Substrate-dependent incorporation of carbon and hydrogen for lipid biosynthesis by Methanosarcina barkeri
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
CZ.02.1.01/0.0/0.0/16_013/0001782
European Regional Development Fund - International
HI 616-14/1
Gottfried Wihelm Leibniz Prize - International
LM2015075
Ministerstvo Školství, Mládeže a Tělovýchovy - International
China Scholarship Council - International
PubMed
32783290
DOI
10.1111/1758-2229.12876
Knihovny.cz E-zdroje
- MeSH
- acetáty metabolismus MeSH
- lipidy biosyntéza MeSH
- methanol metabolismus MeSH
- Methanosarcina barkeri růst a vývoj metabolismus MeSH
- oxid uhličitý metabolismus MeSH
- uhlík metabolismus MeSH
- vodík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetáty MeSH
- lipidy MeSH
- methanol MeSH
- oxid uhličitý MeSH
- uhlík MeSH
- vodík MeSH
Dual stable isotope probing has been used to infer rates of microbial biomass production and modes of carbon fixation. In order to validate this approach for assessing archaeal production, the methanogenic archaeon Methanosarcina barkeri was grown either with H2 , acetate or methanol with D2 O and 13 C-dissolved inorganic carbon (DIC). Our results revealed unexpectedly low D incorporation into lipids, with the net fraction of water-derived hydrogen amounting to 0.357 ± 0.042, 0.226 ± 0.003 and 0.393 ± 0.029 for growth on H2 /CO2 , acetate and methanol respectively. The variability in net water H assimilation into lipids during the growth of M. barkeri on different substrates is possibly attributed to different Gibbs free energy yields, such that higher energy yield promoted the exchange of hydrogen between medium water and lipids. Because NADPH likely serves as the portal for H transfer, increased NADPH production and/or turnover associated with high energy yield may explain the apparent differences in net water H assimilation into lipids. The variable DIC and water H incorporation into M. barkeri lipids imply systematic, metabolic patterns of isotope incorporation and suggest that the ratio of 13 C-DIC versus D2 O assimilation in environmental samples may serve as a proxy for microbial energetics in addition to microbial production and carbon assimilation pathways.
Zobrazit více v PubMed
Allen, M.A., Lauro, F.M., Williams, T.J., Burg, D., Siddiqui, K.S., De Francisci, D., et al. (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. ISME J 3: 1012-1035.
Berry, D., Mader, E., Lee, T.K., Woebken, D., Wang, Y., Zhu, D., et al. (2015) Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci U S A 112: E194-E203.
Blaser, M.B., Dreisbach, L.K., and Conrad, R. (2015) Carbon isotope fractionation of Thermoanaerobacter kivui in different growth media and at different total inorganic carbon concentration. Org Geochem 81: 45-52.
Boschker, H.T.S., and Middelburg, J.J. (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40: 85-95.
Boschker, H.T.S., Nold, S.C., Wellsbury, P., Bos, D., der Graaf, W., Pel, R., et al. (1998) Direct linking of microbial populations to specific biogeochemical processess by 13C-labelling of biomarkers. Nature 392: 801-805.
Buckel, W., and Thauer, R.K. (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta Bioenergetics 1827: 94-113.
Dawson, K.S., Osburn, M.R., Sessions, A.L., and Orphan, V.J. (2015) Metabolic associations with archaea drive shifts in hydrogen isotope fractionation in sulfate-reducing bacterial lipids in cocultures and methane seeps. Geobiology 13: 462-477.
Dirghangi, S.S., and Pagani, M. (2013a) Hydrogen isotope fractionation during lipid biosynthesis by Tetrahymena thermophila. Org Geochem 64: 105-111.
Dirghangi, S.S., and Pagani, M. (2013b) Hydrogen isotope fractionation during lipid biosynthesis by Haloarcula marismortui. Geochim Cosmochim Acta 119: 381-390.
Eikmanns, B., and Thauer, R. (1984) Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barkeri grown on acetate. Arch Microbiol 138: 365-370.
Ekiel, I., Smith, I., and Sprott, G.D. (1983) Biosynthetic pathways in Methanospirillum hungatei as determined by 13C nuclear magnetic resonance. J Bacteriol 156: 316-326.
Elvert, M., Suess, E., Greinert, J., and Whiticar, M.J. (2000) Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone. Org Geochem 31: 1175-1187.
Elvert, M., Suess, E., and Whiticar, M.J. (1999) Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 86: 295-300.
