Gallium(III) Complex with Cloxyquin Ligands Induces Ferroptosis in Cancer Cells and Is a Potent Agent against Both Differentiated and Tumorigenic Cancer Stem Rhabdomyosarcoma Cells

. 2022 ; 2022 () : 3095749. [epub] 20220423

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35502218

In this work, gallium(III) complex with cloxyquin (5-chloro-8-quinolinol, HClQ) ligands is shown to effectively inhibit proliferation of rhabdomyosarcoma cells, the frequent, aggressive, and poorly treatable cancer of children. It offers striking selectivity to cancer cells compared to noncancerous human fibroblasts. The data reveal that the complex induces ferroptosis in rhabdomyosarcoma cells, likely due to interfering with iron metabolism. Importantly, it can kill both bulk and stem rhabdomyosarcoma cells. To the best of our knowledge, this is the first compound based on metal other than Fe capable of inducing ferroptosis in cancer cells.

Zobrazit více v PubMed

Collery P., Keppler B., Madoulet C., Desoize B. Gallium in cancer treatment. Critical Reviews in Oncology/Hematology . 2002;42(3):283–296. doi: 10.1016/s1040-8428(01)00225-6. PubMed DOI

Arion V. B., Jakupec M. A., Galanski M., Unfried P., Keppler B. K. Synthesis, structure, spectroscopic and in vitro antitumour studies of a novel gallium(III) complex with 2-acetylpyridine 4N-dimethylthiosemicarbazone. Journal of Inorganic Biochemistry . 2002;91(1):298–305. doi: 10.1016/s0162-0134(02)00419-1. PubMed DOI

Kowol C. R., Berger R., Eichinger R., et al. Gallium(III) and iron(III) complexes of α-N-heterocyclic thiosemicarbazones: synthesis, characterization, cytotoxicity, and interaction with ribonucleotide reductase. Journal of Medicinal Chemistry . 2007;50(6):1254–1265. doi: 10.1021/jm0612618. PubMed DOI

Collery P., Millart H., Lamiable D., et al. Clinical pharmacology of gallium chloride after oral administration in lung cancer patients. Anticancer Research . 1989;9(2):353–356. PubMed

Collery P., Jakupec M. A., Kynast B., Keppler B. K. Preclinical and early clinical development of the antitumor gallium complex KP46 (FFC11) Metal Ions in Biology and Medicine . 2006;9:521–524.

Bernstein L. R., Tanner T., Godfrey C., Noll B. Chemistry and pharmacokinetics of gallium maltolate, a compound with high oral gallium bioavailability. Metal-Based Drugs . 2000;7(1):15. doi: 10.1155/mbd.2000.33.324842 PubMed DOI PMC

Mendes I. C., Soares M. A., dos Santos R. G., Pinheiro C., Beraldo H. Gallium(III) complexes of 2-pyridineformamide thiosemicarbazones: cytotoxic activity against malignant glioblastoma. European Journal of Medicinal Chemistry . 2009;44(5):1870–1877. doi: 10.1016/j.ejmech.2008.11.006. PubMed DOI

Yin H. Y., Gao J. J., Chen X., et al. A gallium(III) complex that engages protein disulfide isomerase A3 (PDIA3) as an anticancer target. Angewandte Chemie International Edition . 2020;59(45):20147–20153. doi: 10.1002/anie.202008432. PubMed DOI

Chitambar C. R. Gallium-containing anticancer compounds. Future Medicinal Chemistry . 2012;4(10):1257–1272. doi: 10.4155/fmc.12.69. PubMed DOI PMC

Robin P., Singh K., Suntharalingam K. Gallium(III)-polypyridyl complexes as anti-osteosarcoma stem cell agents. Chemical Communications . 2020;56(10):1509–1512. doi: 10.1039/c9cc08962d. PubMed DOI

Haber D. A., Gray N. S., Baselga J. The evolving war on cancer. Cell . 2011;145(1):19–24. doi: 10.1016/j.cell.2011.03.026. PubMed DOI

Timerbaev A. R. Advances in developing tris(8-quinolinolato)gallium(III) as an anticancer drug: critical appraisal and prospects. Metallomics . 2009;1(3):193–198. doi: 10.1039/b902861g. PubMed DOI

Jakupec M. A., Collery P., Keppler B. K. Synergistic antiproliferative effects of tris(8-quinolinolato)gallium(III) (KP46) in combination with platinum drugs in ovarian and colon carcinoma cells. In: Montrouge F., editor. Metal Ions in Biology and Medicine . France: John Libbey Eurotext; 2008. pp. 110–115.

