Triggering HIV polyprotein processing by light using rapid photodegradation of a tight-binding protease inhibitor

. 2015 Mar 09 ; 6 () : 6461. [epub] 20150309

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25751579

HIV protease (PR) is required for proteolytic maturation in the late phase of HIV replication and represents a prime therapeutic target. The regulation and kinetics of viral polyprotein processing and maturation are currently not understood in detail. Here we design, synthesize, validate and apply a potent, photodegradable HIV PR inhibitor to achieve synchronized induction of proteolysis. The compound exhibits subnanomolar inhibition in vitro. Its photolabile moiety is released on light irradiation, reducing the inhibitory potential by 4 orders of magnitude. We determine the structure of the PR-inhibitor complex, analyze its photolytic products, and show that the enzymatic activity of inhibited PR can be fully restored on inhibitor photolysis. We also demonstrate that proteolysis of immature HIV particles produced in the presence of the inhibitor can be rapidly triggered by light enabling thus to analyze the timing, regulation and spatial requirements of viral processing in real time.

Zobrazit více v PubMed

Krausslich H. G. et al.. Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural substrates and synthetic peptides. Proc. Natl Acad. Sci. USA 86, 807–811 (1989) . PubMed PMC

Pokorna J., Machala L., Rezacova P. & Konvalinka J. Current and novel inhibitors of HIV protease. Viruses 1, 1209–1239 (2009) . PubMed PMC

Krausslich H. G. Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proc. Natl Acad. Sci. USA 88, 3213–3217 (1991) . PubMed PMC

Wiegers K. et al.. Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J. Virol. 72, 2846–2854 (1998) . PubMed PMC

Debouck C. et al.. Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the gag precursor. Proc. Natl Acad. Sci. USA 84, 8903–8906 (1987) . PubMed PMC

Krausslich H. G., Nicklin M. J., Lee C. K. & Wimmer E. Polyprotein processing in picornavirus replication. Biochimie 70, 119–130 (1988) . PubMed

Manchester M., Everitt L., Loeb D. D., Hutchison C. A. 3rd & Swanstrom R. Identification of temperature-sensitive mutants of the human immunodeficiency virus type 1 protease through saturation mutagenesis. Amino acid side chain requirements for temperature sensitivity. J. Biol. Chem. 269, 7689–7695 (1994) . PubMed

Konvalinka J. Structural and molecular biology of protease function and inhibition. J. Cell Biochem. 56, 117–177 (1994) . PubMed

Mattei S. et al.. Induced maturation of human immunodeficiency virus. J. Virol. 88, 13722–12731 (2014) . PubMed PMC

Engels J. & Schlaeger E. J. Synthesis, structure, and reactivity of adenosine cyclic 3′,5′-phosphate benzyl triesters. J. Med. Chem. 20, 907–911 (1977) . PubMed

Kaplan J. H., Forbush B. 3rd & Hoffman J. F. Rapid photolytic release of adenosine 5'-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry 17, 1929–1935 (1978) . PubMed

Ellis-Davies G. C. Neurobiology with caged calcium. Chem. Rev. 108, 1603–1613 (2008) . PubMed

Makings L. R. & Tsien R. Y. Caged nitric oxide. Stable organic molecules from which nitric oxide can be photoreleased. J. Biol. Chem. 269, 6282–6285 (1994) . PubMed

Cruz F. G., Koh J. T. & Link K. H. Light-activated gene expression. J. Am. Chem. Soc. 122, 8777–8778 (2000) .