Englebrecht, A.C., and Sachs, J.P. (2005) Determination of sediment provenance at drift sites using hydrogen isotopes and unsaturation ratios in alkenones. Geochim Cosmochim Acta 69: 4253-4265.
Evans T.W., Coffinet S., Könneke M., Lipp J.S., Becker K.W., Elvert M., Heuer V., Hinrichs K-U. (2019). Assessing the carbon assimilation and production of benthic archaeal lipid biomarkers using lipid-RIP. Geochimica et Cosmochimica Acta, 265: 431-442. http://dx.doi.org/10.1016/j.gca.2019.08.030.
Hayes, J.M. (1993) Factors controlling 13C contents of sedimentary organic compounds: principles and evidence. Mar Geol 113: 111-125.
Hayes, J.M. (2001) Fractionation of carbon and hydrogen isotopes in biosynthetic processes. Rev Mineral Geochem 43: 225-277.
Heinzelmann, S.M., Villanueva, L., Sinke-Schoen, D., Damsté, J.S.S., Schouten, S., and Van der Meer, M.T. (2015) Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids. Front Microbiol 6: 408.
Hinrichs, K.U., Hayes, J.M., Sylva, S.P., Brewer, P.G., and Delong, E.F. (1999) Methane-consuming archaebacteria in marine sediment. Science 398: 802-805.
Hoehler, T.M., and Jørgensen, B.B. (2013) Microbial life under extreme energy limitation. Nat Rev Microbiol 11: 83-94.
Huang, H., Wang, S., Moll, J., and Thauer, R.K. (2012) Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2. J Bacteriol 194: 3689-3699.
Huguet, A., Meador, T.B., Laggoun-Défarge, F., Könneke, M., Wu, W., Derenne, S., and Hinrichs, K.-U. (2017) Production rates of bacterial tetraether lipids and fatty acids in peatland under varying oxygen concentrations. Geochim Cosmochim Acta 203: 103-116.
Jain, S., Caforio, A., and Driessen, A.J.M. (2014) Biosynthesis of archaeal membrane ether lipids. Front Microbiol 5: 641.
Kaneko, M., Kitajima, F., and Naraoka, H. (2011) Stable hydrogen isotope measurement of archaeal ether-bound hydrocarbons. Org Geochem 42: 166-172.
Kellermann, M.Y., Wegener, G., Elvert, M., Yoshinaga, M.Y., Lin, Y.S., Holler, T., et al. (2012) Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities. Proc Natl Acad Sci U S A 109: 19321-19326.
Kellermann, M.Y., Yoshinaga, M.Y., Wegener, G., Krukenberg, V., and Hinrichs, K.-U. (2016) Tracing the production and fate of individual archaeal intact polar lipids using stable isotope probing. Org Geochem 95: 13-20.
Kenealy, W.R., and Zeikus, J.G. (1982) One-carbon metabolism in methanogens: evidence for synthesis of a two-carbon cellular intermediate and unification of catabolism and anabolism in Methanosarcina barkeri. J Bacteriol 151: 932-941.
Koga, Y., and Morii, H. (2005) Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci Biotechnol Biochem 69: 2019-2034.
Koga, Y., and Morii, H. (2007) Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations. Microbiol Mol Biol Rev 71: 97-120.
Könneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B., Waterbury, J.B., and Stahl, D.A. (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543-546.
Könneke, M., Lipp, J.S., and Hinrichs, K.-U. (2012) Carbon isotope fractionation by the marine ammonia-oxidizing archaeon Nitrosopumilus maritimus. Org Geochem 48: 21-24.
Kopf, S.H., McGlynn, S.E., Green-Saxena, A., Guan, Y., Newman, D.K., and Orphan, V.J. (2015) Heavy water and 15N labeling with NanoSIMS analysis reveals growth-rate dependent metabolic heterogeneity in chemostats. Environ Microbiol 17: 2542-2556.
Kopf, S.H., Sessions, A.L., Cowley, E.S., Reyes, C., Van Sambeek, L., Hu, Y., et al. (2016) Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum. Proc Natl Acad Sci U S A 113: E110-E116.
Kreuzer-Martin, H.W. (2007) Stable isotope probing: linking functional activity to specific members of microbial communities. Soil Sci Soc Am J 71: 611-619.
LaRowe, D.E., and Amend, J.P. (2015) Power limits for microbial life. Front Microbiol 6: 718.
Laufer K., Eikmanns B., Frimmer U., Thauer R.K (1987). Methanogenesis from Acetate by Methanosarcina barkeri: Catalysis of Acetate Formation from Methyl Iodide, CO2 , and H2 by the Enzyme System Involved. Zeitschrift für Naturforschung C, 42: 360-372. http://dx.doi.org/10.1515/znc-1987-0407.
