isolation and characterization of post-splicing lariat-intron complexes. Nucleic Acids Res. 37, 891–902 (2009). PubMed PMC
Tanaka N., Aronova A., Schwer B., Ntr1 activates the Prp43 helicase to trigger release of lariat-intron from the spliceosome. Genes. Dev. 21, 2312–2325 (2007). PubMed PMC
Lebaron S., et al. , The ATPase and helicase activities of Prp43p are stimulated by the G-patch protein Pfa1p during yeast ribosome biogenesis. EMBO J. 28, 3808–3819 (2009). PubMed PMC
Chen Y. L., et al. , The telomerase inhibitor Gno1p/PINX1 activates the helicase Prp43p during ribosome biogenesis. Nucleic Acids Res. 42, 7330–7345 (2014). PubMed PMC
Uversky V. N., Intrinsically disordered proteins and their environment: Effects of strong denaturants, temperature, pH, counter ions, membranes, binding partners, osmolytes, and macromolecular crowding. Protein J. 28, 305–325 (2009). PubMed
Castoralova M., et al. , A myristoyl switch at the plasma membrane triggers cleavage and oligomerization of Mason-Pfizer monkey virus matrix protein. eLife 13, e93489 (2024). PubMed PMC
Heininger A. U., et al. , Protein cofactor competition regulates the action of a multifunctional RNA helicase in different pathways. RNA Biol. 13, 320–330 (2016). PubMed PMC
Fouraux M. A., et al. , The human La (SS-B) autoantigen interacts with DDX15/hPrp43, a putative DEAH-box RNA helicase. RNA 8, 1428–1443 (2002). PubMed PMC
Dostalkova A., et al. , Mutations in the basic region of the Mason-Pfizer monkey virus nucleocapsid protein affect reverse transcription, genomic RNA packaging, and the virus assembly site. J. Virol. 92, e00106-18 (2018). PubMed PMC
Rao S., Mahmoudi T., DEAD-ly affairs: The roles of DEAD-box proteins on HIV-1 viral RNA metabolism. Front. Cell Dev. Biol. 10, 917599 (2022). PubMed PMC
Roy B. B., et al. , Association of RNA helicase A with human immunodeficiency virus type 1 particles*. J. Biol. Chem. 281, 12625–12635 (2006). PubMed
Sharma A., Boris-Lawrie K., Determination of host RNA helicases activity in viral replication. Methods Enzymol. 511, 405–435 (2012). PubMed PMC
Müller T. G., Zila V., Müller B., Kräusslich H.-G., Nuclear capsid uncoating and reverse transcription of HIV-1. Ann. Rev. Virol. 9, 261–284 (2022). PubMed
Veverka V., et al. , Three-dimensional structure of a monomeric form of a retroviral protease. J. Mol. Biol. 333, 771–780 (2003). PubMed
Hanson H. M., Willkomm N. A., Yang H., Mansky L. M., Human retrovirus genomic RNA packaging. Viruses 14, 1094 (2022). PubMed PMC
Pocock G. M., Becker J. T., Swanson C. M., Ahlquist P., Sherer N. M., HIV-1 and M-PMV RNA nuclear export elements program viral genomes for distinct cytoplasmic trafficking behaviors. PLoS Pathog. 12, e1005565 (2016). PubMed PMC
Maldonado Rebecca J. K., et al. , Visualizing association of the retroviral gag protein with unspliced viral RNA in the nucleus. mBio 11, e00524-20 (2020), 10.1128/mbio.00524-00520. PubMed DOI PMC
Scheifele L. Z., Garbitt R. A., Rhoads J. D., Parent L. J., Nuclear entry and CRM1-dependent nuclear export of the Rous sarcoma virus Gag polyprotein. Proc. Natl. Acad. Sci. U.S.A. 99, 3944–3949 (2002). PubMed PMC
Garbitt-Hirst R., Kenney Scott P., Parent Leslie J., Genetic evidence for a connection between Rous Sarcoma Virus Gag nuclear trafficking and genomic RNA packaging. J. Virol. 83, 6790–6797 (2009). PubMed PMC
Sfakianos J. N., LaCasse R. A., Hunter E., The M-PMV cytoplasmic targeting-retention signal directs nascent Gag polypeptides to a pericentriolar region of the cell. Traffic 4, 660–670 (2003). PubMed
Pasquinelli A. E., et al. , The constitutive transport element (CTE) of Mason-Pfizer monkey virus (MPMV) accesses a cellular mRNA export pathway. EMBO J. 16, 7500–7510 (1997). PubMed PMC
Li Y., et al. , An intron with a constitutive transport element is retained in a Tap messenger RNA. Nature 443, 234–237 (2006). PubMed
Edwards C. R., et al. , A dynamic intron retention program in the mammalian megakaryocyte and erythrocyte lineages. Blood 127, e24–e34 (2016). PubMed PMC
Dvinge H., Bradley R. K., Widespread intron retention diversifies most cancer transcriptomes. Genome Med. 7, 45 (2015). PubMed PMC
Müller B., et al. , Construction and characterization of a fluorescently labeled infectious human immunodeficiency virus type 1 derivative. J. Virol. 78, 10803–10813 (2004). PubMed PMC
Obr M., et al. , Stabilization of the beta-hairpin in Mason-Pfizer monkey virus capsid protein—A critical step for infectivity. Retrovirology 11, 94 (2014). PubMed PMC
Rumlova M., et al. , Breast cancer-associated protein—A novel binding partner of Mason-Pfizer monkey virus protease. J. Gen. Virol. 95, 1383–1389 (2014). PubMed
Hadravova R., et al. , In vitro assembly of virus-like particles of a gammaretrovirus, the murine leukemia virus XMRV. J. Virol. 86, 1297–1306 (2012). PubMed PMC
Hadravova R., Rumlova M., Ruml T., FAITH—Fast assembly inhibitor test for HIV. Virology 486, 78–87 (2015). PubMed
Vranken W. F., et al. , The CCPN data model for NMR spectroscopy: Development of a software pipeline. Proteins 59, 687–696 (2005). PubMed
Rumlova M., Krizova I., Zelenka J., Weber J., Ruml T., Does BCA3 play a role in the HIV-1 replication cycle? Viruses 10, 212 (2018). PubMed PMC
Diehl W. E., Stansell E., Kaiser S. M., Emerman M., Hunter E., Identification of postentry restrictions to Mason-Pfizer monkey virus infection in New World monkey cells. J. Virol. 82, 11140–11151 (2008). PubMed PMC
Wang G. Z., Goff S. P., Postentry restriction of Mason-Pfizer monkey virus in mouse cells. J. Virol. 89, 2813–2819 (2015). PubMed PMC
Kutluay S. B., Bieniasz P. D., Analysis of HIV-1 Gag-RNA Interactions in cells and virions by CLIP-seq. Methods Mol. Biol. 1354, 119–131 (2016). PubMed PMC
Danecek P., et al. , Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021). PubMed PMC
Junková P., Rumlová M., Data from “Proteomic analysis of Mason-Pfizer monkey virus virions, project accession: PXD046672”. PRIDE. http://www.ebi.ac.uk/pride/archive/projects/PXD046672. Deposited 5 November 2023.