Patterns of tropical forest understory temperatures
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
319905
Academy of Finland (Suomen Akatemia)
345472
Academy of Finland (Suomen Akatemia)
PubMed
38263406
PubMed Central
PMC10805846
DOI
10.1038/s41467-024-44734-0
PII: 10.1038/s41467-024-44734-0
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- klimatické změny MeSH
- lesy * MeSH
- počítačové systémy MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
Temperature is a fundamental driver of species distribution and ecosystem functioning. Yet, our knowledge of the microclimatic conditions experienced by organisms inside tropical forests remains limited. This is because ecological studies often rely on coarse-gridded temperature estimates representing the conditions at 2 m height in an open-air environment (i.e., macroclimate). In this study, we present a high-resolution pantropical estimate of near-ground (15 cm above the surface) temperatures inside forests. We quantify diurnal and seasonal variability, thus revealing both spatial and temporal microclimate patterns. We find that on average, understory near-ground temperatures are 1.6 °C cooler than the open-air temperatures. The diurnal temperature range is on average 1.7 °C lower inside the forests, in comparison to open-air conditions. More importantly, we demonstrate a substantial spatial variability in the microclimate characteristics of tropical forests. This variability is regulated by a combination of large-scale climate conditions, vegetation structure and topography, and hence could not be captured by existing macroclimate grids. Our results thus contribute to quantifying the actual thermal ranges experienced by organisms inside tropical forests and provide new insights into how these limits may be affected by climate change and ecosystem disturbances.
Associação SOS Amazônia Rio Branco AC 69 905 082 Brazil
Biological Dynamics of Forest Fragment Project CP 478 69067 375 Manaus AM Brazil
Department of Geographical Sciences University of Maryland College Park MD 20742 USA
Department of Geosciences and Geography University of Helsinki P O Box 68 FI 00014 Helsinki Finland
Faculty of Science University of South Bohemia Branisovska 1760 CZ 370 05 České Budějovice Czechia
Finnish Meteorological Institute P O Box 503 FI 00101 Helsinki Finland
Institute of Botany of the Czech Academy of Sciences Zámek 1 CZ 252 43 Průhonice Czech Republic
Research Group Plants and Ecosystems University of Antwerp 2610 Wilrijk Belgium
School of GeoSciences University of Edinburgh Edinburgh EH8 9XP UK
Zobrazit více v PubMed
Hamilton AJ, et al. Quantifying uncertainty in estimation of tropical arthropod species richness. Am. Nat. 2010;176:90–95. doi: 10.1086/652998. PubMed DOI
Pillay R, et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Environ. 2022;20:10–15. doi: 10.1002/fee.2420. PubMed DOI PMC
Raven, P. H. et al. The distribution of biodiversity richness in the tropics. Sci. Adv.6, eabc6228 (2020). PubMed PMC
Bennett JM, et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 2021;12:1198. doi: 10.1038/s41467-021-21263-8. PubMed DOI PMC
Sullivan MJ, et al. Long-term thermal sensitivity of Earth’s tropical forests. Science. 2020;368:869–874. doi: 10.1126/science.aaw7578. PubMed DOI
Vázquez, D. P., Gianoli, E., Morris, W. F. & Bozinovic, F. Ecological and evolutionary impacts of changing climatic variability. Biol. Rev. Camb. Philos. Soc.92, 22–42 (2017). PubMed
Weiskopf, S. R. et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ.733, 137782 (2020). PubMed
Woodward FI. The impact of low temperatures in controlling the geographical distribution of plants. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 1990;326:585–593. doi: 10.1098/rstb.1990.0033. DOI
Zellweger F, et al. Forest microclimate dynamics drive plant responses to warming. Science. 2020;368:772–775. doi: 10.1126/science.aba6880. PubMed DOI
Brown JH. Why are there so many species in the tropics? J. Biogeogr. 2014;41:8–22. doi: 10.1111/jbi.12228. PubMed DOI PMC
Cerezer FO, et al. Latitudinal gradient of termite diversity indicates higher diversification and narrower thermal niches in the tropics. Glob. Ecol. Biogeogr. 2020;29:1967–1977. doi: 10.1111/geb.13167. DOI
Löffler J, Pape R. Thermal niche predictors of alpine plant species. Ecology. 2020;101:e02891. doi: 10.1002/ecy.2891. PubMed DOI
De Frenne P, et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 2019;3:744–749. doi: 10.1038/s41559-019-0842-1. PubMed DOI
Haesen S, et al. ForestTemp–Sub‐canopy microclimate temperatures of European forests. Glob. Change Biol. 2021;27:6307–6319. doi: 10.1111/gcb.15892. PubMed DOI
De Frenne P, et al. Forest microclimates and climate change: importance, drivers and future research agenda. Glob. Change Biol. 2021;27:2279–2297. doi: 10.1111/gcb.15569. PubMed DOI
Kašpar, V. et al. Temperature buffering in temperate forests: comparing microclimate models based on ground measurements with active and passive remote sensing. Remote Sens. Environ.263, 112522 (2021).
