Triggering HIV polyprotein processing by light using rapid photodegradation of a tight-binding protease inhibitor
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25751579
PubMed Central
PMC4366505
DOI
10.1038/ncomms7461
PII: ncomms7461
Knihovny.cz E-resources
- MeSH
- Aminocoumarins chemical synthesis pharmacology MeSH
- Time Factors MeSH
- Photolysis MeSH
- HEK293 Cells MeSH
- HIV-1 drug effects physiology radiation effects MeSH
- HIV Protease chemistry metabolism MeSH
- HIV Protease Inhibitors chemical synthesis pharmacology MeSH
- Carbamates chemical synthesis pharmacology MeSH
- Kinetics MeSH
- Humans MeSH
- Models, Molecular MeSH
- Protein Precursors antagonists & inhibitors chemistry metabolism MeSH
- Proteolysis drug effects MeSH
- Virus Replication MeSH
- Light MeSH
- Valine analogs & derivatives chemical synthesis pharmacology MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aminocoumarins MeSH
- HIV Protease MeSH
- HIV Protease Inhibitors MeSH
- Carbamates MeSH
- p55 gag precursor protein, Human immunodeficiency virus 1 MeSH Browser
- Protein Precursors MeSH
- thiazol-5-ylmethyl (5-(2-amino-3-methylbutanamido)-3-hydroxy-1,6-diphenylhexan-2-yl)carbamate MeSH Browser
- Valine MeSH
HIV protease (PR) is required for proteolytic maturation in the late phase of HIV replication and represents a prime therapeutic target. The regulation and kinetics of viral polyprotein processing and maturation are currently not understood in detail. Here we design, synthesize, validate and apply a potent, photodegradable HIV PR inhibitor to achieve synchronized induction of proteolysis. The compound exhibits subnanomolar inhibition in vitro. Its photolabile moiety is released on light irradiation, reducing the inhibitory potential by 4 orders of magnitude. We determine the structure of the PR-inhibitor complex, analyze its photolytic products, and show that the enzymatic activity of inhibited PR can be fully restored on inhibitor photolysis. We also demonstrate that proteolysis of immature HIV particles produced in the presence of the inhibitor can be rapidly triggered by light enabling thus to analyze the timing, regulation and spatial requirements of viral processing in real time.
See more in PubMed
Krausslich H. G. et al.. Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural substrates and synthetic peptides. Proc. Natl Acad. Sci. USA 86, 807–811 (1989) . PubMed PMC
Pokorna J., Machala L., Rezacova P. & Konvalinka J. Current and novel inhibitors of HIV protease. Viruses 1, 1209–1239 (2009) . PubMed PMC
Krausslich H. G. Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proc. Natl Acad. Sci. USA 88, 3213–3217 (1991) . PubMed PMC
Wiegers K. et al.. Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J. Virol. 72, 2846–2854 (1998) . PubMed PMC
Debouck C. et al.. Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the gag precursor. Proc. Natl Acad. Sci. USA 84, 8903–8906 (1987) . PubMed PMC
Krausslich H. G., Nicklin M. J., Lee C. K. & Wimmer E. Polyprotein processing in picornavirus replication. Biochimie 70, 119–130 (1988) . PubMed
Manchester M., Everitt L., Loeb D. D., Hutchison C. A. 3rd & Swanstrom R. Identification of temperature-sensitive mutants of the human immunodeficiency virus type 1 protease through saturation mutagenesis. Amino acid side chain requirements for temperature sensitivity. J. Biol. Chem. 269, 7689–7695 (1994) . PubMed
Konvalinka J. Structural and molecular biology of protease function and inhibition. J. Cell Biochem. 56, 117–177 (1994) . PubMed
Mattei S. et al.. Induced maturation of human immunodeficiency virus. J. Virol. 88, 13722–12731 (2014) . PubMed PMC
Engels J. & Schlaeger E. J. Synthesis, structure, and reactivity of adenosine cyclic 3′,5′-phosphate benzyl triesters. J. Med. Chem. 20, 907–911 (1977) . PubMed
Kaplan J. H., Forbush B. 3rd & Hoffman J. F. Rapid photolytic release of adenosine 5'-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry 17, 1929–1935 (1978) . PubMed
Ellis-Davies G. C. Neurobiology with caged calcium. Chem. Rev. 108, 1603–1613 (2008) . PubMed
Makings L. R. & Tsien R. Y. Caged nitric oxide. Stable organic molecules from which nitric oxide can be photoreleased. J. Biol. Chem. 269, 6282–6285 (1994) . PubMed
Cruz F. G., Koh J. T. & Link K. H. Light-activated gene expression. J. Am. Chem. Soc. 122, 8777–8778 (2000) .
