Patterns of tropical forest understory temperatures

. 2024 Jan 23 ; 15 (1) : 549. [epub] 20240123

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38263406

Grantová podpora
319905 Academy of Finland (Suomen Akatemia)
345472 Academy of Finland (Suomen Akatemia)

Odkazy

PubMed 38263406
PubMed Central PMC10805846
DOI 10.1038/s41467-024-44734-0
PII: 10.1038/s41467-024-44734-0
Knihovny.cz E-zdroje

Temperature is a fundamental driver of species distribution and ecosystem functioning. Yet, our knowledge of the microclimatic conditions experienced by organisms inside tropical forests remains limited. This is because ecological studies often rely on coarse-gridded temperature estimates representing the conditions at 2 m height in an open-air environment (i.e., macroclimate). In this study, we present a high-resolution pantropical estimate of near-ground (15 cm above the surface) temperatures inside forests. We quantify diurnal and seasonal variability, thus revealing both spatial and temporal microclimate patterns. We find that on average, understory near-ground temperatures are 1.6 °C cooler than the open-air temperatures. The diurnal temperature range is on average 1.7 °C lower inside the forests, in comparison to open-air conditions. More importantly, we demonstrate a substantial spatial variability in the microclimate characteristics of tropical forests. This variability is regulated by a combination of large-scale climate conditions, vegetation structure and topography, and hence could not be captured by existing macroclimate grids. Our results thus contribute to quantifying the actual thermal ranges experienced by organisms inside tropical forests and provide new insights into how these limits may be affected by climate change and ecosystem disturbances.

Associação SOS Amazônia Rio Branco AC 69 905 082 Brazil

Biological Dynamics of Forest Fragment Project CP 478 69067 375 Manaus AM Brazil

Department of Environmental Informatics Faculty of Geography Philipps Universität Marburg Deutschhausstrasse 12 35032 Marburg Germany

Department of Forest Botany Dendrology and Geobiocoenology Faculty of Forestry and Wood Technology Mendel University in Brno Zemědělská 3 61300 Brno Czech Republic

Department of Geographical Sciences University of Maryland College Park MD 20742 USA

Department of Geosciences and Geography University of Helsinki P O Box 68 FI 00014 Helsinki Finland

Earth and Environmental Sciences Programme Faculty of Science The Chinese University of Hong Kong Hong Kong China

Faculty of Forestry and Wood Sciences University of Life Sciences Prague Kamýcká 129 CZ 16521 Praha 6 Suchdol Prague Czech Republic

Faculty of Science University of South Bohemia Branisovska 1760 CZ 370 05 České Budějovice Czechia

Finnish Meteorological Institute P O Box 503 FI 00101 Helsinki Finland

Institute of Botany of the Czech Academy of Sciences Zámek 1 CZ 252 43 Průhonice Czech Republic

Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Branisovska 31 CZ 370 05 Czech Republic

Research Group Plants and Ecosystems University of Antwerp 2610 Wilrijk Belgium

School of GeoSciences University of Edinburgh Edinburgh EH8 9XP UK

State Key Laboratory of Agrobiotechnology and Institute of Environment Energy and Sustainability The Chinese University of Hong Kong Hong Kong China

Zobrazit více v PubMed

Hamilton AJ, et al. Quantifying uncertainty in estimation of tropical arthropod species richness. Am. Nat. 2010;176:90–95. doi: 10.1086/652998. PubMed DOI

Pillay R, et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Environ. 2022;20:10–15. doi: 10.1002/fee.2420. PubMed DOI PMC

Raven, P. H. et al. The distribution of biodiversity richness in the tropics. Sci. Adv.6, eabc6228 (2020). PubMed PMC

Bennett JM, et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 2021;12:1198. doi: 10.1038/s41467-021-21263-8. PubMed DOI PMC

Sullivan MJ, et al. Long-term thermal sensitivity of Earth’s tropical forests. Science. 2020;368:869–874. doi: 10.1126/science.aaw7578. PubMed DOI

Vázquez, D. P., Gianoli, E., Morris, W. F. & Bozinovic, F. Ecological and evolutionary impacts of changing climatic variability. Biol. Rev. Camb. Philos. Soc.92, 22–42 (2017). PubMed

Weiskopf, S. R. et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ.733, 137782 (2020). PubMed

