Constraining activity and growth substrate of fungal decomposers via assimilation patterns of inorganic carbon and water into lipid biomarkers

. 2024 Apr 17 ; 90 (4) : e0206523. [epub] 20240325

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38527003

Grantová podpora
20-223805 Grantová Agentura České Republiky (GAČR)
LM2015075 Ministerstvo Školství, Mládeže a Tělovýchovy (MŠMT)
CZ.02.1.01/0.0/0.0/16_013/0001782 EC | European Regional Development Fund (ERDF)

Fungi are among the few organisms on the planet that can metabolize recalcitrant carbon (C) but are also known to access recently produced plant photosynthate. Therefore, improved quantification of growth and substrate utilization by different fungal ecotypes will help to define the rates and controls of fungal production, the cycling of soil organic matter, and thus the C storage and CO2 buffering capacity in soil ecosystems. This pure-culture study of fungal isolates combined a dual stable isotope probing (SIP) approach, together with rapid analysis by tandem pyrolysis-gas chromatography-isotope ratio mass spectrometry to determine the patterns of water-derived hydrogen (H) and inorganic C assimilated into lipid biomarkers of heterotrophic fungi as a function of C substrate. The water H assimilation factor (αW) and the inorganic C assimilation into C18:2 fatty acid isolated from five fungal species growing on glucose was lower (0.62% ± 0.01% and 4.7% ± 1.6%, respectively) than for species grown on glutamic acid (0.90% ± 0.02% and 7.4% ± 3.7%, respectively). Furthermore, the assimilation ratio (RIC/αW) for growth on glucose and glutamic acid can distinguish between these two metabolic modes. This dual-SIP assay thus delivers estimates of fungal activity and may help to delineate the predominant substrates that are respired among a matrix of compounds found in natural environments.IMPORTANCEFungal decomposers play important roles in food webs and nutrient cycling because they can feed on both labile and more recalcitrant forms of carbon. This study developed and applied a dual stable isotope assay (13C-dissolved inorganic carbon/2H) to improve the investigation of fungal activity in the environment. By determining the incorporation patterns of hydrogen and carbon into fungal lipids, this assay delivers estimates of fungal activity and the different metabolic pathways that they employ in ecological and environmental systems.

Zobrazit více v PubMed

Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. doi:10.1038/nature10386 PubMed DOI

Lehmann J, Kleber M. 2015. The contentious nature of soil organic matter. Nature 528:60–68. doi:10.1038/nature16069 PubMed DOI

Han L, Sun K, Jin J, Xing B. 2016. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil Biol Biochem 94:107–121. doi:10.1016/j.soilbio.2015.11.023 DOI

Lv J, Huang Z, Luo L, Zhang S, Wang Y. 2022. Advances in molecular and microscale characterization of soil organic matter: current limitations and future prospects. Environ Sci Technol 56:12793–12810. doi:10.1021/acs.est.2c00421 PubMed DOI

Ciais P, Dolman AJ, Bombelli A, Duren R, Peregon A, Rayner PJ, Miller C, Gobron N, Kinderman G, Marland G, et al. . 2014. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences 11:3547–3602. doi:10.5194/bg-11-3547-2014 DOI

Lindahl BD, Tunlid A. 2015. Ectomycorrhizal fungi–potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–1447. doi:10.1111/nph.13201 PubMed DOI

Hart KM, Kulakova AN, Allen CCR, Simpson AJ, Oppenheimer SF, Masoom H, Courtier-Murias D, Soong R, Kulakov LA, Flanagan PV, Murphy BT, Kelleher BP. 2013. Tracking the fate of microbially sequestered carbon dioxide in soil organic matter. Environ Sci Technol 47:5128–5137. doi:10.1021/es3050696 PubMed DOI

San-Emeterio LM, Zavala LM, Jiménez-Morillo NT, Pérez-Ramos IM, González-Pérez JA. 2023. Effects of climate change on soil organic matter C and H isotope composition in a Mediterranean Savannah (Dehesa): an assessment using Py-CSIA. Environ Sci Technol 57:13851–13862. doi:10.1021/acs.est.3c01816 PubMed DOI PMC

Frey SD. 2019. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu Rev Ecol Evol Syst 50:237–259. doi:10.1146/annurev-ecolsys-110617-062331 DOI

Snajdr J, Cajthaml T, Valášková V, Merhautová V, Petránková M, Spetz P, Leppänen K, Baldrian P. 2011. Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol Ecol 75:291–303. doi:10.1111/j.1574-6941.2010.00999.x PubMed DOI

Kirk TK, Farrell RL. 1987. Enzymatic" combustion": the microbial degradation of lignin. Annu Rev Microbiol 41:465–505. doi:10.1146/annurev.mi.41.100187.002341 PubMed DOI

Fioretto A, Di Nardo C, Papa S, Fuggi A. 2005. Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biol Biochem 37:1083–1091. doi:10.1016/j.soilbio.2004.11.007 DOI