Lin W., Albanese C., Pestell R. G. & Lawrence D. S. Spatially discrete, light-driven protein expression. Chem. Biol. 9, 1347–1353 (2002) . PubMed

Breitinger H. G., Wieboldt R., Ramesh D., Carpenter B. K. & Hess G. P. Synthesis and characterization of photolabile derivatives of serotonin for chemical kinetic investigations of the serotonin 5-HT(3) receptor. Biochemistry 39, 5500–5508 (2000) . PubMed

Callaway E. M. & Yuste R. Stimulating neurons with light. Curr. Opin. Neurobiol. 12, 587–592 (2002) . PubMed

Mikat V. & Heckel A. Light-dependent RNA interference with nucleobase-caged siRNAs. RNA 13, 2341–2347 (2007) . PubMed PMC

Shah S., Jain P. K., Kala A., Karunakaran D. & Friedman S. H. Light-activated RNA interference using double-stranded siRNA precursors modified using a remarkable regiospecificity of diazo-based photolabile groups. Nucleic Acids Res. 37, 4508–4517 (2009) . PubMed PMC

Nadler A. et al.. The fatty acid composition of diacylglycerols determines local signaling patterns. Angew. Chem. Int. Ed. 52, 6330–6334 (2013) . PubMed

Hiraoka T. & Hamachi I. Caged RNase: photoactivation of the enzyme from perfect off-state by site-specific incorporation of 2-nitrobenzyl moiety. Bioorg. Med. Chem. Lett. 13, 13–15 (2003) . PubMed

Chang C. Y., Fernandez T., Panchal R. & Bayley H. Caged catalytic subunit of cAMP-dependent protein kinase. J. Am. Chem. Soc. 120, 7661–7662 (1998) .

Riggsbee C. W. & Deiters A. Recent advances in the photochemical control of protein function. Trends Biotechnol. 28, 468–475 (2010) . PubMed PMC

Brieke C., Rohrbach F., Gottschalk A., Mayer G. & Heckel A. Light-controlled tools. Angew. Chem. Int. Ed. 51, 8446–8476 (2012) . PubMed

Lee H. M., Larson D. R. & Lawrence D. S. Illuminating the chemistry of life: design, synthesis, and applications of "caged" and related photoresponsive compounds. ACS Chem. Biol. 4, 409–427 (2009) . PubMed PMC

Li H., Hah J. M. & Lawrence D. S. Light-mediated liberation of enzymatic activity: "small molecule" caged protein equivalents. J. Am. Chem. Soc. 130, 10474–10475 (2008) . PubMed PMC

Porter N. A., Bush K. A. & Kinter K. S. Photo-reversible binding of thrombin to avidin by means of a photolabile inhibitor. J. Photochem. Photobiol. B 38, 61–69 (1997) . PubMed

Kempf D. J. et al.. ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc. Natl Acad. Sci. USA 92, 2484–2488 (1995) . PubMed PMC

Sundquist W. I. & Krausslich H. G. HIV-1 assembly, budding, and maturation. Cold Spring Harb. Symp. Quant. Biol. 2, a006924 (2012) . PubMed PMC

Muller B. et al.. HIV-1 Gag processing intermediates trans-dominantly interfere with HIV-1 infectivity. J. Biol. Chem. 284, 29692–29703 (2009) . PubMed PMC

Kaplan A. H. et al.. Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles. J. Virol. 67, 4050–4055 (1993) . PubMed PMC

Konnyu B. et al.. Gag-Pol processing during HIV-1 virion maturation: a systems biology approach. PLoS Comput. Biol. 9, e1003103 (2013) . PubMed PMC

Dale B. M. et al.. Cell-to-cell transfer of HIV-1 via virological synapses leads to endosomal virion maturation that activates viral membrane fusion. Cell Host Microbe 10, 551–562 (2011) . PubMed PMC

Saskova K. G. et al.. Enzymatic and structural analysis of the I47A mutation contributing to the reduced susceptibility to HIV protease inhibitor lopinavir. Protein Sci. 17, 1555–1564 (2008) . PubMed PMC

Richards A. D. et al.. Sensitive, soluble chromogenic substrates for HIV-1 proteinase. J. Biol. Chem. 265, 7733–7736 (1990) . PubMed

Adachi A. et al.. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J. Virol. 59, 284–291 (1986) . PubMed PMC

Lampe M. et al.. Double-labelled HIV-1 particles for study of virus-cell interaction. Virology 360, 92–104 (2007) . PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...