Woodward FI. The impact of low temperatures in controlling the geographical distribution of plants. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 1990;326:585–593. doi: 10.1098/rstb.1990.0033. DOI

Zellweger F, et al. Forest microclimate dynamics drive plant responses to warming. Science. 2020;368:772–775. doi: 10.1126/science.aba6880. PubMed DOI

Brown JH. Why are there so many species in the tropics? J. Biogeogr. 2014;41:8–22. doi: 10.1111/jbi.12228. PubMed DOI PMC

Cerezer FO, et al. Latitudinal gradient of termite diversity indicates higher diversification and narrower thermal niches in the tropics. Glob. Ecol. Biogeogr. 2020;29:1967–1977. doi: 10.1111/geb.13167. DOI

Löffler J, Pape R. Thermal niche predictors of alpine plant species. Ecology. 2020;101:e02891. doi: 10.1002/ecy.2891. PubMed DOI

De Frenne P, et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 2019;3:744–749. doi: 10.1038/s41559-019-0842-1. PubMed DOI

Haesen S, et al. ForestTemp–Sub‐canopy microclimate temperatures of European forests. Glob. Change Biol. 2021;27:6307–6319. doi: 10.1111/gcb.15892. PubMed DOI

De Frenne P, et al. Forest microclimates and climate change: importance, drivers and future research agenda. Glob. Change Biol. 2021;27:2279–2297. doi: 10.1111/gcb.15569. PubMed DOI

Kašpar, V. et al. Temperature buffering in temperate forests: comparing microclimate models based on ground measurements with active and passive remote sensing. Remote Sens. Environ.263, 112522 (2021).

Li Y, et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 2015;6:6603. doi: 10.1038/ncomms7603. PubMed DOI PMC

Jucker T, et al. Canopy structure and topography jointly constrain the microclimate of human‐modified tropical landscapes. Glob. Change Biol. 2018;24:5243–5258. doi: 10.1111/gcb.14415. PubMed DOI

Macek M, Kopecký M, Wild J. Maximum air temperature controlled by landscape topography affects plant species composition in temperate forests. Landsc. Ecol. 2019;34:2541–2556. doi: 10.1007/s10980-019-00903-x. DOI

Dobrowski SZ. A climatic basis for microrefugia: the influence of terrain on climate. Glob. Change Biol. 2011;17:1022–1035. doi: 10.1111/j.1365-2486.2010.02263.x. DOI

Maclean IM, Mosedale JR, Bennie JJ. Microclima: an r package for modelling meso‐and microclimate. Methods Ecol. Evol. 2019;10:280–290. doi: 10.1111/2041-210X.13093. DOI

Meineri E, Hylander K. Fine‐grain, large‐domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography. 2017;40:1003–1013. doi: 10.1111/ecog.02494. DOI

Pastore MA, Classen AT, D’Amato AW, Foster JR, Adair EC. Cold‐air pools as microrefugia for ecosystem functions in the face of climate change. Ecology. 2022;103:e3717. doi: 10.1002/ecy.3717. PubMed DOI

Camargo JLC, Kapos V. Complex edge effects on soil moisture and microclimate in central Amazonian forest. J. Trop. Ecol. 1995;11:205–221. doi: 10.1017/S026646740000866X. DOI

Geiger R, Bouyoucos GJ. The climate near the ground. Am. J. Phys. 1951;19:192–192. doi: 10.1119/1.1932763. DOI

Hay JE, McKay DC. Estimating solar irradiance on inclined surfaces: a review and assessment of methodologies. Int. J. Sol. Energy. 1985;3:203–240. doi: 10.1080/01425918508914395. DOI

Jucker T, et al. A research agenda for microclimate ecology in human-modified tropical forests. Front. For. Glob. Change. 2020;2:92. doi: 10.3389/ffgc.2019.00092. DOI

Lenoir J, Hattab T, Pierre G. Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography. 2017;40:253–266. doi: 10.1111/ecog.02788. DOI

Lembrechts JJ, Nijs I, Lenoir J. Incorporating microclimate into species distribution models. Ecography. 2019;42:1267–1279. doi: 10.1111/ecog.03947. DOI

Lembrechts JJ, et al. SoilTemp: a global database of near‐surface temperature. Glob. Change Biol. 2020;26:6616–6629. doi: 10.1111/gcb.15123. PubMed DOI