Lin W., Albanese C., Pestell R. G. & Lawrence D. S. Spatially discrete, light-driven protein expression. Chem. Biol. 9, 1347–1353 (2002) . PubMed
Breitinger H. G., Wieboldt R., Ramesh D., Carpenter B. K. & Hess G. P. Synthesis and characterization of photolabile derivatives of serotonin for chemical kinetic investigations of the serotonin 5-HT(3) receptor. Biochemistry 39, 5500–5508 (2000) . PubMed
Callaway E. M. & Yuste R. Stimulating neurons with light. Curr. Opin. Neurobiol. 12, 587–592 (2002) . PubMed
Mikat V. & Heckel A. Light-dependent RNA interference with nucleobase-caged siRNAs. RNA 13, 2341–2347 (2007) . PubMed PMC
Shah S., Jain P. K., Kala A., Karunakaran D. & Friedman S. H. Light-activated RNA interference using double-stranded siRNA precursors modified using a remarkable regiospecificity of diazo-based photolabile groups. Nucleic Acids Res. 37, 4508–4517 (2009) . PubMed PMC
Nadler A. et al.. The fatty acid composition of diacylglycerols determines local signaling patterns. Angew. Chem. Int. Ed. 52, 6330–6334 (2013) . PubMed
Hiraoka T. & Hamachi I. Caged RNase: photoactivation of the enzyme from perfect off-state by site-specific incorporation of 2-nitrobenzyl moiety. Bioorg. Med. Chem. Lett. 13, 13–15 (2003) . PubMed
Chang C. Y., Fernandez T., Panchal R. & Bayley H. Caged catalytic subunit of cAMP-dependent protein kinase. J. Am. Chem. Soc. 120, 7661–7662 (1998) .
Riggsbee C. W. & Deiters A. Recent advances in the photochemical control of protein function. Trends Biotechnol. 28, 468–475 (2010) . PubMed PMC
Brieke C., Rohrbach F., Gottschalk A., Mayer G. & Heckel A. Light-controlled tools. Angew. Chem. Int. Ed. 51, 8446–8476 (2012) . PubMed
Lee H. M., Larson D. R. & Lawrence D. S. Illuminating the chemistry of life: design, synthesis, and applications of "caged" and related photoresponsive compounds. ACS Chem. Biol. 4, 409–427 (2009) . PubMed PMC
Li H., Hah J. M. & Lawrence D. S. Light-mediated liberation of enzymatic activity: "small molecule" caged protein equivalents. J. Am. Chem. Soc. 130, 10474–10475 (2008) . PubMed PMC
Porter N. A., Bush K. A. & Kinter K. S. Photo-reversible binding of thrombin to avidin by means of a photolabile inhibitor. J. Photochem. Photobiol. B 38, 61–69 (1997) . PubMed
Kempf D. J. et al.. ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc. Natl Acad. Sci. USA 92, 2484–2488 (1995) . PubMed PMC
Sundquist W. I. & Krausslich H. G. HIV-1 assembly, budding, and maturation. Cold Spring Harb. Symp. Quant. Biol. 2, a006924 (2012) . PubMed PMC
Muller B. et al.. HIV-1 Gag processing intermediates trans-dominantly interfere with HIV-1 infectivity. J. Biol. Chem. 284, 29692–29703 (2009) . PubMed PMC
Kaplan A. H. et al.. Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles. J. Virol. 67, 4050–4055 (1993) . PubMed PMC
Konnyu B. et al.. Gag-Pol processing during HIV-1 virion maturation: a systems biology approach. PLoS Comput. Biol. 9, e1003103 (2013) . PubMed PMC
Dale B. M. et al.. Cell-to-cell transfer of HIV-1 via virological synapses leads to endosomal virion maturation that activates viral membrane fusion. Cell Host Microbe 10, 551–562 (2011) . PubMed PMC
Saskova K. G. et al.. Enzymatic and structural analysis of the I47A mutation contributing to the reduced susceptibility to HIV protease inhibitor lopinavir. Protein Sci. 17, 1555–1564 (2008) . PubMed PMC
Richards A. D. et al.. Sensitive, soluble chromogenic substrates for HIV-1 proteinase. J. Biol. Chem. 265, 7733–7736 (1990) . PubMed
Adachi A. et al.. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J. Virol. 59, 284–291 (1986) . PubMed PMC
Lampe M. et al.. Double-labelled HIV-1 particles for study of virus-cell interaction. Virology 360, 92–104 (2007) . PubMed