Kubista B., Schoefl T., Mayr L., et al. Distinct activity of the bone-targeted gallium compound KP46 against osteosarcoma cells - synergism with autophagy inhibition. Journal of Experimental & Clinical Cancer Research . 2017;3628403890 PubMed PMC

Ellahioui Y., Prashar S., Gómez-Ruiz S. Anticancer applications and recent investigations of metallodrugs based on gallium, tin and titanium. Inorganics . 2017;55010004

Anighoro A., Bajorath J., Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. Journal of Medicinal Chemistry . 2014;57(19):7874–7887. doi: 10.1021/jm5006463. PubMed DOI

Peters J.-U. Polypharmacology - foe or friend? Journal of Medicinal Chemistry . 2013;56(22):8955–8971. doi: 10.1021/jm400856t. PubMed DOI

Oliveri V., Lanza V., Milardi D., et al. Amino- and chloro-8-hydroxyquinolines and their copper complexes as proteasome inhibitors and antiproliferative agents. Metallomics . 2017;9(10):1439–1446. doi: 10.1039/c7mt00156h. PubMed DOI

Morita A., Takahashi I., Sasatani M., et al. A chemical modulator of p53 transactivation that acts as a radioprotective agonist. Molecular Cancer Therapeutics . 2018;17(2):432–442. doi: 10.1158/1535-7163.mct-16-0554. PubMed DOI

Zhang J., Nadtochiy S. M., Urciuoli W. R., Brookes P. S. The cardioprotective compound cloxyquin uncouples mitochondria and induces autophagy. American Journal of Physiology-Heart and Circulatory Physiology . 2016;310(1):H29–H38. doi: 10.1152/ajpheart.00926.2014. PubMed DOI PMC

Zhang W., Shao W., Dong Z., Zhang S., Liu C., Chen S. Cloxiquine, a traditional antituberculosis agent, suppresses the growth and metastasis of melanoma cells through activation of PPARγ. Cell Death & Disease . 2019;10(6)31138783 PubMed PMC

Litecká M., Hreusová M., Kašpárková J., et al. Low-dimensional compounds containing bioactive ligands. Part XIV: high selective antiproliferative activity of tris(5-chloro-8-quinolinolato)gallium(III) complex against human cancer cell lines. Bioorganic & Medicinal Chemistry Letters . 2020;30127206 PubMed

Kostrhunova H., Zajac J., Novohradsky V., et al. A subset of new platinum antitumor agents kills cells by a multimodal mechanism of action also involving changes in the organization of the microtubule cytoskeleton. Journal of Medicinal Chemistry . 2019;62(10):5176–5190. doi: 10.1021/acs.jmedchem.9b00489. PubMed DOI

Novohradsky V., Markova L., Kostrhunova H., Trávníček Z., Brabec V., Kasparkova J. An anticancer Os(II) bathophenanthroline complex as a human breast cancer stem cell selective, mammosphere potent agent that kills cells by necroptosis. Scientific Reports . 2019;913327 PubMed PMC

Tzeng W., Lee J. L., Chiou T. J. The role of lipid peroxidation in menadione-mediated toxicity in cardiomyocytes. Journal of Molecular and Cellular Cardiology . 1995;27(9):1999–2008. doi: 10.1016/0022-2828(95)90021-7. PubMed DOI

Zajac J., Novohradsky V., Markova L., Brabec V., Kasparkova J. Platinum (IV) derivatives with cinnamate axial ligands as potent agents against both differentiated and tumorigenic cancer stem rhabdomyosarcoma cells. Angewandte Chemie International Edition . 2020;59(8):3329–3335. doi: 10.1002/anie.201913996. PubMed DOI

Egas-Bejar D., Huh W. W. Rhabdomyosarcoma in adolescent and young adult patients: current perspectives. Adolescent Health, Medicine and Therapeutics . 2014;5:115–125. PubMed PMC

Dela Cruz F. Cancer stem cells in pediatric sarcomas. Frontiers in Oncology . 2013;3168 PubMed PMC

Enyedy É. A., Dömötör O., Varga E., et al. Comparative solution equilibrium studies of anticancer gallium(III) complexes of 8-hydroxyquinoline and hydroxy(thio)pyrone ligands. Journal of Inorganic Biochemistry . 2012;117:189–197. doi: 10.1016/j.jinorgbio.2012.08.005. PubMed DOI

Brown C. W., Amante J. J., Chhoy P., et al. Prominin2 drives ferroptosis resistance by stimulating iron export. Developmental Cell . 2019;51(5):575–586. doi: 10.1016/j.devcel.2019.10.007. PubMed DOI PMC

Tang D., Kang R., Berghe T. V., Vandenabeele P., Kroemer G. The molecular machinery of regulated cell death. Cell Research . 2019;29(5):347–364. doi: 10.1038/s41422-019-0164-5. PubMed DOI PMC

Cao B., Li J., Zhou X., et al. Clioquinol induces pro-death autophagy in leukemia and myeloma cells by disrupting the mTOR signaling pathway. Scientific Reports . 2014;4 doi: 10.1038/srep05749.5749 PubMed DOI PMC

Li J., Cao F., Yin H.-L., et al. Ferroptosis: past, present and future. Cell Death & Disease . 2020;1188 PubMed PMC

Tang D., Kroemer G. Peroxisome: the new player in ferroptosis. Signal Transduction and Targeted Therapy . 2020;5273 PubMed PMC

Liu J., Kuang F., Kroemer G., Klionsky D. J., Kang R., Tang D. Autophagy-dependent ferroptosis: machinery and regulation. Cell Chemical Biology . 2020;27(4):420–435. doi: 10.1016/j.chembiol.2020.02.005. PubMed DOI PMC

Chen X., Comish P. B., Tang D., Kang R. Characteristics and biomarkers of ferroptosis. Frontiers in Cell and Developmental Biology . 2021;9 doi: 10.3389/fcell.2021.637162.637162 PubMed DOI PMC

Yang W. S., SriRamaratnam R., Welsch M. E., et al. Regulation of ferroptotic cancer cell death by GPX4. Cell . 2014;156(1-2):317–331. doi: 10.1016/j.cell.2013.12.010. PubMed DOI PMC

Lei P. X., Bai T., Sun Y. L. Mechanisms of ferroptosis and relations with regulated cell death: a review. Frontiers in Physiology . 2019;10 doi: 10.3389/fphys.2019.00139.139 PubMed DOI PMC

Feng H., Schorpp K., Jin J., et al. Transferrin receptor is a specific ferroptosis marker. Cell Reports . 2020;30(10):3411–3423. doi: 10.1016/j.celrep.2020.02.049. PubMed DOI PMC

Li D., Li Y. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduction and Targeted Therapy . 2020;5108 PubMed PMC

Naguib Y. M. A. Antioxidant activities of astaxanthin and related carotenoids. Journal of Agricultural and Food Chemistry . 2000;48(4):1150–1154. doi: 10.1021/jf991106k. PubMed DOI

Raudsepp P., Brüggemann D. A., Andersen M. L. Detection of radicals in single droplets of oil-in-water emulsions with the lipophilic fluorescent probe BODIPY665/676 and confocal laser scanning microscopy. Free Radical Biology and Medicine . 2014;70:233–240. doi: 10.1016/j.freeradbiomed.2014.02.026. PubMed DOI

Szwed M., Torgersen M. L., Kumari R. V., et al. Biological response and cytotoxicity induced by lipid nanocapsules. Journal of Nanobiotechnology . 2020;185 PubMed PMC

Walter D., Satheesha S., Albrecht P., et al. CD133 positive embryonal Rhabdomyosarcoma stem-like cell population is enriched in Rhabdospheres. PLoS One . 2011;6 doi: 10.1371/journal.pone.0019506.e19506 PubMed DOI PMC

Carpenter P. A., White L., McCowage G. B., et al. A dose-intensive, cyclophosphamide-based regimen for the treatment of recurrent/Progressive or advanced solid tumors of childhood. Cancer . 1997;80(3):489–496. doi: 10.1002/(sici)1097-0142(19970801)80:3<489::aid-cncr17>3.0.co;2-t. PubMed DOI

Arndt C. A. S., Stoner J. A., Hawkins D. S., et al. Vincristine, actinomycin, and cyclophosphamide compared with vincristine, actinomycin, and cyclophosphamide alternating with vincristine, topotecan, and cyclophosphamide for intermediate-risk Rhabdomyosarcoma: children’s oncology group study D9803. Journal of Clinical Oncology . 2009;27(31):5182–5188. doi: 10.1200/jco.2009.22.3768. PubMed DOI PMC

Harris W. R., Messori L. A comparative study of aluminum(III), gallium(III), indium(III), and thallium(III) binding to human serum transferrin. Coordination Chemistry Reviews . 2002;228(2):237–262. doi: 10.1016/s0010-8545(02)00037-1. DOI

Chitambar C. R., Al-Gizawiy M. M., Alhajala H. S., et al. Gallium maltolate disrupts tumor iron metabolism and retards the growth of glioblastoma by inhibiting mitochondrial function and ribonucleotide reductase. Molecular Cancer Therapeutics . 2018;17(6):1240–1250. doi: 10.1158/1535-7163.mct-17-1009. PubMed DOI PMC

Fei W., Zhang Y., Ye Y., et al. Bioactive metal-containing nanomaterials for ferroptotic cancer therapy. Journal of Materials Chemistry B . 2020;8(46):10461–10473. doi: 10.1039/d0tb02138e. PubMed DOI

Chitambar C. R. Gallium and its competing roles with iron in biological systems. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research . 2016;1863(8):2044–2053. doi: 10.1016/j.bbamcr.2016.04.027. PubMed DOI

Shen Z., Song J., Yung B. C., Zhou Z., Wu A., Chen X. Emerging strategies of cancer therapy based on ferroptosis. Advanced Materials . 2018;30(12)29356212 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...