Haesen, S. et al. ForestClim—Bioclimatic variables for microclimate temperatures of European forests. Glob. Chang Biol.29, 2886–2892 (2023). PubMed

Lawrence D, Coe M, Walker W, Verchot L, Vandecar K. The unseen effects of deforestation: biophysical effects on climate. Front. For. Glob. Change. 2022;5:49. doi: 10.3389/ffgc.2022.756115. DOI

Pincebourde S, Murdock CC, Vickers M, Sears MW. Fine-scale microclimatic variation can shape the responses of organisms to global change in both natural and urban environments. Integr. Comp. Biol. 2016;56:45–61. doi: 10.1093/icb/icw016. PubMed DOI

De Frenne P, Verheyen K. Weather stations lack forest data. Science. 2016;351:234–234. doi: 10.1126/science.351.6270.234-a. PubMed DOI

Faye E, Herrera M, Bellomo L, Silvain J-F, Dangles O. Strong discrepancies between local temperature mapping and interpolated climatic grids in tropical mountainous agricultural landscapes. PLoS ONE. 2014;9:e105541. doi: 10.1371/journal.pone.0105541. PubMed DOI PMC

Houspanossian J, Nosetto M, Jobbágy EG. Radiation budget changes with dry forest clearing in temperate Argentina. Glob. Change Biol. 2013;19:1211–1222. doi: 10.1111/gcb.12121. PubMed DOI

Meier R, Davin EL, Swenson SC, Lawrence DM, Schwaab J. Biomass heat storage dampens diurnal temperature variations in forests. Environ. Res. Lett. 2019;14:084026. doi: 10.1088/1748-9326/ab2b4e. DOI

Dawson TE, et al. Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiol. 2007;27:561–575. doi: 10.1093/treephys/27.4.561. PubMed DOI

Jordan D, Smith W. Energy balance analysis of nighttime leaf temperatures and frost formation in a subalpine environment. Agric. For. Meteorol. 1994;71:359–372. doi: 10.1016/0168-1923(94)90020-5. DOI

Rosado BH, Oliveira RS, Joly CA, Aidar MP, Burgess SS. Diversity in nighttime transpiration behavior of woody species of the Atlantic Rain Forest, Brazil. Agric. For. Meteorol. 2012;158:13–20. doi: 10.1016/j.agrformet.2012.02.002. DOI

Zeppel MJ, et al. Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna. Tree Physiol. 2011;31:932–944. doi: 10.1093/treephys/tpr024. PubMed DOI

Lejeune Q, Davin EL, Guillod BP, Seneviratne SI. Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Clim. Dyn. 2015;44:2769–2786. doi: 10.1007/s00382-014-2203-8. DOI

Mildrexler, D. J., Zhao, M. & Running, S. W. A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J. Geophys. Res. Biogeosci.116, G03025 (2011).

Baker, J. C. A. & Spracklen, D. V. Climate benefits of intact Amazon forests and the biophysical consequences of disturbance. Front. For. Glob. Change2, 47 (2019).

Iida, S. I. et al. Evapotranspiration from the understory of a tropical dry deciduous forest in Cambodia. Agric. For. Meteorol.295, 108170 (2020).

Christina M, et al. Importance of deep water uptake in tropical eucalypt forest. Funct. Ecol. 2017;31:509–519. doi: 10.1111/1365-2435.12727. DOI

Germon A, Laclau J-P, Robin A, Jourdan C. Deep fine roots in forest ecosystems: Why dig deeper? For. Ecol. Manag. 2020;466:118135. doi: 10.1016/j.foreco.2020.118135. DOI

Maeda EE, et al. Evapotranspiration seasonality across the Amazon Basin. Earth Syst. Dyn. 2017;8:439–454. doi: 10.5194/esd-8-439-2017. DOI

Hardwick SR, et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agric. For. Meteorol. 2015;201:187–195. doi: 10.1016/j.agrformet.2014.11.010. PubMed DOI PMC

Laurance WF, et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 2011;144:56–67. doi: 10.1016/j.biocon.2010.09.021. DOI

Maeda, E. E. et al. Shifts in structural diversity of Amazonian forest edges detected using terrestrial laser scanning. Remote Sens. Environ.271, 112895 (2022).