Leavitt, W.D., Flynn, T.M., Suess, M.K., and Bradley, A.S. (2016) Transhydrogenase and growth substrate influence lipid hydrogen isotope ratios in Desulfovibrio alaskensis G20. Front Microbiol 7: 918.
Lever, M.A., Rogers, K.L., Lloyd, K.G., Overmann, J., Schink, B., Thauer, R.K., et al. (2015) Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev 39: 688-728.
Londry, K.L., Dawson, K.G., Grover, H.D., Summons, R.E., and Bradley, A.S. (2008) Stable carbon isotope fractionation between substrates and products of Methanosarcina barkeri. Org Geochem 39: 608-621.
Méhay, S., Früh-Green, G.L., Lang, S.Q., Bernasconi, S.M., Brazelton, W.J., Schrenk, M.O., et al. (2013) Record of archaeal activity at the serpentinite-hosted lost City hydrothermal field. Geobiology 11: 570-592.
Offre, P., Spang, A., and Schleper, C. (2013) Archaea in biogeochemical cycles. Annu Rev Microbiol 67: 437-457.
Osburn, M.R., Dawson, K.S., Fogel, M.L., and Sessions, A.L. (2016) Fractionation of hydrogen isotopes by sulfate- and nitrate-reducing bacteria. Front Microbiol 7: 1166.
Pancost, R.D., Hopmans, E.C., and Sinninghe Damsté, J.S. (2001) Archaeal lipids in Mediterranean cold seeps: molecular proxies for anaerobic methane oxidation. Geochim Cosmochim Acta 65: 1611-1627.
Penning, H., Plugge, C.M., Galand, P.E., and Conrad, R. (2005) Variation of carbon isotope fractionation in hydrogenotrophic methanogenic microbial cultures and environmental samples at different energy status. Glob Chang Biol 11: 2103-2113.
Ragsdale, S.W., and Pierce, E. (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784: 1873-1898.
Ragsdale, S.W., and Wood, H.G. (1985) Acetate biosynthesis by acetogenic bacteria. Evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps of the synthesis. J Biol Chem 260: 3970-3977.
Rodriguez, S.B., and Leyh, T.S. (2014) An enzymatic platform for the synthesis of isoprenoid precursors. PLoS One 9: e105594.
Rosa, M.D., and Gambacorta, A. (1986) Lipid biogenesis in archaebacteria. Syst Appl Microbiol 7: 278-285.
Sachs, J.P., and Kawka, O.E. (2015) The influence of growth rate on 2H/1H fractionation in continuous cultures of the coccolithophorid Emiliania huxleyi and the diatom Thalassiosira pseudonana. PLoS One 10: e0141643.
Sachs, J.P., and Schwab, V.F. (2011) Hydrogen isotopes in dinosterol from the Chesapeake Bay estuary. Geochim Cosmochim Acta 75: 444-459.
Saito, K., Kawaguchi, A., Okuda, S., Seyama, Y., and Yamakawa, T. (1980) Incorporation of hydrogen atoms from deuterated water and stereospecifically deuterium-labeled nicotinamide nucleotides into fatty acids with the Escherichia coli fatty acid synthetase system. Biochim Biophys Acta 618: 202-213.
Sakai, S., Takaki, Y., Shimamura, S., Sekine, M., Tajima, T., Kosugi, H., et al. (2011) Genome sequence of a mesophilic hydrogenotrophic Methanogen Methanocella paludicola, the first cultivated representative of the order Methanocellales. PLoS One 6: e22898.
Schouten, S., Ossebaar, J., Schreiber, K., Kienhuis, M.V.M., Langer, G., Benthien, A., and Bijma, J. (2006) The effect of temperature, salinity and growth rate on the stable hydrogen isotopic composition of long chain alkenones produced by Emiliania huxleyi and Gephyrocapsa oceanica. Biogeosciences 3: 113-119.
Schouten, S., Strous, M., Kuypers, M.M., Rijpstra, W.I.C., Baas, M., Schubert, C.J., et al. (2004) Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria. Appl Environ Microbiol 70: 3785-3788.
Sessions, A.L., and Hayes, J.M. (2005) Calculation of hydrogen isotopic fractionations in biogeochemical systems. Geochim Cosmochim Acta 69: 593-597.
Sessions, A.L., Jahnke, L.L., Schimmelmann, A., and Hayes, J.M. (2002) Hydrogen isotope fractionation in lipids of the methane-oxidizing bacterium Methylococcus capsulatus. Geochim Cosmochim Acta 66: 3955-3969.