Li Y, et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 2015;6:6603. doi: 10.1038/ncomms7603. PubMed DOI PMC
Jucker T, et al. Canopy structure and topography jointly constrain the microclimate of human‐modified tropical landscapes. Glob. Change Biol. 2018;24:5243–5258. doi: 10.1111/gcb.14415. PubMed DOI
Macek M, Kopecký M, Wild J. Maximum air temperature controlled by landscape topography affects plant species composition in temperate forests. Landsc. Ecol. 2019;34:2541–2556. doi: 10.1007/s10980-019-00903-x. DOI
Dobrowski SZ. A climatic basis for microrefugia: the influence of terrain on climate. Glob. Change Biol. 2011;17:1022–1035. doi: 10.1111/j.1365-2486.2010.02263.x. DOI
Maclean IM, Mosedale JR, Bennie JJ. Microclima: an r package for modelling meso‐and microclimate. Methods Ecol. Evol. 2019;10:280–290. doi: 10.1111/2041-210X.13093. DOI
Meineri E, Hylander K. Fine‐grain, large‐domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography. 2017;40:1003–1013. doi: 10.1111/ecog.02494. DOI
Pastore MA, Classen AT, D’Amato AW, Foster JR, Adair EC. Cold‐air pools as microrefugia for ecosystem functions in the face of climate change. Ecology. 2022;103:e3717. doi: 10.1002/ecy.3717. PubMed DOI
Camargo JLC, Kapos V. Complex edge effects on soil moisture and microclimate in central Amazonian forest. J. Trop. Ecol. 1995;11:205–221. doi: 10.1017/S026646740000866X. DOI
Geiger R, Bouyoucos GJ. The climate near the ground. Am. J. Phys. 1951;19:192–192. doi: 10.1119/1.1932763. DOI
Hay JE, McKay DC. Estimating solar irradiance on inclined surfaces: a review and assessment of methodologies. Int. J. Sol. Energy. 1985;3:203–240. doi: 10.1080/01425918508914395. DOI
Jucker T, et al. A research agenda for microclimate ecology in human-modified tropical forests. Front. For. Glob. Change. 2020;2:92. doi: 10.3389/ffgc.2019.00092. DOI
Lenoir J, Hattab T, Pierre G. Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography. 2017;40:253–266. doi: 10.1111/ecog.02788. DOI
Lembrechts JJ, Nijs I, Lenoir J. Incorporating microclimate into species distribution models. Ecography. 2019;42:1267–1279. doi: 10.1111/ecog.03947. DOI
Lembrechts JJ, et al. SoilTemp: a global database of near‐surface temperature. Glob. Change Biol. 2020;26:6616–6629. doi: 10.1111/gcb.15123. PubMed DOI
Haesen, S. et al. ForestClim—Bioclimatic variables for microclimate temperatures of European forests. Glob. Chang Biol.29, 2886–2892 (2023). PubMed
Lawrence D, Coe M, Walker W, Verchot L, Vandecar K. The unseen effects of deforestation: biophysical effects on climate. Front. For. Glob. Change. 2022;5:49. doi: 10.3389/ffgc.2022.756115. DOI
Pincebourde S, Murdock CC, Vickers M, Sears MW. Fine-scale microclimatic variation can shape the responses of organisms to global change in both natural and urban environments. Integr. Comp. Biol. 2016;56:45–61. doi: 10.1093/icb/icw016. PubMed DOI
De Frenne P, Verheyen K. Weather stations lack forest data. Science. 2016;351:234–234. doi: 10.1126/science.351.6270.234-a. PubMed DOI