Ewers RM, et al. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project. Philos. Trans. R. Soc. B: Biol. Sci. 2011;366:3292–3302. doi: 10.1098/rstb.2011.0049. PubMed DOI PMC

Pacifici M, et al. Assessing species vulnerability to climate change. Nat. Clim. Change. 2015;5:215–224. doi: 10.1038/nclimate2448. DOI

Vinod N, et al. Thermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications. N. Phytol. 2023;237:22–47. doi: 10.1111/nph.18539. PubMed DOI

De Kort H, et al. Pre‐adaptation to climate change through topography‐driven phenotypic plasticity. J. Ecol. 2020;108:1465–1474. doi: 10.1111/1365-2745.13365. DOI

Graae BJ, et al. Stay or go–how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 2018;30:41–50. doi: 10.1016/j.ppees.2017.09.008. DOI

Chen J, et al. Microclimate in forest ecosystem and landscape ecology: variations in local climate can be used to monitor and compare the effects of different management regimes. BioScience. 1999;49:288–297. doi: 10.2307/1313612. DOI

Frey SJ, Hadley AS, Betts MG. Microclimate predicts within‐season distribution dynamics of montane forest birds. Divers. Distrib. 2016;22:944–959. doi: 10.1111/ddi.12456. DOI

King, R. B. Temperature‐induced multi‐species cohort effects in sympatric snakes. Ecol. Evol.12, e8601 (2022). PubMed PMC

Miller DA, et al. Quantifying climate sensitivity and climate-driven change in North American amphibian communities. Nat. Commun. 2018;9:3926. doi: 10.1038/s41467-018-06157-6. PubMed DOI PMC

Schurr FM, et al. How to understand species’ niches and range dynamics: a demographic research agenda for biogeography. J. Biogeogr. 2012;39:2146–2162. doi: 10.1111/j.1365-2699.2012.02737.x. DOI

Wild J, et al. Climate at ecologically relevant scales: a new temperature and soil moisture logger for long-term microclimate measurement. Agric. For. Meteorol. 2019;268:40–47. doi: 10.1016/j.agrformet.2018.12.018. DOI

Zellweger F, De Frenne P, Lenoir J, Rocchini D, Coomes D. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 2019;34:327–341. doi: 10.1016/j.tree.2018.12.012. PubMed DOI

Potapov, P. et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ.253, 112165 (2021).

CGLS. Copernicus Global Land Service. Providing Bio-Geophysical Products of Global Land Surface. https://land.copernicus.eu/global/themes/vegetation (2022).

Sexton JO, et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digit. Earth. 2013;6:427–448. doi: 10.1080/17538947.2013.786146. DOI

Wu, J., He, J. & Christakos, G. Quantitative Analysis and Modeling of Earth and Environmental Data: Space-time and Spacetime Data Considerations (Elsevier, 2021).

Dale, M. R. & Fortin, M.-J. Spatial Analysis: A Guide for Ecologists (Cambridge University Press, 2014).

Cressie N. The origins of kriging. Math. Geol. 1990;22:239–252. doi: 10.1007/BF00889887. DOI

Cressie, N. Statistics for Spatial Data (John Wiley & Sons, 2015).

Lamorey G, Jacobson E. Estimation of semivariogram parameters and evaluation of the effects of data sparsity. Math. Geol. 1995;27:327–358. doi: 10.1007/BF02084606. DOI

Ij H. Statistics versus machine learning. Nat. Methods. 2018;15:233. doi: 10.1038/nmeth.4642. PubMed DOI PMC

Breiman L. Bagging predictors. Mach. Learn. 1996;24:123–140. doi: 10.1007/BF00058655. DOI

Liashchynskyi, P. & Liashchynskyi, P. Grid search, random search, genetic algorithm: a big comparison for NAS. Preprint at https://arxiv.org/abs/1912.06059 (2019).

Hengl T, Nussbaum M, Wright MN, Heuvelink GB, Gräler B. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ. 2018;6:e5518. doi: 10.7717/peerj.5518. PubMed DOI PMC

van den Hoogen, J. et al. A geospatial mapping pipeline for ecologists. Preprint at BioRxiv10.1101/2021.07.07.451145 (2021).

Ploton P, et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 2020;11:4540. doi: 10.1038/s41467-020-18321-y. PubMed DOI PMC

Ismaeel, A. & Maeda, E. E. Tropical Forest Microclimate Maps. national Finnish Fairdata services (https://www.fairdata.fi/en/). 10.23729/dd3de08e-39a1-46b0-b28a-7bc577b6c914 (2023).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...