Baldrian P, Voříšková J, Dobiášová P, Merhautová V, Lisá L, Valášková V. 2011. Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil. Plant Soil 338:111–125. doi:10.1007/s11104-010-0324-3 DOI

Högberg P, Nordgren A, Buchmann N, Taylor AF, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792. doi:10.1038/35081058 PubMed DOI

Smith SE, Read D. 2008. Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. Mycorrhizal symbiosis 3:145–148. doi:10.1016/B978-012370526-6.50007-6 DOI

Kornberg HL. 1965. Anaplerotic sequences in microbial metabolism. Angew Chem Int Ed Engl 4:558–565. doi:10.1002/anie.196505581 DOI

Romanenko VI. 1964. Heterotrophic assimilation of CO2 by bacterial flora of water. Mikrobiologiia 33:679–683. PubMed

Roslev P, Larsen MB, Jørgensen D, Hesselsoe M. 2004. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria. J Microbiol Methods 59:381–393. doi:10.1016/j.mimet.2004.08.002 PubMed DOI

Braun A, Spona-Friedl M, Avramov M, Elsner M, Baltar F, Reinthaler T, Herndl GJ, Griebler C. 2021. Reviews and syntheses: heterotrophic fixation of inorganic carbon–significant but invisible flux in environmental carbon cycling. Biogeosciences 18:3689–3700. doi:10.5194/bg-18-3689-2021 DOI

Sorokin JI. 1966. On the carbon dioxide uptake during the cell synthesis by microorganisms. Z Allg Mikrobiol 6:69–73. doi:10.1002/jobm.3630060107 PubMed DOI

Kellermann MY, Wegener G, Elvert M, Yoshinaga MY, Lin Y-S, Holler T, Mollar XP, Knittel K, Hinrichs K-U. 2012. Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities. Proc Natl Acad Sci U S A 109:19321–19326. doi:10.1073/pnas.1208795109 PubMed DOI PMC

Kopf SH, McGlynn SE, Green-Saxena A, Guan Y, Newman DK, Orphan VJ. 2015. Heavy water and 15N labelling with NanoSIMS analysis reveals growth rate-dependent metabolic heterogeneity in chemostats. Environ Microbiol 17:2542–2556. doi:10.1111/1462-2920.12752 PubMed DOI PMC

Huguet A, Meador TB, Laggoun-Défarge F, Könneke M, Wu W, Derenne S, Hinrichs K-U. 2017. Production rates of bacterial tetraether lipids and fatty acids in peatland under varying oxygen concentrations. Geochim Cosmochim Acta 203:103–116. doi:10.1016/j.gca.2017.01.012 DOI

Caro TA, McFarlin J, Jech S, Fierer N, Kopf S. 2023. Hydrogen stable isotope probing of lipids demonstrates slow rates of microbial growth in soil. Proc Natl Acad Sci U S A 120:e2211625120. doi:10.1073/pnas.2211625120 PubMed DOI PMC

Hoefs J. 2018. Stable isotope geochemistry. Springer International Publishing AG, part of Springer Nature.

Zhang X, Gillespie AL, Sessions AL. 2009. Large D/H variations in bacterial lipids reflect central metabolic pathways. Proc Natl Acad Sci U S A 106:12580–12586. doi:10.1073/pnas.0903030106 PubMed DOI PMC

Osburn MR, Sessions AL, Pepe-Ranney C, Spear JR. 2011. Hydrogen-isotopic variability in fatty acids from Yellowstone National Park hot spring microbial communities. Geochim Cosmochim Acta 75:4830–4845. doi:10.1016/j.gca.2011.05.038 DOI

Wegener G, Bausch M, Holler T, Thang NM, Prieto Mollar X, Kellermann MY, Hinrichs K-U, Boetius A. 2012. Assessing sub‐seafloor microbial activity by combined stable isotope probing with deuterated water and 13C‐bicarbonate. Environ Microbiol 14:1517–1527. doi:10.1111/j.1462-2920.2012.02739.x PubMed DOI

Wu W, Meador TB, Könneke M, Elvert M, Wegener G, Hinrichs KU. 2020. Substrate‐dependent incorporation of carbon and hydrogen for lipid biosynthesis by Methanosarcina barkeri. Environ Microbiol Rep 12:555–567. doi:10.1111/1758-2229.12876 PubMed DOI

Thom C, Raper KB. 1945. A manual of the aspergilli. Vol. 60. LWW.

Hayes JM. 2004. An introduction to isotopic calculations. Woods Hole Oceanographic Institution, Woods Hole, MA.