Faye E, Herrera M, Bellomo L, Silvain J-F, Dangles O. Strong discrepancies between local temperature mapping and interpolated climatic grids in tropical mountainous agricultural landscapes. PLoS ONE. 2014;9:e105541. doi: 10.1371/journal.pone.0105541. PubMed DOI PMC
Houspanossian J, Nosetto M, Jobbágy EG. Radiation budget changes with dry forest clearing in temperate Argentina. Glob. Change Biol. 2013;19:1211–1222. doi: 10.1111/gcb.12121. PubMed DOI
Meier R, Davin EL, Swenson SC, Lawrence DM, Schwaab J. Biomass heat storage dampens diurnal temperature variations in forests. Environ. Res. Lett. 2019;14:084026. doi: 10.1088/1748-9326/ab2b4e. DOI
Dawson TE, et al. Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiol. 2007;27:561–575. doi: 10.1093/treephys/27.4.561. PubMed DOI
Jordan D, Smith W. Energy balance analysis of nighttime leaf temperatures and frost formation in a subalpine environment. Agric. For. Meteorol. 1994;71:359–372. doi: 10.1016/0168-1923(94)90020-5. DOI
Rosado BH, Oliveira RS, Joly CA, Aidar MP, Burgess SS. Diversity in nighttime transpiration behavior of woody species of the Atlantic Rain Forest, Brazil. Agric. For. Meteorol. 2012;158:13–20. doi: 10.1016/j.agrformet.2012.02.002. DOI
Zeppel MJ, et al. Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna. Tree Physiol. 2011;31:932–944. doi: 10.1093/treephys/tpr024. PubMed DOI
Lejeune Q, Davin EL, Guillod BP, Seneviratne SI. Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Clim. Dyn. 2015;44:2769–2786. doi: 10.1007/s00382-014-2203-8. DOI
Mildrexler, D. J., Zhao, M. & Running, S. W. A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J. Geophys. Res. Biogeosci.116, G03025 (2011).
Baker, J. C. A. & Spracklen, D. V. Climate benefits of intact Amazon forests and the biophysical consequences of disturbance. Front. For. Glob. Change2, 47 (2019).
Iida, S. I. et al. Evapotranspiration from the understory of a tropical dry deciduous forest in Cambodia. Agric. For. Meteorol.295, 108170 (2020).
Christina M, et al. Importance of deep water uptake in tropical eucalypt forest. Funct. Ecol. 2017;31:509–519. doi: 10.1111/1365-2435.12727. DOI
Germon A, Laclau J-P, Robin A, Jourdan C. Deep fine roots in forest ecosystems: Why dig deeper? For. Ecol. Manag. 2020;466:118135. doi: 10.1016/j.foreco.2020.118135. DOI
Maeda EE, et al. Evapotranspiration seasonality across the Amazon Basin. Earth Syst. Dyn. 2017;8:439–454. doi: 10.5194/esd-8-439-2017. DOI
Hardwick SR, et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agric. For. Meteorol. 2015;201:187–195. doi: 10.1016/j.agrformet.2014.11.010. PubMed DOI PMC
Laurance WF, et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 2011;144:56–67. doi: 10.1016/j.biocon.2010.09.021. DOI
Maeda, E. E. et al. Shifts in structural diversity of Amazonian forest edges detected using terrestrial laser scanning. Remote Sens. Environ.271, 112895 (2022).