Spaans, S., Weusthuis, R., Van Der Oost, J., and Kengen, S. (2015) NADPH-generating systems in bacteria and archaea. Front Microbiol 6: 742.
Taubert, M., Stöckel, S., Geesink, P., Girnus, S., Jehmlich, N., von Bergen, M., et al. (2018) Tracking active groundwater microbes with D2O labelling to understand their ecosystem function. Environ Microbiol 20: 369-384.
Thauer, R.K. (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson:1998 Marjory Stephenson prize lecture. Microbiology 144: 2377-2406.
Thauer, R.K., Kaster, A.-K., Seedorf, H., Buckel, W., and Hedderich, R. (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6: 579-591.
Valentine, D.L. (2009) Isotopic remembrance of metabolism past. Proc Natl Acad Sci U S A 106: 12565-12566.
Valentine, D.L., Chidthaisong, A., Rice, A., Reeburgh, W.S., and Tyler, S.C. (2004b) Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens. Geochim Cosmochim Acta 68: 1571-1590.
Valentine, D.L., Sessions, A.L., Tyler, S.C., and Chidthaisong, A. (2004a) Hydrogen isotope fractionation during H2/CO2 acetogenesis: hydrogen utilization efficiency and the origin of lipid-bound hydrogen. Geobiology 2: 179-188.
van der Meer, M.T.J., Benthien, A., French, K.L., Epping, E., Zondervan, I., Reichart, G.-J., et al. (2015) Large effect of irradiance on hydrogen isotope fractionation of alkenones in Emiliania huxleyi. Geochim Cosmochim Acta 160: 16-24.
Vinokur, J.M., Cummins, M.C., Korman, T.P., and Bowie, J.U. (2016) An adaptation to life in acid through a novel mevalonate pathway. Sci Rep 6: 39737.
Wang Y., Sessions A.L., Nielsen R.J., Goddard W.A (2013). Equilibrium 2H/1H fractionation in organic molecules: III. Cyclic ketones and hydrocarbons. Geochimica et Cosmochimica Acta, 107: 82-95. http://dx.doi.org/10.1016/j.gca.2013.01.001.
Wegener, G., Bausch, M., Holler, T., Nguyen Manh, T., Mollar, X.P., Kellermann, M.Y., et al. (2012) Assessing sub-seafloor microbial activity by combined stable isotope probing with deuterated water and 13C-bicarbonate. Environ Microbiol 14: 1517-1527.
Wegener, G., Kellermann, M.Y., and Elvert, M. (2016) Tracking activity and function of microorganisms by stable isotope probing of membrane lipids. Curr Opin Biotechnol 41: 43-52.
Weimer, P.J., and Zeikus, J.G. (1978) Acetate metabolism in Methanosarcina barkeri. Arch Microbiol 119: 175-182.
Wijker, R.S., Sessions, A.L., Fuhrer, T., and Phan, M. (2019) 2H/1/H variation in microbial lipids is controlled by NADPH metabolism. Proc Natl Acad Sci U S A 116: 12173-12182.
Yin, X., Wu, W., Maeke, M., Richter-Heitmann, T., Kulkarni, A.C., Oni, O.E., et al. (2019) CO2 conversion to methane and biomass in obligate methylotrophic methanogens in marine sediments. ISME J 13: 2107-2119.
Yu, T., Wu, W., Liang, W., Lever, M.A., Hinrichs, K.-U., and Wang, F. (2018) Growth of sedimentary Bathyarchaeotaon lignin as an energy source. Proc Natl Acad Sci U S A 115: 6022-6027.
Zehnder, A.J., and Brock, T.D. (1979) Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol 137: 420-432.
Zhang, X., Gillespie, A.L., and Sessions, A.L. (2009a) Large D/H variations in bacterial lipids reflect central metabolic pathways. Proc Natl Acad Sci U S A 106: 12580-12586.
Zhang, Z., and Sachs, J.P. (2007) Hydrogen isotope fractionation in freshwater algae: I. Variations among lipids and species. Org Geochem 38: 582-608.
Zhang, Z., Sachs, J.P., and Marchetti, A. (2009b) Hydrogen isotope fractionation in freshwater and marine algae: II. Temperature and nitrogen limited growth rate effects. Org Geochem 40: 428-439.
Zhuang, G.-C., Elling, F.J., Nigro, L.M., Samarkin, V., Joye, S.B., Teske, A., and Hinrichs, K.-U. (2016) Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico. Geochim Cosmochim Acta 187: 1-20.