Boschker HTS, Middelburg JJ. 2002. Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40:85–95. doi:10.1111/j.1574-6941.2002.tb00940.x PubMed DOI

Wu W, Meador T, Hinrichs K-U. 2018. Production and turnover of microbial organic matter in surface intertidal sediments. Org Geochem 121:104–113. doi:10.1016/j.orggeochem.2018.04.006 DOI

Dijkhuizen L, Harder W. 1985. Microbial metabolism of carbon dioxide. In Comprehensive biotechnology: the principles, applications, and regulations of biotechnology in industry, agriculture, and medicine/editor-in-chief, Murray Moo-Young

Erb TJ. 2011. Carboxylases in natural and synthetic microbial pathways. Appl Environ Microbiol 77:8466–8477. doi:10.1128/AEM.05702-11 PubMed DOI PMC

Schinner F, Concin R. 1981. Carbon dioxide fixation by wood‐rotting fungi. Eur J For Pathol 11:120–123. doi:10.1111/j.1439-0329.1981.tb00077.x DOI

Schinner F, Concin R, Binder H. 1982. Heterotrophic CO2 fixation by fungi in dependence on the concentration of the carbon source. Paper presented at the Phyton; annales rei botanicae

Shuler ML, Kargi F. 2002. Bioprocessing engineering: basic concepts. Prentice-Hall Inc, NJ: Upper Saddle River.

Dupont S, Lemetais G, Ferreira T, Cayot P, Gervais P, Beney L. 2012. Ergosterol biosynthesis: a fungal pathway for life on land? Evolution 66:2961–2968. doi:10.1111/j.1558-5646.2012.01667.x PubMed DOI

Eisenkolb M, Zenzmaier C, Leitner E, Schneiter R. 2002. A specific structural requirement for ergosterol in long-chain fatty acid synthesis mutants important for maintaining raft domains in yeast. Mol Biol Cell 13:4414–4428. doi:10.1091/mbc.e02-02-0116 PubMed DOI PMC

Valentine DL. 2009. Isotopic remembrance of metabolism past. Proc Natl Acad Sci U S A 106:12565–12566. doi:10.1073/pnas.0906428106 PubMed DOI PMC

Wijker RS, Sessions AL, Fuhrer T, Phan M. 2019. 2H/1H variation in microbial lipids is controlled by NADPH metabolism. Proc Natl Acad Sci U S A 116:12173–12182. doi:10.1073/pnas.1818372116 PubMed DOI PMC

Cooper AJL, Kuhara T. 2014. α-Ketoglutaramate: an overlooked metabolite of glutamine and a biomarker for hepatic encephalopathy and inborn errors of the urea cycle. Metab Brain Dis 29:991–1006. doi:10.1007/s11011-013-9444-9 PubMed DOI PMC

Hu Z, He B, Ma L, Sun Y, Niu Y, Zeng B. 2017. Recent advances in ergosterol biosynthesis and regulation mechanisms in Saccharomyces cerevisiae. Indian J Microbiol 57:270–277. doi:10.1007/s12088-017-0657-1 PubMed DOI PMC

Wu W. 2018. Microbial activity in marine sediment constrained via lipid-based stable isotope probing PhD Thesis, Universität Bremen

Kellermann MY, Yoshinaga MY, Wegener G, Krukenberg V, Hinrichs K-U. 2016. Tracing the production and fate of individual archaeal intact polar lipids using stable isotope probing. Org Geochem 95:13–20. doi:10.1016/j.orggeochem.2016.02.004 DOI

Wegener G, Kellermann MY, Elvert M. 2016. Tracking activity and function of microorganisms by stable isotope probing of membrane lipids. Curr Opin Biotechnol 41:43–52. doi:10.1016/j.copbio.2016.04.022 PubMed DOI

Holzer G, Bourne TF, Bertsch W. 1989. Analysis of in situ methylated microbial fatty acid constituents by curie-point pyrolysis—gas chromatography—mass spectrometry. J Chromatogr A 468:181–190. doi:10.1016/S0021-9673(00)96315-5 DOI

Ishida Y, Wakamatsu S, Yokoi H, Ohtani H, Tsuge S. 1999. Compositional analysis of polyunsaturated fatty acid oil by one-step thermally assisted hydrolysis and methylation in the presence of trimethylsulfonium hydroxide. J Anal Appl Pyrolysis 49:267–276. doi:10.1016/S0165-2370(98)00095-3 DOI

Blokker P, Pel R, Akoto L, Brinkman UAT, Vreuls RJJ. 2002. At-line gas chromatographic–mass spectrometric analysis of fatty acid profiles of green microalgae using a direct thermal desorption interface. J Chromatogr A 959:191–201. doi:10.1016/s0021-9673(02)00463-6 PubMed DOI

Parsi Z, Górecki T. 2006. Determination of ergosterol as an indicator of fungal biomass in various samples using non-discriminating flash pyrolysis. J Chromatogr A 1130:145–150. doi:10.1016/j.chroma.2006.07.045 PubMed DOI

Wörmer L, Lipp JS, Hinrichs K-U. 2017. Comprehensive analysis of microbial lipids in environmental samples through HPLC-MS protocols, p 289–317. In Hydrocarbon and lipid microbiology protocols: petroleum, hydrocarbon and lipid analysis

Elvert M, Boetius A, Knittel K, Jørgensen BB. 2003. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiol J 20:403–419. doi:10.1080/01490450303894 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace