A myristoyl switch at the plasma membrane triggers cleavage and oligomerization of Mason-Pfizer monkey virus matrix protein
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-19250S
Grant agency of the Czech Republic
LX22NPO5103
Programme Exceles
LX22NPO5103
Programme Exceles - Funded by the European Union - Next Generation EU
Programme EXCELES, ID Project No. LX22NPO5103
European Union - Next Generation EU
PubMed
38517277
PubMed Central
PMC11014724
DOI
10.7554/elife.93489
PII: 93489
Knihovny.cz E-zdroje
- Klíčová slova
- betaretrovirus, infectious disease, matrix protein, maturation, microbiology, myristoyl switch, protease, viruses,
- MeSH
- buněčná membrána MeSH
- endopeptidasy MeSH
- genové produkty gag chemie MeSH
- Masonův-Pfizerův opičí virus * chemie fyziologie MeSH
- proteiny MeSH
- sestavení viru MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- endopeptidasy MeSH
- genové produkty gag MeSH
- proteiny MeSH
For most retroviruses, including HIV, association with the plasma membrane (PM) promotes the assembly of immature particles, which occurs simultaneously with budding and maturation. In these viruses, maturation is initiated by oligomerization of polyprotein precursors. In contrast, several retroviruses, such as Mason-Pfizer monkey virus (M-PMV), assemble in the cytoplasm into immature particles that are transported across the PM. Therefore, protease activation and specific cleavage must not occur until the pre-assembled particle interacts with the PM. This interaction is triggered by a bipartite signal consisting of a cluster of basic residues in the matrix (MA) domain of Gag polyprotein and a myristoyl moiety N-terminally attached to MA. Here, we provide evidence that myristoyl exposure from the MA core and its insertion into the PM occurs in M-PMV. By a combination of experimental methods, we show that this results in a structural change at the C-terminus of MA allowing efficient cleavage of MA from the downstream region of Gag. This suggests that, in addition to the known effect of the myristoyl switch of HIV-1 MA on the multimerization state of Gag and particle assembly, the myristoyl switch may have a regulatory role in initiating sequential cleavage of M-PMV Gag in immature particles.
doi: 10.1101/2023.12.20.572496 PubMed
Zobrazit více v PubMed
Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M. Molecular mechanics of calcium-myristoyl switches. Nature. 1997;389:198–202. doi: 10.1038/38310. PubMed DOI
Cameron CE, Grinde B, Jentoft J, Leis J, Weber IT, Copeland TD, Wlodawer A. Mechanism of inhibition of the retroviral protease by a Rous sarcoma virus peptide substrate representing the cleavage site between the gag p2 and p10 proteins. The Journal of Biological Chemistry. 1992;267:23735–23741. PubMed
Conte MR, Klikova M, Hunter E, Ruml T, Matthews S. The three-dimensional solution structure of the matrix protein from the type D retrovirus, the Mason-Pfizer monkey virus, and implications for the morphology of retroviral assembly. The EMBO Journal. 1997;16:5819–5826. doi: 10.1093/emboj/16.19.5819. PubMed DOI PMC
de Marco A, Müller B, Glass B, Riches JD, Kräusslich HG, Briggs JAG. Structural analysis of HIV-1 maturation using cryo-electron tomography. PLOS Pathogens. 2010;6:e1001215. doi: 10.1371/journal.ppat.1001215. PubMed DOI PMC
Doktorova M, Heberle FA, Kingston RL, Khelashvili G, Cuendet MA, Wen Y, Katsaras J, Feigenson GW, Vogt VM, Dick RA. Cholesterol promotes protein binding by affecting membrane electrostatics and solvation properties. Biophysical Journal. 2017;113:2004–2015. doi: 10.1016/j.bpj.2017.08.055. PubMed DOI PMC
Erickson-Viitanen S, Manfredi J, Viitanen P, Tribe DE, Tritch R, Hutchison CA, Loeb DD, Swanstrom R. Cleavage of HIV-1 gag polyprotein synthesized in vitro: sequential cleavage by the viral protease. AIDS Research and Human Retroviruses. 1989;5:577–591. doi: 10.1089/aid.1989.5.577. PubMed DOI
Füzik T, Ulbrich P, Ruml T. Efficient Mutagenesis Independent of Ligation (EMILI) Journal of Microbiological Methods. 2014;106:67–71. doi: 10.1016/j.mimet.2014.08.003. PubMed DOI
Hermida-Matsumoto L, Resh MD. Human immunodeficiency virus type 1 protease triggers a myristoyl switch that modulates membrane binding of Pr55(gag) and p17MA. Journal of Virology. 1999;73:1902–1908. doi: 10.1128/JVI.73.3.1902-1908.1999. PubMed DOI PMC
Hikichi Y, Takeda E, Fujino M, Nakayama E, Matano T, Murakami T. HIV-1 matrix mutations that alter gag membrane binding modulate mature core formation and post-entry events. Virology. 2019;532:97–107. doi: 10.1016/j.virol.2019.04.013. PubMed DOI
Karacostas V, Wolffe EJ, Nagashima K, Gonda MA, Moss B. Overexpression of the HIV-1 gag-pol polyprotein results in intracellular activation of HIV-1 protease and inhibition of assembly and budding of virus-like particles. Virology. 1993;193:661–671. doi: 10.1006/viro.1993.1174. PubMed DOI
Klikova M, Rhee SS, Hunter E, Ruml T. Efficient in vivo and in vitro assembly of retroviral capsids from Gag precursor proteins expressed in bacteria. Journal of Virology. 1995;69:1093–1098. doi: 10.1128/JVI.69.2.1093-1098.1995. PubMed DOI PMC
Konvalinka J, Kräusslich HG, Müller B. Retroviral proteases and their roles in virion maturation. Virology. 2015;479–480:403–417. doi: 10.1016/j.virol.2015.03.021. PubMed DOI
Kroupa T, Langerová H, Doležal M, Prchal J, Spiwok V, Hunter E, Rumlová M, Hrabal R, Ruml T. Membrane Interactions of the Mason-Pfizer Monkey Virus Matrix Protein and Its Budding Deficient Mutants. Journal of Molecular Biology. 2016;428:4708–4722. doi: 10.1016/j.jmb.2016.10.010. PubMed DOI
Lee YM, Tian CJ, Yu XF. A bipartite membrane-binding signal in the human immunodeficiency virus type 1 matrix protein is required for the proteolytic processing of Gag precursors in A cell type-dependent manner. Journal of Virology. 1998;72:9061–9068. doi: 10.1128/JVI.72.11.9061-9068.1998. PubMed DOI PMC
Lee SK, Harris J, Swanstrom R. A strongly transdominant mutation in the human immunodeficiency virus type 1 gag gene defines an Achilles heel in the virus life cycle. Journal of Virology. 2009;83:8536–8543. doi: 10.1128/JVI.00317-09. PubMed DOI PMC
Mattei S, Tan A, Glass B, Müller B, Kräusslich HG, Briggs JAG. High-resolution structures of HIV-1 Gag cleavage mutants determine structural switch for virus maturation. PNAS. 2018;115:E9401–E9410. doi: 10.1073/pnas.1811237115. PubMed DOI PMC
Müller B, Anders M, Akiyama H, Welsch S, Glass B, Nikovics K, Clavel F, Tervo HM, Keppler OT, Kräusslich HG. HIV-1 Gag processing intermediates trans-dominantly interfere with HIV-1 infectivity. The Journal of Biological Chemistry. 2009;284:29692–29703. doi: 10.1074/jbc.M109.027144. PubMed DOI PMC
Ono A, Freed EO. Binding of human immunodeficiency virus type 1 Gag to membrane: role of the matrix amino terminus. Journal of Virology. 1999;73:4136–4144. doi: 10.1128/JVI.73.5.4136-4144.1999. PubMed DOI PMC
Ono A, Ablan SD, Lockett SJ, Nagashima K, Freed EO. Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. PNAS. 2004;101:14889–14894. doi: 10.1073/pnas.0405596101. PubMed DOI PMC
Parker SD, Hunter E. Activation of the Mason-Pfizer monkey virus protease within immature capsids in vitro. PNAS. 2001;98:14631–14636. doi: 10.1073/pnas.251460998. PubMed DOI PMC
Pettit SC, Moody MD, Wehbie RS, Kaplan AH, Nantermet PV, Klein CA, Swanstrom R. The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. Journal of Virology. 1994;68:8017–8027. doi: 10.1128/JVI.68.12.8017-8027.1994. PubMed DOI PMC
Pettit SC, Sheng NJ, Tritch R, Erickson-Viitanen S, Swanstrom R. In: Aspartic Proteinases: Retroviral and Cellular Enzymes. James MNG, editor. Plenum Press Div Plenum Publishing Corp; 1998. The regulation of sequential processing of HIV-1 gag by the viral protease; pp. 15–25. PubMed DOI
Pichová I, Zábranský A, Košťálová I, Hrušková-Heidingsfeldová O, Andreansky M, Hunter E, Ruml T. In: Aspartic Proteinases: Retroviral and Cellular Enzymes. James MNG, editor. Springer; 1998. Analysis of Autoprocessing of Mason-Pfizer monkey virus Proteinase in vitro; pp. 105–108.