Ewers RM, et al. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project. Philos. Trans. R. Soc. B: Biol. Sci. 2011;366:3292–3302. doi: 10.1098/rstb.2011.0049. PubMed DOI PMC
Pacifici M, et al. Assessing species vulnerability to climate change. Nat. Clim. Change. 2015;5:215–224. doi: 10.1038/nclimate2448. DOI
Vinod N, et al. Thermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications. N. Phytol. 2023;237:22–47. doi: 10.1111/nph.18539. PubMed DOI
De Kort H, et al. Pre‐adaptation to climate change through topography‐driven phenotypic plasticity. J. Ecol. 2020;108:1465–1474. doi: 10.1111/1365-2745.13365. DOI
Graae BJ, et al. Stay or go–how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 2018;30:41–50. doi: 10.1016/j.ppees.2017.09.008. DOI
Chen J, et al. Microclimate in forest ecosystem and landscape ecology: variations in local climate can be used to monitor and compare the effects of different management regimes. BioScience. 1999;49:288–297. doi: 10.2307/1313612. DOI
Frey SJ, Hadley AS, Betts MG. Microclimate predicts within‐season distribution dynamics of montane forest birds. Divers. Distrib. 2016;22:944–959. doi: 10.1111/ddi.12456. DOI
King, R. B. Temperature‐induced multi‐species cohort effects in sympatric snakes. Ecol. Evol.12, e8601 (2022). PubMed PMC
Miller DA, et al. Quantifying climate sensitivity and climate-driven change in North American amphibian communities. Nat. Commun. 2018;9:3926. doi: 10.1038/s41467-018-06157-6. PubMed DOI PMC
Schurr FM, et al. How to understand species’ niches and range dynamics: a demographic research agenda for biogeography. J. Biogeogr. 2012;39:2146–2162. doi: 10.1111/j.1365-2699.2012.02737.x. DOI
Wild J, et al. Climate at ecologically relevant scales: a new temperature and soil moisture logger for long-term microclimate measurement. Agric. For. Meteorol. 2019;268:40–47. doi: 10.1016/j.agrformet.2018.12.018. DOI
Zellweger F, De Frenne P, Lenoir J, Rocchini D, Coomes D. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 2019;34:327–341. doi: 10.1016/j.tree.2018.12.012. PubMed DOI
Potapov, P. et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ.253, 112165 (2021).
CGLS. Copernicus Global Land Service. Providing Bio-Geophysical Products of Global Land Surface. https://land.copernicus.eu/global/themes/vegetation (2022).
Sexton JO, et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digit. Earth. 2013;6:427–448. doi: 10.1080/17538947.2013.786146. DOI
Wu, J., He, J. & Christakos, G. Quantitative Analysis and Modeling of Earth and Environmental Data: Space-time and Spacetime Data Considerations (Elsevier, 2021).
Dale, M. R. & Fortin, M.-J. Spatial Analysis: A Guide for Ecologists (Cambridge University Press, 2014).
Cressie N. The origins of kriging. Math. Geol. 1990;22:239–252. doi: 10.1007/BF00889887. DOI
Cressie, N. Statistics for Spatial Data (John Wiley & Sons, 2015).
Lamorey G, Jacobson E. Estimation of semivariogram parameters and evaluation of the effects of data sparsity. Math. Geol. 1995;27:327–358. doi: 10.1007/BF02084606. DOI
Ij H. Statistics versus machine learning. Nat. Methods. 2018;15:233. doi: 10.1038/nmeth.4642. PubMed DOI PMC
Breiman L. Bagging predictors. Mach. Learn. 1996;24:123–140. doi: 10.1007/BF00058655. DOI
Liashchynskyi, P. & Liashchynskyi, P. Grid search, random search, genetic algorithm: a big comparison for NAS. Preprint at https://arxiv.org/abs/1912.06059 (2019).
Hengl T, Nussbaum M, Wright MN, Heuvelink GB, Gräler B. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ. 2018;6:e5518. doi: 10.7717/peerj.5518. PubMed DOI PMC
van den Hoogen, J. et al. A geospatial mapping pipeline for ecologists. Preprint at BioRxiv10.1101/2021.07.07.451145 (2021).
Ploton P, et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 2020;11:4540. doi: 10.1038/s41467-020-18321-y. PubMed DOI PMC
Ismaeel, A. & Maeda, E. E. Tropical Forest Microclimate Maps. national Finnish Fairdata services (https://www.fairdata.fi/en/). 10.23729/dd3de08e-39a1-46b0-b28a-7bc577b6c914 (2023).