Prchal J, Junkova P, Strmiskova M, Lipov J, Hynek R, Ruml T, Hrabal R. Expression and purification of myristoylated matrix protein of Mason-Pfizer monkey virus for NMR and MS measurements. Protein Expression and Purification. 2011;79:122–127. doi: 10.1016/j.pep.2011.05.010. PubMed DOI PMC
Prchal J, Srb P, Hunter E, Ruml T, Hrabal R. The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding. Journal of Molecular Biology. 2012;423:427–438. doi: 10.1016/j.jmb.2012.07.021. PubMed DOI PMC
Qian C, Flemming A, Müller B, Lamb DC. Dynamics of HIV-1 gag processing as revealed by fluorescence lifetime imaging microscopy and single virus tracking. Viruses. 2022;14:340. doi: 10.3390/v14020340. PubMed DOI PMC
Qu K, Ke Z, Zila V, Anders-Össwein M, Glass B, Mücksch F, Müller R, Schultz C, Müller B, Kräusslich HG, Briggs JAG. Maturation of the matrix and viral membrane of HIV-1. Science. 2021;373:700–704. doi: 10.1126/science.abe6821. PubMed DOI PMC
Rhee SS, Hunter E. Myristylation is required for intracellular transport but not for assembly of D-type retrovirus capsids. Journal of Virology. 1987;61:1045–1053. doi: 10.1128/JVI.61.4.1045-1053.1987. PubMed DOI PMC
Rhee SS, Hunter E. A single amino acid substitution within the matrix protein of A type D retrovirus converts its morphogenesis to that of A type C retrovirus. Cell. 1990;63:77–86. doi: 10.1016/0092-8674(90)90289-q. PubMed DOI
Rhee SS, Hunter E. Amino acid substitutions within the matrix protein of type D retroviruses affect assembly, transport and membrane association of a capsid. The EMBO Journal. 1991;10:535–546. doi: 10.1002/j.1460-2075.1991.tb07980.x. PubMed DOI PMC
Rulli SJ, Muriaux D, Nagashima K, Mirro J, Oshima M, Baumann JG, Rein A. Mutant murine leukemia virus Gag proteins lacking proline at the N-terminus of the capsid domain block infectivity in virions containing wild-type Gag. Virology. 2006;347:364–371. doi: 10.1016/j.virol.2005.12.012. PubMed DOI
Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. PNAS. 2006;103:11364–11369. doi: 10.1073/pnas.0602818103. PubMed DOI PMC
Saad JS, Ablan SD, Ghanam RH, Kim A, Andrews K, Nagashima K, Soheilian F, Freed EO, Summers MF. Structure of the myristylated human immunodeficiency virus type 2 matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in membrane targeting. Journal of Molecular Biology. 2008;382:434–447. doi: 10.1016/j.jmb.2008.07.027. PubMed DOI PMC
Sambrook J, Russell DW, Irwin CA, Janssen KA. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press; 2001.
Schimer J, Pávová M, Anders M, Pachl P, Šácha P, Cígler P, Weber J, Majer P, Řezáčová P, Kräusslich HG, Müller B, Konvalinka J. Triggering HIV polyprotein processing by light using rapid photodegradation of a tight-binding protease inhibitor. Nature Communications. 2015;6:6461. doi: 10.1038/ncomms7461. PubMed DOI PMC
Shen Y, Delaglio F, Cornilescu G, Bax A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. Journal of Biomolecular NMR. 2009;44:213–223. doi: 10.1007/s10858-009-9333-z. PubMed DOI PMC
Spearman P, Horton R, Ratner L, Kuli-Zade I. Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism. Journal of Virology. 1997;71:6582–6592. doi: 10.1128/JVI.71.9.6582-6592.1997. PubMed DOI PMC
Srb P, Vlach J, Prchal J, Grocký M, Ruml T, Lang J, Hrabal R. Oligomerization of a retroviral matrix protein is facilitated by backbone flexibility on nanosecond time scale. The Journal of Physical Chemistry. B. 2011;115:2634–2644. doi: 10.1021/jp110420m. PubMed DOI PMC
Tabler CO, Wegman SJ, Chen J, Shroff H, Alhusaini N, Tilton JC. The HIV-1 viral protease is activated during assembly and budding prior to particle release. Journal of Virology. 2022;96:e0219821. doi: 10.1128/jvi.02198-21. PubMed DOI PMC
Tang C, Loeliger E, Luncsford P, Kinde I, Beckett D, Summers MF. Entropic switch regulates myristate exposure in the HIV-1 matrix protein. PNAS. 2004;101:517–522. doi: 10.1073/pnas.0305665101. PubMed DOI PMC
Tedbury PR, Novikova M, Ablan SD, Freed EO. Biochemical evidence of a role for matrix trimerization in HIV-1 envelope glycoprotein incorporation. PNAS. 2016;113:E182–E190. doi: 10.1073/pnas.1516618113. PubMed DOI PMC
Tritch RJ, Cheng YE, Yin FH, Erickson-Viitanen S. Mutagenesis of protease cleavage sites in the human immunodeficiency virus type 1 gag polyprotein. Journal of Virology. 1991;65:922–930. doi: 10.1128/JVI.65.2.922-930.1991. PubMed DOI PMC
Vlach J, Srb P, Prchal J, Grocký M, Lang J, Ruml T, Hrabal R. Nonmyristoylated matrix protein from the Mason-Pfizer monkey virus forms oligomers. Journal of Molecular Biology. 2009;390:967–980. doi: 10.1016/j.jmb.2009.05.063. PubMed DOI
Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins. 2005;59:687–696. doi: 10.1002/prot.20449. PubMed DOI
Wiegers K, Rutter G, Kottler H, Tessmer U, Hohenberg H, Kräusslich HG. Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. Journal of Virology. 1998;72:2846–2854. doi: 10.1128/JVI.72.4.2846-2854.1998. PubMed DOI PMC
Wondrak EM, Louis JM, de Rocquigny H, Chermann JC, Roques BP. The gag precursor contains a specific HIV-1 protease cleavage site between the NC (P7) and P1 proteins. FEBS Letters. 1993;333:21–24. doi: 10.1016/0014-5793(93)80367-4. PubMed DOI
Xiang Y, Ridky TW, Krishna NK, Leis J. Altered Rous sarcoma virus Gag polyprotein processing and its effects on particle formation. Journal of Virology. 1997;71:2083–2091. doi: 10.1128/JVI.71.3.2083-2091.1997. PubMed DOI PMC
Zábranský A, Andreánsky M, Hrusková-Heidingsfeldová O, Havlícek V, Hunter E, Ruml T, Pichová I. Three active forms of aspartic proteinase from Mason-Pfizer monkey virus. Virology. 1998;245:250–256. doi: 10.1006/viro.1998.9173. PubMed DOI
Unveiling the DHX15-G-patch interplay in retroviral RNA packaging
Dryad
10.5061/dryad.c59zw3rfn